Tasmota/tasmota/xsns_62_esp32_mi_ble.ino

3505 lines
110 KiB
C++

/*
xsns_62_esp32_mi_ble.ino - MI-BLE-sensors via ESP32 support for Tasmota
enabled by ESP32 && USE_BLE_ESP32
if (ESP32 && !USE_BLE_ESP32) then xsns_62_esp32_mi.ino is used - the older driver
Copyright (C) 2020 Christian Baars and Theo Arends
Also Simon Hailes and Robert Klauco
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
--------------------------------------------------------------------------------------------
Version yyyymmdd Action Description
--------------------------------------------------------------------------------------------
0.9.2.1 20210217 changed - make features alos depend on received data - i.e. 'unknown' devices will show what they send.
Add MI32Option6 1 to switch to tele/tasmota_ble/<somename> style MQTT independent of HASS discovery.
-------
0.9.2.0 20210127 changed - Officially includes as the mi driver when using USE_BLE_ESP32.
-------
0.9.1.9 20201226 changed - All change now.
-------
0.9.1.7 20201116 changed - small bugfixes, add BLOCK and OPTION command, send BLE scan via MQTT
-------
0.9.1.6 20201022 changed - Beacon support, RSSI at TELEPERIOD, refactoring
-------
0.9.1.5 20201021 changed - HASS related ('null', hold back discovery), number of found sensors for RULES
-------
0.9.1.4 20201020 changed - use BearSSL for decryption, revert to old TELEPERIOD-cycle as default
-------
0.9.1.3 20200926 changed - Improve HA discovery, make key+MAC case insensitive
-------
0.9.1.3 20200916 changed - add ATC (custom FW for LYWSD03MMC), API adaption for NimBLE-Arduino 1.0.2
-------
0.9.1.2 20200802 changed - add MHO-C303
-------
0.9.1.1 20200715 changed - add MHO-C401, refactoring
-------
0.9.1.0 20200712 changed - add lights and yeerc, add pure passive mode with decryption,
lots of refactoring
-------
0.9.0.1 20200706 changed - adapt to new NimBLE-API, tweak scan process
-------
0.9.0.0 20200413 started - initial development by Christian Baars
forked - from arendst/tasmota - https://github.com/arendst/Tasmota
*/
//#define VSCODE_DEV
/*
#ifdef VSCODE_DEV
#define ESP32
#define USE_BLE_ESP32
#define USE_MI_ESP32
#endif
*/
//#undef USE_MI_ESP32
// for testing of BLE_ESP32, we remove xsns_62_MI_ESP32.ino completely, and instead add this modified xsns_52_ibeacon_BLE_ESP32.ino
#ifdef USE_BLE_ESP32
#ifdef ESP32 // ESP32 family only. Use define USE_HM10 for ESP8266 support
#if defined CONFIG_IDF_TARGET_ESP32 || defined CONFIG_IDF_TARGET_ESP32C3|| defined CONFIG_IDF_TARGET_ESP32S3
#ifdef USE_MI_ESP32
#define XSNS_62 62
#define USE_MI_DECRYPTION
#include <vector>
#ifdef USE_MI_DECRYPTION
#include <t_bearssl.h>
#endif //USE_MI_DECRYPTION
void MI32scanEndedCB(NimBLEScanResults results);
void MI32notifyCB(NimBLERemoteCharacteristic* pRemoteCharacteristic, uint8_t* pData, size_t length, bool isNotify);
struct {
uint16_t perPage = 4;
uint8_t mqttCurrentSlot = 0;
uint8_t mqttCurrentSingleSlot = 0;
uint32_t period; // set manually in addition to TELE-period, is set to TELE-period after start
int secondsCounter = 0; // counts up in MI32EverySecond to period
int secondsCounter2 = 0; // counts up in MI32EverySecond to period
union {
struct {
uint32_t init:1;
uint32_t shallClearResults:1; // BLE scan results
uint32_t shallShowStatusInfo:1; // react to amount of found sensors via RULES
uint32_t firstAutodiscoveryDone:1;
uint32_t shallTriggerTele:1;
uint32_t triggeredTele:1;
};
uint32_t all = 0;
} mode;
struct {
// the slot currently having it's battery read
// set to 0 to start a battery read cycle
uint8_t slot = 255;
uint8_t active = 0;
} batteryreader;
struct {
// the slot currently having it's battery read
// set to 0 to start a battery read cycle
uint8_t slot = 255;
uint8_t active = 0;
} sensorreader;
struct {
uint32_t allwaysAggregate:1; // always show all known values of one sensor in brdigemode
uint32_t noSummary:1; // no sensor values at TELE-period
uint32_t directBridgeMode:1; // send every received BLE-packet as a MQTT-message in real-time
uint32_t holdBackFirstAutodiscovery:1; // allows to trigger it later
uint32_t showRSSI:1;
uint32_t ignoreBogusBattery:1;
uint32_t minimalSummary:1; // DEPRECATED!!
