mirror of https://github.com/arendst/Tasmota.git
789 lines
24 KiB
C++
789 lines
24 KiB
C++
// Most of the functionality of this library is based on the VL53L1X API
|
|
// provided by ST (STSW-IMG007), and some of the explanatory comments are quoted
|
|
// or paraphrased from the API source code, API user manual (UM2356), and
|
|
// VL53L1X datasheet.
|
|
|
|
#include <VL53L1X.h>
|
|
#include <Wire.h>
|
|
|
|
// Constructors ////////////////////////////////////////////////////////////////
|
|
|
|
VL53L1X::VL53L1X()
|
|
: address(AddressDefault)
|
|
, io_timeout(0) // no timeout
|
|
, did_timeout(false)
|
|
, calibrated(false)
|
|
, saved_vhv_init(0)
|
|
, saved_vhv_timeout(0)
|
|
, distance_mode(Unknown)
|
|
{
|
|
}
|
|
|
|
// Public Methods //////////////////////////////////////////////////////////////
|
|
|
|
void VL53L1X::setAddress(uint8_t new_addr)
|
|
{
|
|
writeReg(I2C_SLAVE__DEVICE_ADDRESS, new_addr & 0x7F);
|
|
address = new_addr;
|
|
}
|
|
|
|
// Initialize sensor using settings taken mostly from VL53L1_DataInit() and
|
|
// VL53L1_StaticInit().
|
|
// If io_2v8 (optional) is true or not given, the sensor is configured for 2V8
|
|
// mode.
|
|
bool VL53L1X::init(bool io_2v8)
|
|
{
|
|
// check model ID and module type registers (values specified in datasheet)
|
|
if (readReg16Bit(IDENTIFICATION__MODEL_ID) != 0xEACC) { return false; }
|
|
|
|
// VL53L1_software_reset() begin
|
|
|
|
writeReg(SOFT_RESET, 0x00);
|
|
delayMicroseconds(100);
|
|
writeReg(SOFT_RESET, 0x01);
|
|
|
|
// give it some time to boot; otherwise the sensor NACKs during the readReg()
|
|
// call below and the Arduino 101 doesn't seem to handle that well
|
|
delay(1);
|
|
|
|
// VL53L1_poll_for_boot_completion() begin
|
|
|
|
startTimeout();
|
|
|
|
// check last_status in case we still get a NACK to try to deal with it correctly
|
|
while ((readReg(FIRMWARE__SYSTEM_STATUS) & 0x01) == 0 || last_status != 0)
|
|
{
|
|
if (checkTimeoutExpired())
|
|
{
|
|
did_timeout = true;
|
|
return false;
|
|
}
|
|
}
|
|
// VL53L1_poll_for_boot_completion() end
|
|
|
|
// VL53L1_software_reset() end
|
|
|
|
// VL53L1_DataInit() begin
|
|
|
|
// sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary
|
|
if (io_2v8)
|
|
{
|
|
writeReg(PAD_I2C_HV__EXTSUP_CONFIG,
|
|
readReg(PAD_I2C_HV__EXTSUP_CONFIG) | 0x01);
|
|
}
|
|
|
|
// store oscillator info for later use
|
|
fast_osc_frequency = readReg16Bit(OSC_MEASURED__FAST_OSC__FREQUENCY);
|
|
osc_calibrate_val = readReg16Bit(RESULT__OSC_CALIBRATE_VAL);
|
|
|
|
// VL53L1_DataInit() end
|
|
|
|
// VL53L1_StaticInit() begin
|
|
|
|
// Note that the API does not actually apply the configuration settings below
|
|
// when VL53L1_StaticInit() is called: it keeps a copy of the sensor's
|
|
// register contents in memory and doesn't actually write them until a
|
|
// measurement is started. Writing the configuration here means we don't have
|
|
// to keep it all in memory and avoids a lot of redundant writes later.
