mirror of https://github.com/arendst/Tasmota.git
538 lines
19 KiB
C++
538 lines
19 KiB
C++
/*
|
|
esp8266_waveform - General purpose waveform generation and control,
|
|
supporting outputs on all pins in parallel.
|
|
|
|
Copyright (c) 2018 Earle F. Philhower, III. All rights reserved.
|
|
|
|
The core idea is to have a programmable waveform generator with a unique
|
|
high and low period (defined in microseconds or CPU clock cycles). TIMER1 is
|
|
set to 1-shot mode and is always loaded with the time until the next edge
|
|
of any live waveforms.
|
|
|
|
Up to one waveform generator per pin supported.
|
|
|
|
Each waveform generator is synchronized to the ESP clock cycle counter, not the
|
|
timer. This allows for removing interrupt jitter and delay as the counter
|
|
always increments once per 80MHz clock. Changes to a waveform are
|
|
contiguous and only take effect on the next waveform transition,
|
|
allowing for smooth transitions.
|
|
|
|
This replaces older tone(), analogWrite(), and the Servo classes.
|
|
|
|
Everywhere in the code where "cycles" is used, it means ESP.getCycleCount()
|
|
clock cycle count, or an interval measured in CPU clock cycles, but not TIMER1
|
|
cycles (which may be 2 CPU clock cycles @ 160MHz).
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifdef ESP8266
|
|
|
|
#include <Arduino.h>
|
|
#include "ets_sys.h"
|
|
#include "core_esp8266_waveform.h"
|
|
#include "user_interface.h"
|
|
extern "C" {
|
|
|
|
// Internal-only calls, not for applications
|
|
extern void _setPWMPeriodCC(uint32_t cc);
|
|
extern bool _stopPWM(int pin);
|
|
extern bool _setPWM(int pin, uint32_t cc);
|
|
extern int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles);
|
|
|
|
// Maximum delay between IRQs
|
|
#define MAXIRQUS (10000)
|
|
|
|
// Set/clear GPIO 0-15 by bitmask
|
|
#define SetGPIO(a) do { GPOS = a; } while (0)
|
|
#define ClearGPIO(a) do { GPOC = a; } while (0)
|
|
|
|
// Waveform generator can create tones, PWM, and servos
|
|
typedef struct {
|
|
uint32_t nextServiceCycle; // ESP cycle timer when a transition required
|
|
uint32_t expiryCycle; // For time-limited waveform, the cycle when this waveform must stop
|
|
uint32_t timeHighCycles; // Currently running waveform period
|
|
uint32_t timeLowCycles; //
|
|
uint32_t gotoTimeHighCycles; // Copied over on the next period to preserve phase
|
|
uint32_t gotoTimeLowCycles; //
|
|
} Waveform;
|
|
|
|
static Waveform waveform[17]; // State of all possible pins
|
|
static volatile uint32_t waveformState = 0; // Is the pin high or low, updated in NMI so no access outside the NMI code
|
|
static volatile uint32_t waveformEnabled = 0; // Is it actively running, updated in NMI so no access outside the NMI code
|
|
|
|
// Enable lock-free by only allowing updates to waveformState and waveformEnabled from IRQ service routine
|
|
static volatile uint32_t waveformToEnable = 0; // Message to the NMI handler to start a waveform on a inactive pin
|
|
static volatile uint32_t waveformToDisable = 0; // Message to the NMI handler to disable a pin from waveform generation
|
|
|
|
volatile int32_t waveformToChange = -1;
|
|
volatile uint32_t waveformNewHigh = 0;