uint32_t onlyAliased:1; // only include sensors that are aliased
uint32_t MQTTType:1;
} option;
} MI32;
#pragma pack(1) // byte-aligned structures to read the sensor data
struct {
int16_t temp;
uint8_t hum;
uint16_t volt; // LYWSD03 only
} LYWSD0x_HT;
struct {
uint8_t spare;
int16_t temp;
uint16_t hum;
} CGD1_HT;
struct {
int16_t temp;
uint8_t spare;
uint32_t lux;
uint8_t moist;
uint16_t fert;
} Flora_TLMF; // temperature, lux, moisture, fertility
////////////////////////////////////////////////////////////
// from https://github.com/Magalex2x14/LYWSD03MMC-info
struct mi_beacon_frame_data_t{
// data from byte 0 - e.g. 30
uint8_t meshflag; //Byte 0: x.......
uint8_t dataflag; //Byte 0: .x......
uint8_t compatibilityflag; //Byte 0: ..x..... - indicates compatibility data present
uint8_t MACFlag; //Byte 0: ...x....
uint8_t isencrypted; //Byte 0: ....x...
uint8_t reserved; //Byte 0: .....xxx
// data from byte 1 - e.g. 58
uint8_t version; //Byte 0: xxxx....
uint8_t authMode; //Byte 0: ....xx.. // e.g. 2
uint8_t bindingvalidreq; //Byte 0: ......x.
uint8_t registeredflag; //Byte 0: .......x
};
struct mi_beacon_compatibility_data_t{ // e.g. 28/08
uint8_t reserved; //Byte 0: xx......
uint8_t IOcap; //Byte 0: ..x.....
uint8_t bondability; //Byte 0: ...xx...
uint8_t unused; //Byte 0: .....xxx
uint16_t IOCapability; // bytes 1-2, e.g. 01 00 -> 0001
};
struct mi_beacon_mac_data_t{ // e.g. 28/08
uint8_t mac[6];
};
struct mi_beacon_payload_data_t{ //
uint16_t type;
uint8_t size;
uint8_t data[16];
};
struct mi_beacon_data_t { //
mi_beacon_frame_data_t framedata;
uint16_t devicetype;
uint8_t framecnt;
mi_beacon_mac_data_t macdata;
mi_beacon_compatibility_data_t compatibility;
uint8_t payloadpresent;
uint8_t needkey; // we need a (new) encryption key?
mi_beacon_payload_data_t payload;
};
struct mi_beacon_data_payload_data_t { //
union {
struct{ //01
uint16_t num;
uint8_t longPress;
} Btn;
int16_t temp; //04
uint16_t hum; //06
uint32_t lux; //07
uint8_t moist; //08
uint16_t fert; //09
uint8_t bat; //0a
struct{ //0d
int16_t temp;
uint16_t hum;
} HT;
uint32_t NMT; //17
};
};
///////////////////////////////////////////////////////////
union mi_bindKey_t{
struct{
uint8_t key[16];
uint8_t MAC[6];
};
uint8_t buf[22];
};
struct ATCPacket_t{
//uint8_t size; // = 16?