|
|
|
|
// the API sets the preset mode to LOWPOWER_AUTONOMOUS here:
|
|
// VL53L1_set_preset_mode() begin
|
|
|
|
// VL53L1_preset_mode_standard_ranging() begin
|
|
|
|
// values labeled "tuning parm default" are from vl53l1_tuning_parm_defaults.h
|
|
// (API uses these in VL53L1_init_tuning_parm_storage_struct())
|
|
|
|
// static config
|
|
// API resets PAD_I2C_HV__EXTSUP_CONFIG here, but maybe we don't want to do
|
|
// that? (seems like it would disable 2V8 mode)
|
|
writeReg16Bit(DSS_CONFIG__TARGET_TOTAL_RATE_MCPS, TargetRate); // should already be this value after reset
|
|
writeReg(GPIO__TIO_HV_STATUS, 0x02);
|
|
writeReg(SIGMA_ESTIMATOR__EFFECTIVE_PULSE_WIDTH_NS, 8); // tuning parm default
|
|
writeReg(SIGMA_ESTIMATOR__EFFECTIVE_AMBIENT_WIDTH_NS, 16); // tuning parm default
|
|
writeReg(ALGO__CROSSTALK_COMPENSATION_VALID_HEIGHT_MM, 0x01);
|
|
writeReg(ALGO__RANGE_IGNORE_VALID_HEIGHT_MM, 0xFF);
|
|
writeReg(ALGO__RANGE_MIN_CLIP, 0); // tuning parm default
|
|
writeReg(ALGO__CONSISTENCY_CHECK__TOLERANCE, 2); // tuning parm default
|
|
|
|
// general config
|
|
writeReg16Bit(SYSTEM__THRESH_RATE_HIGH, 0x0000);
|
|
writeReg16Bit(SYSTEM__THRESH_RATE_LOW, 0x0000);
|
|
writeReg(DSS_CONFIG__APERTURE_ATTENUATION, 0x38);
|
|
|
|
// timing config
|
|
// most of these settings will be determined later by distance and timing
|
|
// budget configuration
|
|
writeReg16Bit(RANGE_CONFIG__SIGMA_THRESH, 360); // tuning parm default
|
|
writeReg16Bit(RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS, 192); // tuning parm default
|
|
|
|
// dynamic config
|
|
|
|
writeReg(SYSTEM__GROUPED_PARAMETER_HOLD_0, 0x01);
|
|
writeReg(SYSTEM__GROUPED_PARAMETER_HOLD_1, 0x01);
|
|
writeReg(SD_CONFIG__QUANTIFIER, 2); // tuning parm default
|
|
|
|
// VL53L1_preset_mode_standard_ranging() end
|
|
|
|
// from VL53L1_preset_mode_timed_ranging_*
|
|
// GPH is 0 after reset, but writing GPH0 and GPH1 above seem to set GPH to 1,
|
|
// and things don't seem to work if we don't set GPH back to 0 (which the API
|
|
// does here).
|
|
writeReg(SYSTEM__GROUPED_PARAMETER_HOLD, 0x00);
|
|
writeReg(SYSTEM__SEED_CONFIG, 1); // tuning parm default
|
|
|
|
// from VL53L1_config_low_power_auto_mode
|
|
writeReg(SYSTEM__SEQUENCE_CONFIG, 0x8B); // VHV, PHASECAL, DSS1, RANGE
|
|
writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, 200 << 8);
|
|
writeReg(DSS_CONFIG__ROI_MODE_CONTROL, 2); // REQUESTED_EFFFECTIVE_SPADS
|
|
|
|
// VL53L1_set_preset_mode() end
|
|
|
|
// default to long range, 50 ms timing budget
|
|
// note that this is different than what the API defaults to
|
|
setDistanceMode(Long);
|
|
setMeasurementTimingBudget(50000);
|
|
|
|
// VL53L1_StaticInit() end
|
|
|
|
// the API triggers this change in VL53L1_init_and_start_range() once a
|
|
// measurement is started; assumes MM1 and MM2 are disabled
|
|
writeReg16Bit(ALGO__PART_TO_PART_RANGE_OFFSET_MM,
|
|
readReg16Bit(MM_CONFIG__OUTER_OFFSET_MM) * 4);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Write an 8-bit register
|
|
void VL53L1X::writeReg(uint16_t reg, uint8_t value)
|
|
{
|
|
Wire.beginTransmission(address);
|
|
Wire.write((reg >> 8) & 0xFF); // reg high byte
|
|
Wire.write( reg & 0xFF); // reg low byte
|
|
Wire.write(value);
|
|
last_status = Wire.endTransmission();
|
|
}
|
|
|
|
// Write a 16-bit register
|
|
void VL53L1X::writeReg16Bit(uint16_t reg, uint16_t value)
|
|
{
|
|
Wire.beginTransmission(address);