|
|
volatile uint32_t waveformNewLow = 0;
|
|
|
|
static uint32_t (*timer1CB)() = NULL;
|
|
|
|
// Non-speed critical bits
|
|
#pragma GCC optimize ("Os")
|
|
|
|
static inline ICACHE_RAM_ATTR uint32_t GetCycleCount() {
|
|
uint32_t ccount;
|
|
__asm__ __volatile__("esync; rsr %0,ccount":"=a"(ccount));
|
|
return ccount;
|
|
}
|
|
|
|
// Interrupt on/off control
|
|
static ICACHE_RAM_ATTR void timer1Interrupt();
|
|
static bool timerRunning = false;
|
|
|
|
static void initTimer() {
|
|
timer1_disable();
|
|
ETS_FRC_TIMER1_INTR_ATTACH(NULL, NULL);
|
|
ETS_FRC_TIMER1_NMI_INTR_ATTACH(timer1Interrupt);
|
|
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_SINGLE);
|
|
timerRunning = true;
|
|
}
|
|
|
|
static void ICACHE_RAM_ATTR deinitTimer() {
|
|
ETS_FRC_TIMER1_NMI_INTR_ATTACH(NULL);
|
|
timer1_disable();
|
|
timer1_isr_init();
|
|
timerRunning = false;
|
|
}
|
|
|
|
// Set a callback. Pass in NULL to stop it
|
|
void setTimer1Callback(uint32_t (*fn)()) {
|
|
timer1CB = fn;
|
|
if (!timerRunning && fn) {
|
|
initTimer();
|
|
timer1_write(microsecondsToClockCycles(1)); // Cause an interrupt post-haste
|
|
} else if (timerRunning && !fn && !waveformEnabled) {
|
|
deinitTimer();
|
|
}
|
|
}
|
|
|
|
// PWM implementation using special purpose state machine
|
|
//
|
|
// Keep an ordered list of pins with the delta in cycles between each
|
|
// element, with a terminal entry making up the remainder of the PWM
|
|
// period. With this method sum(all deltas) == PWM period clock cycles.
|
|
//
|
|
// At t=0 set all pins high and set the timeout for the 1st edge.
|
|
// On interrupt, if we're at the last element reset to t=0 state
|
|
// Otherwise, clear that pin down and set delay for next element
|
|
// and so forth.
|
|
|
|
constexpr int maxPWMs = 8;
|
|
|
|
// PWM edge definition
|
|
typedef struct {
|
|
unsigned int pin : 8;
|
|
unsigned int delta : 24;
|
|
} PWMEntry;
|
|
|
|
// PWM machine state
|
|
typedef struct {
|
|
uint32_t mask; // Bitmask of active pins
|
|
uint8_t cnt; // How many entries
|
|
uint8_t idx; // Where the state machine is along the list
|
|
PWMEntry edge[maxPWMs + 1]; // Include space for terminal element
|
|
uint32_t nextServiceCycle; // Clock cycle for next step
|
|
} PWMState;
|
|
|
|
static PWMState pwmState;
|
|
static volatile PWMState *pwmUpdate = nullptr; // Set by main code, cleared by ISR
|
|
static uint32_t pwmPeriod = (1000000L * system_get_cpu_freq()) / 1000;
|
|
|
|
// Called when analogWriteFreq() changed to update the PWM total period
|
|
void _setPWMPeriodCC(uint32_t cc) {
|
|
if (cc == pwmPeriod) {
|
|
return;
|
|
}
|
|
if (pwmState.cnt) {
|
|
// Adjust any running ones to the best of our abilities by scaling them
|
|
// Used FP math for speed and code size
|
|
uint64_t oldCC64p0 = ((uint64_t)pwmPeriod);
|
|
uint64_t newCC64p16 = ((uint64_t)cc) << 16;
|
|
uint64_t ratio64p16 = (newCC64p16 / oldCC64p0);
|
|
PWMState p; // The working copy since we can't edit the one in use
|
|
p = pwmState;
|
|
uint32_t ttl = 0;
|
|
for (auto i = 0; i < p.cnt; i++) {
|
|
uint64_t val64p16 = ((uint64_t)p.edge[i].delta) << 16;
|
|
uint64_t newVal64p32 = val64p16 * ratio64p16;
|
|
p.edge[i].delta = newVal64p32 >> 32;