//uint8_t uid; // = 0x16, 16-bit UUID
//uint16_t UUID; // = 0x181A, GATT Service 0x181A Environmental Sensing
uint8_t MAC[6]; // [0] - hi, .. [6] - lo digits
uint16_t temp; //sadly this is in wrong endianess
uint8_t hum;
uint8_t batPer;
uint16_t batMV;
uint8_t frameCnt;
};
// GATT Service 0x181A Environmental Sensing
// All data little-endian
struct PVVXPacket_t {
//uint8_t size; // = 19
//uint8_t uid; // = 0x16, 16-bit UUID
//uint16_t UUID; // = 0x181A, GATT Service 0x181A Environmental Sensing
uint8_t MAC[6]; // [0] - lo, .. [6] - hi digits
int16_t temperature; // x 0.1 degree
uint16_t humidity; // x 0.01 %
uint16_t battery_mv; // mV
uint8_t battery_level; // 0..100 %
uint8_t counter; // measurement count
uint8_t flags;
};
struct MiScaleV1Packet_t {
//uint8_t size; // = 14
//uint8_t uid; // = 0x16, 16-bit UUID
//uint16_t UUID; // = 0x181D
uint8_t status; // bit 0 lbs, 4 jin, 5, stabilized, 7, weight removed
uint16_t weight;
uint16_t year;
uint8_t month;
uint8_t day;
uint8_t hour;
uint8_t minute;
uint8_t second;
};
struct MiScaleV2Packet_t {
//uint8_t size; // = 17
//uint8_t uid; // = 0x16, 16-bit UUID
//uint16_t UUID; // = 0x181B
uint8_t weight_unit;
uint8_t status; // bit 14 impedance stabilized
uint16_t year;
uint8_t month;
uint8_t day;
uint8_t hour;
uint8_t minute;
uint8_t second;
uint16_t impedance;
uint16_t weight;
};
#pragma pack(0)
struct mi_sensor_t{
uint8_t type; //MI_Flora = 1; MI_MI-HT_V1=2; MI_LYWSD02=3; MI_LYWSD03=4; MI_CGG1=5; MI_CGD1=6
uint8_t needkey; // tells http to display needkey message with link
uint8_t lastCnt; //device generated counter of the packet
uint8_t nextDiscoveryData; // used to lkimit discovery to one MQTT per sec
uint8_t shallSendMQTT;
uint8_t MAC[6];
union {
struct {
uint32_t temp:1;
uint32_t hum:1;
uint32_t tempHum:1; //every hum sensor has temp too, easier to use Tasmota dew point functions
uint32_t lux:1;
uint32_t moist:1;
uint32_t fert:1;
uint32_t bat:1;
uint32_t NMT:1;
uint32_t PIR:1;
uint32_t Btn:1;
uint32_t events:1;
uint32_t pairing:1;
uint32_t light:1; // binary light sensor
uint32_t scale:1;
uint32_t impedance:1;
};
uint32_t raw;
} feature;
union {
struct {
uint32_t temp:1;
uint32_t hum:1;
uint32_t tempHum:1; //can be combined from the sensor
uint32_t lux:1;
uint32_t moist:1;
uint32_t fert:1;
uint32_t bat:1;
uint32_t NMT:1;
uint32_t motion:1;
uint32_t noMotion:1;
uint32_t Btn:1;
uint32_t PairBtn:1;
uint32_t light:1; // binary light sensor
uint32_t scale:1;
};
uint32_t raw;
} eventType;
int RSSI;
uint8_t pairing;
int8_t light; // binary light sensor - initialise to -1
int16_t Btn; // moved so we can initialise to -1
uint32_t lastTime;
uint32_t lux;
float temp; //Flora, MJ_HT_V1, LYWSD0x, CGx
union {
struct {
uint8_t moisture;
uint16_t fertility;
char firmware[6]; // actually only for FLORA but hopefully we can add for more devices
}; // Flora
struct {
float hum;
}; // MJ_HT_V1, LYWSD0x
struct {
uint16_t events; //"alarms" since boot
uint32_t NMT; // no motion time in seconds for the MJYD2S
};
};
union {