|
|
Wire.write((reg >> 8) & 0xFF); // reg high byte
|
|
Wire.write( reg & 0xFF); // reg low byte
|
|
Wire.write((value >> 8) & 0xFF); // value high byte
|
|
Wire.write( value & 0xFF); // value low byte
|
|
last_status = Wire.endTransmission();
|
|
}
|
|
|
|
// Write a 32-bit register
|
|
void VL53L1X::writeReg32Bit(uint16_t reg, uint32_t value)
|
|
{
|
|
Wire.beginTransmission(address);
|
|
Wire.write((reg >> 8) & 0xFF); // reg high byte
|
|
Wire.write( reg & 0xFF); // reg low byte
|
|
Wire.write((value >> 24) & 0xFF); // value highest byte
|
|
Wire.write((value >> 16) & 0xFF);
|
|
Wire.write((value >> 8) & 0xFF);
|
|
Wire.write( value & 0xFF); // value lowest byte
|
|
last_status = Wire.endTransmission();
|
|
}
|
|
|
|
// Read an 8-bit register
|
|
uint8_t VL53L1X::readReg(regAddr reg)
|
|
{
|
|
uint8_t value;
|
|
|
|
Wire.beginTransmission(address);
|
|
Wire.write((reg >> 8) & 0xFF); // reg high byte
|
|
Wire.write( reg & 0xFF); // reg low byte
|
|
last_status = Wire.endTransmission();
|
|
|
|
Wire.requestFrom(address, (uint8_t)1);
|
|
value = Wire.read();
|
|
|
|
return value;
|
|
}
|
|
|
|
// Read a 16-bit register
|
|
uint16_t VL53L1X::readReg16Bit(uint16_t reg)
|
|
{
|
|
uint16_t value;
|
|
|
|
Wire.beginTransmission(address);
|
|
Wire.write((reg >> 8) & 0xFF); // reg high byte
|
|
Wire.write( reg & 0xFF); // reg low byte
|
|
last_status = Wire.endTransmission();
|
|
|
|
Wire.requestFrom(address, (uint8_t)2);
|
|
value = (uint16_t)Wire.read() << 8; // value high byte
|
|
value |= Wire.read(); // value low byte
|
|
|
|
return value;
|
|
}
|
|
|
|
// Read a 32-bit register
|
|
uint32_t VL53L1X::readReg32Bit(uint16_t reg)
|
|
{
|
|
uint32_t value;
|
|
|
|
Wire.beginTransmission(address);
|
|
Wire.write((reg >> 8) & 0xFF); // reg high byte
|
|
Wire.write( reg & 0xFF); // reg low byte
|
|
last_status = Wire.endTransmission();
|
|
|
|
Wire.requestFrom(address, (uint8_t)4);
|
|
value = (uint32_t)Wire.read() << 24; // value highest byte
|
|
value |= (uint32_t)Wire.read() << 16;
|
|
value |= (uint16_t)Wire.read() << 8;
|
|
value |= Wire.read(); // value lowest byte
|
|
|
|
return value;
|
|
}
|
|
|
|
// set distance mode to Short, Medium, or Long
|
|
// based on VL53L1_SetDistanceMode()
|
|
bool VL53L1X::setDistanceMode(DistanceMode mode)
|
|
{
|
|
// save existing timing budget
|
|
uint32_t budget_us = getMeasurementTimingBudget();
|
|
|
|
switch (mode)
|
|
{
|
|
case Short:
|
|
// from VL53L1_preset_mode_standard_ranging_short_range()
|
|
|
|
// timing config
|
|
writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x07);
|
|
writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x05);
|
|
writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0x38);
|
|
|
|
// dynamic config
|
|
writeReg(SD_CONFIG__WOI_SD0, 0x07);
|
|
writeReg(SD_CONFIG__WOI_SD1, 0x05);
|
|
writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 6); // tuning parm default
|
|
writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 6); // tuning parm default
|
|
|
|
break;
|
|
|
|
case Medium:
|
|
// from VL53L1_preset_mode_standard_ranging()
|
|
|
|
// timing config
|
|
writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0B);
|
|
writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x09);
|
|
writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0x78);
|
|
|
|
// dynamic config
|
|
writeReg(SD_CONFIG__WOI_SD0, 0x0B);
|
|
writeReg(SD_CONFIG__WOI_SD1, 0x09);