|
|
ttl += p.edge[i].delta;
|
|
}
|
|
p.edge[p.cnt].delta = cc - ttl; // Final cleanup exactly cc total cycles
|
|
// Update and wait for mailbox to be emptied
|
|
pwmUpdate = &p;
|
|
while (pwmUpdate) {
|
|
delay(0);
|
|
}
|
|
}
|
|
pwmPeriod = cc;
|
|
}
|
|
|
|
// Helper routine to remove an entry from the state machine
|
|
static void _removePWMEntry(int pin, PWMState *p) {
|
|
if (!((1<<pin) & p->mask)) {
|
|
return;
|
|
}
|
|
|
|
int delta = 0;
|
|
int i;
|
|
for (i=0; i < p->cnt; i++) {
|
|
if (p->edge[i].pin == pin) {
|
|
delta = p->edge[i].delta;
|
|
break;
|
|
}
|
|
}
|
|
// Add the removed previous pin delta to preserve absolute position
|
|
p->edge[i+1].delta += delta;
|
|
// Move everything back one and clean up
|
|
for (i++; i <= p->cnt; i++) {
|
|
p->edge[i-1] = p->edge[i];
|
|
}
|
|
p->mask &= ~(1<<pin);
|
|
p->cnt--;
|
|
}
|
|
|
|
// Called by analogWrite(0/100%) to disable PWM on a specific pin
|
|
bool _stopPWM(int pin) {
|
|
if (!((1<<pin) & pwmState.mask)) {
|
|
return false; // Pin not actually active
|
|
}
|
|
|
|
PWMState p; // The working copy since we can't edit the one in use
|
|
p = pwmState;
|
|
_removePWMEntry(pin, &p);
|
|
// Update and wait for mailbox to be emptied
|
|
pwmUpdate = &p;
|
|
while (pwmUpdate) {
|
|
delay(0);
|
|
}
|
|
// Possibly shut doen the timer completely if we're done
|
|
if (!waveformEnabled && !pwmState.cnt && !timer1CB) {
|
|
deinitTimer();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Called by analogWrite(1...99%) to set the PWM duty in clock cycles
|
|
bool _setPWM(int pin, uint32_t cc) {
|
|
PWMState p; // Working copy
|
|
p = pwmState;
|
|
// Get rid of any entries for this pin
|
|
_removePWMEntry(pin, &p);
|
|
// And add it to the list, in order
|
|
if (p.cnt >= maxPWMs) {
|
|
return false; // No space left
|
|
} else if (p.cnt == 0) {
|
|
// Starting up from scratch, special case 1st element and PWM period
|
|
p.edge[0].pin = pin;
|
|
p.edge[0].delta = cc;
|
|
p.edge[1].pin = 0xff;
|
|
p.edge[1].delta = pwmPeriod - cc;
|
|
p.cnt = 1;
|
|
p.mask = 1<<pin;
|
|
} else {
|
|
uint32_t ttl=0;
|
|
uint32_t i;
|
|
// Skip along until we're at the spot to insert
|
|
for (i=0; (i <= p.cnt) && (ttl + p.edge[i].delta < cc); i++) {
|
|
ttl += p.edge[i].delta;
|
|
}
|
|
// Shift everything out by one to make space for new edge
|
|
memmove(&p.edge[i + 1], &p.edge[i], (1 + p.cnt - i) * sizeof(p.edge[0]));
|
|
int off = cc - ttl; // The delta from the last edge to the one we're inserting
|
|
p.edge[i].pin = pin;
|
|
p.edge[i].delta = off; // Add the delta to this new pin
|
|
p.edge[i + 1].delta -= off; // And subtract it from the follower to keep sum(deltas) constant
|
|
p.cnt++;
|
|
p.mask |= 1<<pin;
|
|
}
|
|
// Set mailbox and wait for ISR to copy it over
|
|
pwmUpdate = &p;
|
|
if (!timerRunning) {
|
|
initTimer();
|
|
timer1_write(microsecondsToClockCycles(10));
|
|
}
|
|
while (pwmUpdate) { delay(0); }
|
|
return true;
|
|
}
|
|
|
|
|
|
// Start up a waveform on a pin, or change the current one. Will change to the new
|
|
// waveform smoothly on next low->high transition. For immediate change, stopWaveform()
|
|
// first, then it will immediately begin.
|
|
int startWaveform(uint8_t pin, uint32_t timeHighUS, uint32_t timeLowUS, uint32_t runTimeUS) {
|
|
return startWaveformClockCycles(pin, microsecondsToClockCycles(timeHighUS), microsecondsToClockCycles(timeLowUS), microsecondsToClockCycles(runTimeUS));
|
|
}
|
|
|
|
int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles) {
|
|
if ((pin > 16) || isFlashInterfacePin(pin)) {
|
|
return false;
|
|
}
|
|
Waveform *wave = &waveform[pin];
|
|
wave->expiryCycle = runTimeCycles ? GetCycleCount() + runTimeCycles : 0;
|
|
if (runTimeCycles && !wave->expiryCycle) {
|
|
wave->expiryCycle = 1; // expiryCycle==0 means no timeout, so avoid setting it
|
|
}
|
|
|
|
uint32_t mask = 1<<pin;
|
|
if (waveformEnabled & mask) {
|
|
waveformNewHigh = timeHighCycles;
|
|
waveformNewLow = timeLowCycles;
|
|
waveformToChange = pin;
|
|
while (waveformToChange >= 0) {
|
|
delay(0); // Wait for waveform to update
|
|
}
|
|
} else { // if (!(waveformEnabled & mask)) {
|
|
wave->timeHighCycles = timeHighCycles;
|
|
wave->timeLowCycles = timeLowCycles;
|
|
wave->gotoTimeHighCycles = wave->timeHighCycles;
|
|
wave->gotoTimeLowCycles = wave->timeLowCycles; // Actually set the pin high or low in the IRQ service to guarantee times
|
|
wave->nextServiceCycle = GetCycleCount() + microsecondsToClockCycles(1);
|
|
waveformToEnable |= mask;
|
|
if (!timerRunning) {
|
|
initTimer();
|
|
timer1_write(microsecondsToClockCycles(10));
|
|
} else {
|
|
// Ensure timely service....
|
|
if (T1L > microsecondsToClockCycles(10)) {
|
|
timer1_write(microsecondsToClockCycles(10));
|
|
}
|
|
}
|
|
while (waveformToEnable) {
|
|
delay(0); // Wait for waveform to update
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Speed critical bits
|
|
#pragma GCC optimize ("O2")
|
|
// Normally would not want two copies like this, but due to different
|
|
// optimization levels the inline attribute gets lost if we try the
|
|
// other version.
|
|
|
|
static inline ICACHE_RAM_ATTR uint32_t GetCycleCountIRQ() {
|
|
uint32_t ccount;
|
|
__asm__ __volatile__("rsr %0,ccount":"=a"(ccount));
|
|
return ccount;
|
|
}
|
|
|
|
static inline ICACHE_RAM_ATTR uint32_t min_u32(uint32_t a, uint32_t b) {
|
|
if (a < b) {
|
|
return a;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
// Stops a waveform on a pin
|
|
int ICACHE_RAM_ATTR stopWaveform(uint8_t pin) {
|
|
// Can't possibly need to stop anything if there is no timer active
|
|
if (!timerRunning) {
|
|
return false;
|
|
}
|
|
// If user sends in a pin >16 but <32, this will always point to a 0 bit
|
|
// If they send >=32, then the shift will result in 0 and it will also return false
|
|
uint32_t mask = 1<<pin;
|
|
if (!(waveformEnabled & mask)) {
|
|
return false; // It's not running, nothing to do here
|
|
}
|
|
waveformToDisable |= mask;
|
|
// Ensure timely service....
|
|
if (T1L > microsecondsToClockCycles(10)) {
|
|
timer1_write(microsecondsToClockCycles(10));
|
|
}
|
|
while (waveformToDisable) {
|
|
/* no-op */ // Can't delay() since stopWaveform may be called from an IRQ
|
|
}
|
|
if (!waveformEnabled && !pwmState.cnt && !timer1CB) {
|
|
deinitTimer();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// The SDK and hardware take some time to actually get to our NMI code, so
|
|
// decrement the next IRQ's timer value by a bit so we can actually catch the
|
|
// real CPU cycle counter we want for the waveforms.