|
|
writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 10); // tuning parm default
|
|
writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 10); // tuning parm default
|
|
|
|
break;
|
|
|
|
case Long: // long
|
|
// from VL53L1_preset_mode_standard_ranging_long_range()
|
|
|
|
// timing config
|
|
writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0F);
|
|
writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x0D);
|
|
writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0xB8);
|
|
|
|
// dynamic config
|
|
writeReg(SD_CONFIG__WOI_SD0, 0x0F);
|
|
writeReg(SD_CONFIG__WOI_SD1, 0x0D);
|
|
writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 14); // tuning parm default
|
|
writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 14); // tuning parm default
|
|
|
|
break;
|
|
|
|
default:
|
|
// unrecognized mode - do nothing
|
|
return false;
|
|
}
|
|
|
|
// reapply timing budget
|
|
setMeasurementTimingBudget(budget_us);
|
|
|
|
// save mode so it can be returned by getDistanceMode()
|
|
distance_mode = mode;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Set the measurement timing budget in microseconds, which is the time allowed
|
|
// for one measurement. A longer timing budget allows for more accurate
|
|
// measurements.
|
|
// based on VL53L1_SetMeasurementTimingBudgetMicroSeconds()
|
|
bool VL53L1X::setMeasurementTimingBudget(uint32_t budget_us)
|
|
{
|
|
// assumes PresetMode is LOWPOWER_AUTONOMOUS
|
|
|
|
if (budget_us <= TimingGuard) { return false; }
|
|
|
|
uint32_t range_config_timeout_us = budget_us -= TimingGuard;
|
|
if (range_config_timeout_us > 1100000) { return false; } // FDA_MAX_TIMING_BUDGET_US * 2
|
|
|
|
range_config_timeout_us /= 2;
|
|
|
|
// VL53L1_calc_timeout_register_values() begin
|
|
|
|
uint32_t macro_period_us;
|
|
|
|
// "Update Macro Period for Range A VCSEL Period"
|
|
macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_A));
|
|
|
|
// "Update Phase timeout - uses Timing A"
|
|
// Timeout of 1000 is tuning parm default (TIMED_PHASECAL_CONFIG_TIMEOUT_US_DEFAULT)
|
|
// via VL53L1_get_preset_mode_timing_cfg().
|
|
uint32_t phasecal_timeout_mclks = timeoutMicrosecondsToMclks(1000, macro_period_us);
|
|
if (phasecal_timeout_mclks > 0xFF) { phasecal_timeout_mclks = 0xFF; }
|
|
writeReg(PHASECAL_CONFIG__TIMEOUT_MACROP, phasecal_timeout_mclks);
|
|
|
|
// "Update MM Timing A timeout"
|
|
// Timeout of 1 is tuning parm default (LOWPOWERAUTO_MM_CONFIG_TIMEOUT_US_DEFAULT)
|
|
// via VL53L1_get_preset_mode_timing_cfg(). With the API, the register
|
|
// actually ends up with a slightly different value because it gets assigned,
|
|
// retrieved, recalculated with a different macro period, and reassigned,
|
|
// but it probably doesn't matter because it seems like the MM ("mode
|
|
// mitigation"?) sequence steps are disabled in low power auto mode anyway.
|
|
writeReg16Bit(MM_CONFIG__TIMEOUT_MACROP_A, encodeTimeout(
|
|
timeoutMicrosecondsToMclks(1, macro_period_us)));
|
|
|
|
// "Update Range Timing A timeout"
|
|
writeReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_A, encodeTimeout(
|
|
timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us)));
|
|
|
|
// "Update Macro Period for Range B VCSEL Period"
|
|
macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_B));
|
|
|
|
// "Update MM Timing B timeout"
|
|
// (See earlier comment about MM Timing A timeout.)
|
|
writeReg16Bit(MM_CONFIG__TIMEOUT_MACROP_B, encodeTimeout(
|
|
timeoutMicrosecondsToMclks(1, macro_period_us)));
|
|
|
|
// "Update Range Timing B timeout"
|
|
writeReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_B, encodeTimeout(
|
|
timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us)));
|
|
|
|
// VL53L1_calc_timeout_register_values() end
|
|
|
|
return true;
|
|
}
|
|
|
|
// Get the measurement timing budget in microseconds
|
|
// based on VL53L1_SetMeasurementTimingBudgetMicroSeconds()
|
|
uint32_t VL53L1X::getMeasurementTimingBudget()
|
|
{
|
|
// assumes PresetMode is LOWPOWER_AUTONOMOUS and these sequence steps are
|
|
// enabled: VHV, PHASECAL, DSS1, RANGE
|
|
|
|
// VL53L1_get_timeouts_us() begin
|
|
|
|
// "Update Macro Period for Range A VCSEL Period"
|
|
uint32_t macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_A));
|
|
|
|
// "Get Range Timing A timeout"
|
|
|
|
uint32_t range_config_timeout_us = timeoutMclksToMicroseconds(decodeTimeout(
|
|
readReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_A)), macro_period_us);
|
|
|
|
// VL53L1_get_timeouts_us() end
|
|
|
|
return 2 * range_config_timeout_us + TimingGuard;
|
|
}
|
|
|
|
// Start continuous ranging measurements, with the given inter-measurement
|
|
// period in milliseconds determining how often the sensor takes a measurement.
|
|
void VL53L1X::startContinuous(uint32_t period_ms)
|
|
{
|
|
// from VL53L1_set_inter_measurement_period_ms()
|
|
writeReg32Bit(SYSTEM__INTERMEASUREMENT_PERIOD, period_ms * osc_calibrate_val);
|
|
|
|
writeReg(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range
|
|
writeReg(SYSTEM__MODE_START, 0x40); // mode_range__timed
|
|
}
|
|
|
|
// Stop continuous measurements
|
|
// based on VL53L1_stop_range()
|
|
void VL53L1X::stopContinuous()
|
|
{
|
|
writeReg(SYSTEM__MODE_START, 0x80); // mode_range__abort
|
|
|
|
// VL53L1_low_power_auto_data_stop_range() begin
|
|
|
|
calibrated = false;
|
|
|
|
// "restore vhv configs"
|
|
if (saved_vhv_init != 0)
|
|
{
|
|
writeReg(VHV_CONFIG__INIT, saved_vhv_init);
|
|
}
|
|
if (saved_vhv_timeout != 0)
|
|
{
|
|
writeReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND, saved_vhv_timeout);
|
|
}
|
|
|
|
// "remove phasecal override"
|
|
writeReg(PHASECAL_CONFIG__OVERRIDE, 0x00);
|
|
|
|
// VL53L1_low_power_auto_data_stop_range() end
|
|
}
|
|
|
|
// Returns a range reading in millimeters when continuous mode is active
|
|
// (readRangeSingleMillimeters() also calls this function after starting a
|
|
// single-shot range measurement)
|
|
uint16_t VL53L1X::read(bool blocking)
|
|
{
|
|
if (blocking)
|
|
{
|
|
startTimeout();
|
|
while (!dataReady())
|
|
{
|
|
if (checkTimeoutExpired())
|
|
{
|
|
did_timeout = true;
|
|
ranging_data.range_status = None;
|
|
ranging_data.range_mm = 0;
|
|
ranging_data.peak_signal_count_rate_MCPS = 0;
|
|
ranging_data.ambient_count_rate_MCPS = 0;
|
|
return ranging_data.range_mm;
|
|
}
|
|
}
|
|
}
|
|
|
|
readResults();
|
|
|
|
if (!calibrated)
|
|
{
|
|
setupManualCalibration();
|
|
calibrated = true;
|
|
}
|
|
|
|
updateDSS();
|
|
|
|
getRangingData();
|
|
|
|
writeReg(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range
|
|
|
|
return ranging_data.range_mm;
|
|
}
|
|
|
|
// convert a RangeStatus to a readable string
|
|
// Note that on an AVR, these strings are stored in RAM (dynamic memory), which
|
|
// makes working with them easier but uses up 200+ bytes of RAM (many AVR-based
|
|
// Arduinos only have about 2000 bytes of RAM). You can avoid this memory usage
|
|
// if you do not call this function in your sketch.