|
|
#if F_CPU == 80000000
|
|
#define DELTAIRQ (microsecondsToClockCycles(3))
|
|
#else
|
|
#define DELTAIRQ (microsecondsToClockCycles(2))
|
|
#endif
|
|
|
|
|
|
static ICACHE_RAM_ATTR void timer1Interrupt() {
|
|
// Optimize the NMI inner loop by keeping track of the min and max GPIO that we
|
|
// are generating. In the common case (1 PWM) these may be the same pin and
|
|
// we can avoid looking at the other pins.
|
|
static int startPin = 0;
|
|
static int endPin = 0;
|
|
|
|
uint32_t nextEventCycles = microsecondsToClockCycles(MAXIRQUS);
|
|
uint32_t timeoutCycle = GetCycleCountIRQ() + microsecondsToClockCycles(14);
|
|
|
|
if (waveformToEnable || waveformToDisable) {
|
|
// Handle enable/disable requests from main app
|
|
waveformEnabled = (waveformEnabled & ~waveformToDisable) | waveformToEnable; // Set the requested waveforms on/off
|
|
waveformState &= ~waveformToEnable; // And clear the state of any just started
|
|
waveformToEnable = 0;
|
|
waveformToDisable = 0;
|
|
// Find the first GPIO being generated by checking GCC's find-first-set (returns 1 + the bit of the first 1 in an int32_t)
|
|
startPin = __builtin_ffs(waveformEnabled) - 1;
|
|
// Find the last bit by subtracting off GCC's count-leading-zeros (no offset in this one)
|
|
endPin = 32 - __builtin_clz(waveformEnabled);
|
|
} else if (!pwmState.cnt && pwmUpdate) {
|
|
// Start up the PWM generator by copying from the mailbox
|
|
pwmState = *(PWMState*)pwmUpdate;
|
|
pwmUpdate = nullptr;
|
|
pwmState.nextServiceCycle = GetCycleCountIRQ(); // Do it this loop!
|
|
pwmState.idx = pwmState.cnt; // Cause it to start at t=0
|
|
} else if (waveformToChange >=0) {
|
|
waveform[waveformToChange].gotoTimeHighCycles = waveformNewHigh;
|
|
waveform[waveformToChange].gotoTimeLowCycles = waveformNewLow;
|
|
waveformToChange = -1;
|
|
}
|
|
|
|
bool done = false;
|
|
if (waveformEnabled || pwmState.cnt) {
|
|
do {
|
|
nextEventCycles = microsecondsToClockCycles(MAXIRQUS);
|
|
|
|
// PWM state machine implementation
|
|
if (pwmState.cnt) {
|
|
uint32_t now = GetCycleCountIRQ();
|
|
int32_t cyclesToGo = pwmState.nextServiceCycle - now;
|
|
if (cyclesToGo <= 10) {
|
|
if (pwmState.idx == pwmState.cnt) { // Start of pulses, possibly copy new
|
|
if (pwmUpdate) {
|
|
// Do the memory copy from temp to global and clear mailbox
|
|
pwmState = *(PWMState*)pwmUpdate;
|
|
pwmUpdate = nullptr;
|
|
}
|
|
GPOS = pwmState.mask; // Set all active pins high
|
|
// GPIO16 isn't the same as the others
|
|
if (pwmState.mask & 0x100) {
|
|
GP16O |= 1;
|
|
}
|
|
pwmState.idx = 0;
|
|
} else {
|
|
do {
|
|
// Drop the pin at this edge
|
|
GPOC = 1<<pwmState.edge[pwmState.idx].pin;
|
|
// GPIO16 still needs manual work
|
|
if (pwmState.edge[pwmState.idx].pin == 16) {
|
|
GP16O &= ~1;
|
|
}
|
|
pwmState.idx++;
|
|
// Any other pins at this same PWM value will have delta==0, drop them too.