|
|
const char * VL53L1X::rangeStatusToString(RangeStatus status)
|
|
{
|
|
switch (status)
|
|
{
|
|
case RangeValid:
|
|
return "range valid";
|
|
|
|
case SigmaFail:
|
|
return "sigma fail";
|
|
|
|
case SignalFail:
|
|
return "signal fail";
|
|
|
|
case RangeValidMinRangeClipped:
|
|
return "range valid, min range clipped";
|
|
|
|
case OutOfBoundsFail:
|
|
return "out of bounds fail";
|
|
|
|
case HardwareFail:
|
|
return "hardware fail";
|
|
|
|
case RangeValidNoWrapCheckFail:
|
|
return "range valid, no wrap check fail";
|
|
|
|
case WrapTargetFail:
|
|
return "wrap target fail";
|
|
|
|
case XtalkSignalFail:
|
|
return "xtalk signal fail";
|
|
|
|
case SynchronizationInt:
|
|
return "synchronization int";
|
|
|
|
case MinRangeFail:
|
|
return "min range fail";
|
|
|
|
case None:
|
|
return "no update";
|
|
|
|
default:
|
|
return "unknown status";
|
|
}
|
|
}
|
|
|
|
// Did a timeout occur in one of the read functions since the last call to
|
|
// timeoutOccurred()?
|
|
bool VL53L1X::timeoutOccurred()
|
|
{
|
|
bool tmp = did_timeout;
|
|
did_timeout = false;
|
|
return tmp;
|
|
}
|
|
|
|
// Private Methods /////////////////////////////////////////////////////////////
|
|
|
|
// "Setup ranges after the first one in low power auto mode by turning off
|
|
// FW calibration steps and programming static values"
|
|
// based on VL53L1_low_power_auto_setup_manual_calibration()
|
|
void VL53L1X::setupManualCalibration()
|
|
{
|
|
// "save original vhv configs"
|
|
saved_vhv_init = readReg(VHV_CONFIG__INIT);
|
|
saved_vhv_timeout = readReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND);
|
|
|
|
// "disable VHV init"
|
|
writeReg(VHV_CONFIG__INIT, saved_vhv_init & 0x7F);
|
|
|
|
// "set loop bound to tuning param"
|
|
writeReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND,
|
|
(saved_vhv_timeout & 0x03) + (3 << 2)); // tuning parm default (LOWPOWERAUTO_VHV_LOOP_BOUND_DEFAULT)
|
|
|
|
// "override phasecal"
|
|
writeReg(PHASECAL_CONFIG__OVERRIDE, 0x01);
|
|
writeReg(CAL_CONFIG__VCSEL_START, readReg(PHASECAL_RESULT__VCSEL_START));
|
|
}
|
|
|
|
// read measurement results into buffer
|
|
void VL53L1X::readResults()
|
|
{
|
|
Wire.beginTransmission(address);
|
|
Wire.write((RESULT__RANGE_STATUS >> 8) & 0xFF); // reg high byte
|
|
Wire.write( RESULT__RANGE_STATUS & 0xFF); // reg low byte
|
|
last_status = Wire.endTransmission();
|
|
|
|
Wire.requestFrom(address, (uint8_t)17);
|
|
|
|
results.range_status = Wire.read();
|
|
|
|
Wire.read(); // report_status: not used
|
|
|
|
results.stream_count = Wire.read();
|
|
|
|
results.dss_actual_effective_spads_sd0 = (uint16_t)Wire.read() << 8; // high byte
|
|
results.dss_actual_effective_spads_sd0 |= Wire.read(); // low byte
|
|
|
|
Wire.read(); // peak_signal_count_rate_mcps_sd0: not used
|
|
Wire.read();
|
|
|
|
results.ambient_count_rate_mcps_sd0 = (uint16_t)Wire.read() << 8; // high byte
|
|
results.ambient_count_rate_mcps_sd0 |= Wire.read(); // low byte
|
|
|
|
Wire.read(); // sigma_sd0: not used
|
|
Wire.read();
|
|
|
|
Wire.read(); // phase_sd0: not used
|
|
Wire.read();
|
|
|
|
results.final_crosstalk_corrected_range_mm_sd0 = (uint16_t)Wire.read() << 8; // high byte
|
|
results.final_crosstalk_corrected_range_mm_sd0 |= Wire.read(); // low byte
|
|
|
|
results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0 = (uint16_t)Wire.read() << 8; // high byte
|
|
results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0 |= Wire.read(); // low byte
|
|
}
|
|
|
|
// perform Dynamic SPAD Selection calculation/update
|
|
// based on VL53L1_low_power_auto_update_DSS()
|
|
void VL53L1X::updateDSS()
|
|
{
|
|
uint16_t spadCount = results.dss_actual_effective_spads_sd0;
|
|
|
|
if (spadCount != 0)
|
|
{
|
|
// "Calc total rate per spad"
|
|
|
|
uint32_t totalRatePerSpad =
|
|
(uint32_t)results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0 +
|
|
results.ambient_count_rate_mcps_sd0;
|
|
|
|
// "clip to 16 bits"
|
|
if (totalRatePerSpad > 0xFFFF) { totalRatePerSpad = 0xFFFF; }
|
|
|
|
// "shift up to take advantage of 32 bits"
|
|
totalRatePerSpad <<= 16;
|
|
|
|
totalRatePerSpad /= spadCount;
|
|
|
|
if (totalRatePerSpad != 0)
|
|
{
|
|
// "get the target rate and shift up by 16"
|
|
uint32_t requiredSpads = ((uint32_t)TargetRate << 16) / totalRatePerSpad;
|
|
|
|
// "clip to 16 bit"
|
|
if (requiredSpads > 0xFFFF) { requiredSpads = 0xFFFF; }
|
|
|
|
// "override DSS config"
|
|
writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, requiredSpads);
|
|
// DSS_CONFIG__ROI_MODE_CONTROL should already be set to REQUESTED_EFFFECTIVE_SPADS
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we reached this point, it means something above would have resulted in a
|
|
// divide by zero.
|
|
// "We want to gracefully set a spad target, not just exit with an error"
|
|
|
|
// "set target to mid point"
|
|
writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, 0x8000);
|
|
}
|
|
|
|
// get range, status, rates from results buffer
|
|
// based on VL53L1_GetRangingMeasurementData()
|
|
void VL53L1X::getRangingData()
|
|
{
|
|
// VL53L1_copy_sys_and_core_results_to_range_results() begin
|
|
|
|
uint16_t range = results.final_crosstalk_corrected_range_mm_sd0;
|
|
|
|
// "apply correction gain"
|
|
// gain factor of 2011 is tuning parm default (VL53L1_TUNINGPARM_LITE_RANGING_GAIN_FACTOR_DEFAULT)
|
|
// Basically, this appears to scale the result by 2011/2048, or about 98%
|
|
// (with the 1024 added for proper rounding).
|
|
ranging_data.range_mm = ((uint32_t)range * 2011 + 0x0400) / 0x0800;
|
|
|
|
// VL53L1_copy_sys_and_core_results_to_range_results() end
|
|
|
|
// set range_status in ranging_data based on value of RESULT__RANGE_STATUS register
|
|
// mostly based on ConvertStatusLite()
|
|
switch(results.range_status)
|
|
{
|
|
case 17: // MULTCLIPFAIL
|
|
case 2: // VCSELWATCHDOGTESTFAILURE
|
|
case 1: // VCSELCONTINUITYTESTFAILURE
|
|
case 3: // NOVHVVALUEFOUND
|
|
// from SetSimpleData()
|
|
ranging_data.range_status = HardwareFail;
|
|
break;
|
|
|
|
case 13: // USERROICLIP
|
|
// from SetSimpleData()
|
|
ranging_data.range_status = MinRangeFail;
|
|
break;
|
|
|
|
case 18: // GPHSTREAMCOUNT0READY
|
|
ranging_data.range_status = SynchronizationInt;
|
|
break;
|
|
|
|
case 5: // RANGEPHASECHECK
|
|
ranging_data.range_status = OutOfBoundsFail;
|
|
break;
|
|
|
|
case 4: // MSRCNOTARGET
|
|
ranging_data.range_status = SignalFail;
|
|
break;
|
|
|
|
case 6: // SIGMATHRESHOLDCHECK
|
|
ranging_data.range_status = SigmaFail;