|
|
} while (pwmState.edge[pwmState.idx].delta == 0);
|
|
}
|
|
// Preserve duty cycle over PWM period by using now+xxx instead of += delta
|
|
pwmState.nextServiceCycle = now + pwmState.edge[pwmState.idx].delta;
|
|
cyclesToGo = pwmState.nextServiceCycle - now;
|
|
if (cyclesToGo<0) cyclesToGo=0;
|
|
}
|
|
nextEventCycles = min_u32(nextEventCycles, cyclesToGo);
|
|
}
|
|
|
|
for (int i = startPin; i <= endPin; i++) {
|
|
uint32_t mask = 1<<i;
|
|
|
|
// If it's not on, ignore!
|
|
if (!(waveformEnabled & mask)) {
|
|
continue;
|
|
}
|
|
|
|
Waveform *wave = &waveform[i];
|
|
uint32_t now = GetCycleCountIRQ();
|
|
|
|
// Disable any waveforms that are done
|
|
if (wave->expiryCycle) {
|
|
int32_t expiryToGo = wave->expiryCycle - now;
|
|
if (expiryToGo < 0) {
|
|
// Done, remove!
|
|
waveformEnabled &= ~mask;
|
|
if (i == 16) {
|
|
GP16O &= ~1;
|
|
} else {
|
|
ClearGPIO(mask);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Check for toggles
|
|
int32_t cyclesToGo = wave->nextServiceCycle - now;
|
|
if (cyclesToGo < 0) {
|
|
waveformState ^= mask;
|
|
if (waveformState & mask) {
|
|
if (i == 16) {
|
|
GP16O |= 1; // GPIO16 write slow as it's RMW
|
|
} else {
|
|
SetGPIO(mask);
|
|
}
|
|
wave->nextServiceCycle = now + wave->timeHighCycles;
|
|
nextEventCycles = min_u32(nextEventCycles, wave->timeHighCycles);
|
|
} else {
|
|
if (i == 16) {
|
|
GP16O &= ~1; // GPIO16 write slow as it's RMW
|
|
} else {
|
|
ClearGPIO(mask);
|
|
}
|
|
wave->nextServiceCycle = now + wave->timeLowCycles;
|
|
nextEventCycles = min_u32(nextEventCycles, wave->timeLowCycles);
|
|
// Copy over next full-cycle timings
|
|
wave->timeHighCycles = wave->gotoTimeHighCycles;
|
|
wave->timeLowCycles = wave->gotoTimeLowCycles;
|
|
}
|
|
} else {
|
|
uint32_t deltaCycles = wave->nextServiceCycle - now;
|
|
nextEventCycles = min_u32(nextEventCycles, deltaCycles);
|
|
}
|
|
}
|
|
|
|
// Exit the loop if we've hit the fixed runtime limit or the next event is known to be after that timeout would occur
|
|
uint32_t now = GetCycleCountIRQ();
|
|
int32_t cycleDeltaNextEvent = timeoutCycle - (now + nextEventCycles);
|
|
int32_t cyclesLeftTimeout = timeoutCycle - now;
|
|
done = (cycleDeltaNextEvent < 0) || (cyclesLeftTimeout < 0);
|
|
} while (!done);
|
|
} // if (waveformEnabled)
|
|
|
|
if (timer1CB) {
|
|
nextEventCycles = min_u32(nextEventCycles, timer1CB());
|
|
}
|
|
|
|
if (nextEventCycles < microsecondsToClockCycles(5)) {
|
|
nextEventCycles = microsecondsToClockCycles(5);
|
|
}
|
|
nextEventCycles -= DELTAIRQ;
|
|
|
|
// Do it here instead of global function to save time and because we know it's edge-IRQ
|
|
#if F_CPU == 160000000
|
|
T1L = nextEventCycles >> 1; // Already know we're in range by MAXIRQUS
|
|
#else
|
|
T1L = nextEventCycles; // Already know we're in range by MAXIRQUS
|
|
#endif
|
|
TEIE |= TEIE1; // Edge int enable
|
|
}
|
|
|
|
};
|
|
|
|
#endif // ESP8266
|