|
|
break;
|
|
|
|
case 7: // PHASECONSISTENCY
|
|
ranging_data.range_status = WrapTargetFail;
|
|
break;
|
|
|
|
case 12: // RANGEIGNORETHRESHOLD
|
|
ranging_data.range_status = XtalkSignalFail;
|
|
break;
|
|
|
|
case 8: // MINCLIP
|
|
ranging_data.range_status = RangeValidMinRangeClipped;
|
|
break;
|
|
|
|
case 9: // RANGECOMPLETE
|
|
// from VL53L1_copy_sys_and_core_results_to_range_results()
|
|
if (results.stream_count == 0)
|
|
{
|
|
ranging_data.range_status = RangeValidNoWrapCheckFail;
|
|
}
|
|
else
|
|
{
|
|
ranging_data.range_status = RangeValid;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ranging_data.range_status = None;
|
|
}
|
|
|
|
// from SetSimpleData()
|
|
ranging_data.peak_signal_count_rate_MCPS =
|
|
countRateFixedToFloat(results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0);
|
|
ranging_data.ambient_count_rate_MCPS =
|
|
countRateFixedToFloat(results.ambient_count_rate_mcps_sd0);
|
|
}
|
|
|
|
// Decode sequence step timeout in MCLKs from register value
|
|
// based on VL53L1_decode_timeout()
|
|
uint32_t VL53L1X::decodeTimeout(uint16_t reg_val)
|
|
{
|
|
return ((uint32_t)(reg_val & 0xFF) << (reg_val >> 8)) + 1;
|
|
}
|
|
|
|
// Encode sequence step timeout register value from timeout in MCLKs
|
|
// based on VL53L1_encode_timeout()
|
|
uint16_t VL53L1X::encodeTimeout(uint32_t timeout_mclks)
|
|
{
|
|
// encoded format: "(LSByte * 2^MSByte) + 1"
|
|
|
|
uint32_t ls_byte = 0;
|
|
uint16_t ms_byte = 0;
|
|
|
|
if (timeout_mclks > 0)
|
|
{
|
|
ls_byte = timeout_mclks - 1;
|
|
|
|
while ((ls_byte & 0xFFFFFF00) > 0)
|
|
{
|
|
ls_byte >>= 1;
|
|
ms_byte++;
|
|
}
|
|
|
|
return (ms_byte << 8) | (ls_byte & 0xFF);
|
|
}
|
|
else { return 0; }
|
|
}
|
|
|
|
// Convert sequence step timeout from macro periods to microseconds with given
|
|
// macro period in microseconds (12.12 format)
|
|
// based on VL53L1_calc_timeout_us()
|
|
uint32_t VL53L1X::timeoutMclksToMicroseconds(uint32_t timeout_mclks, uint32_t macro_period_us)
|
|
{
|
|
return ((uint64_t)timeout_mclks * macro_period_us + 0x800) >> 12;
|
|
}
|
|
|
|
// Convert sequence step timeout from microseconds to macro periods with given
|
|
// macro period in microseconds (12.12 format)
|
|
// based on VL53L1_calc_timeout_mclks()
|
|
uint32_t VL53L1X::timeoutMicrosecondsToMclks(uint32_t timeout_us, uint32_t macro_period_us)
|
|
{
|
|
return (((uint32_t)timeout_us << 12) + (macro_period_us >> 1)) / macro_period_us;
|
|
}
|
|
|
|
// Calculate macro period in microseconds (12.12 format) with given VCSEL period
|
|
// assumes fast_osc_frequency has been read and stored
|
|
// based on VL53L1_calc_macro_period_us()
|
|
uint32_t VL53L1X::calcMacroPeriod(uint8_t vcsel_period)
|
|
{
|
|
// from VL53L1_calc_pll_period_us()
|
|
// fast osc frequency in 4.12 format; PLL period in 0.24 format
|
|
uint32_t pll_period_us = ((uint32_t)0x01 << 30) / fast_osc_frequency;
|
|
|
|
// from VL53L1_decode_vcsel_period()
|
|
uint8_t vcsel_period_pclks = (vcsel_period + 1) << 1;
|
|
|
|
// VL53L1_MACRO_PERIOD_VCSEL_PERIODS = 2304
|
|
uint32_t macro_period_us = (uint32_t)2304 * pll_period_us;
|
|
macro_period_us >>= 6;
|
|
macro_period_us *= vcsel_period_pclks;
|
|
macro_period_us >>= 6;
|
|
|
|
return macro_period_us;
|
|
}
|