uint8_t bat; // many values seem to be hard-coded garbage (LYWSD0x, GCD1)
};
union {
struct {
uint8_t weight_stabilized;
uint8_t weight_removed;
char weight_unit[4]; // kg, lbs, jin or empty when unknown
float weight;
uint8_t impedance_stabilized;
uint16_t impedance;
};
};
};
struct MAC_t {
uint8_t buf[7];
};
std::vector<mi_sensor_t> MIBLEsensors;
std::vector<mi_bindKey_t> MIBLEbindKeys;
std::vector<MAC_t> MIBLEBlockList;
SemaphoreHandle_t slotmutex = (SemaphoreHandle_t) nullptr;
/*********************************************************************************************\
* constants
\*********************************************************************************************/
#define D_CMND_MI32 "MI32"
const char kMI32_Commands[] PROGMEM = D_CMND_MI32 "|"
#ifdef USE_MI_DECRYPTION
"Key|"
"Keys|"
#endif // USE_MI_DECRYPTION
"Period|Time|Page|Battery|Unit|Block|Option";
void (*const MI32_Commands[])(void) PROGMEM = {
#ifdef USE_MI_DECRYPTION
&CmndMi32Key,
&CmndMi32Keys,
#endif // USE_MI_DECRYPTION
&CmndMi32Period, &CmndMi32Time, &CmndMi32Page, &CmndMi32Battery, &CmndMi32Unit, &CmndMi32Block, &CmndMi32Option };
#define MI_UNKOWN 1
#define MI_FLORA 2
#define MI_MJ_HT_V1 3
#define MI_LYWSD02 4
#define MI_LYWSD03MMC 5
#define MI_CGG1 6
#define MI_CGD1 7
#define MI_NLIGHT 8
#define MI_MJYD2S 9
#define MI_YEERC 10
#define MI_MHOC401 11
#define MI_MHOC303 12
#define MI_ATC 13
#define MI_DOOR 14
#define MI_SCALE_V1 15
#define MI_SCALE_V2 16
#define MI_MI32_TYPES 16 //count this manually
const uint16_t kMI32DeviceID[MI_MI32_TYPES]={
0x0000, // Unkown
0x0098, // Flora
0x01aa, // MJ_HT_V1
0x045b, // LYWSD02
0x055b, // LYWSD03
0x0347, // CGG1
0x0576, // CGD1
0x03dd, // NLIGHT
0x07f6, // MJYD2S
0x0153, // yee-rc
0x0387, // MHO-C401
0x06d3, // MHO-C303
0x0a1c, // ATC -> this is a fake ID
0x098b, // door/window sensor
0x181d, // Mi Scale V1
0x181b // Mi Scale V2
};
const char kMI32DeviceType0[] PROGMEM = "Unknown";
const char kMI32DeviceType1[] PROGMEM = "Flora";
const char kMI32DeviceType2[] PROGMEM = "MJ_HT_V1";
const char kMI32DeviceType3[] PROGMEM = "LYWSD02";
const char kMI32DeviceType4[] PROGMEM = "LYWSD03";
const char kMI32DeviceType5[] PROGMEM = "CGG1";
const char kMI32DeviceType6[] PROGMEM = "CGD1";
const char kMI32DeviceType7[] PROGMEM = "NLIGHT";
const char kMI32DeviceType8[] PROGMEM = "MJYD2S";
const char kMI32DeviceType9[] PROGMEM = "YEERC";
const char kMI32DeviceType10[] PROGMEM ="MHOC401";
const char kMI32DeviceType11[] PROGMEM ="MHOC303";
const char kMI32DeviceType12[] PROGMEM ="ATC";
const char kMI32DeviceType13[] PROGMEM ="DOOR";
const char kMI32DeviceType14[] PROGMEM ="MISCALEV1";
const char kMI32DeviceType15[] PROGMEM ="MISCALEV2";
const char * kMI32DeviceType[] PROGMEM = {kMI32DeviceType0,kMI32DeviceType1,kMI32DeviceType2,kMI32DeviceType3,kMI32DeviceType4,kMI32DeviceType5,kMI32DeviceType6,kMI32DeviceType7,kMI32DeviceType8,kMI32DeviceType9,kMI32DeviceType10,kMI32DeviceType11,kMI32DeviceType12,kMI32DeviceType13,kMI32DeviceType14,kMI32DeviceType15};
typedef int BATREAD_FUNCTION(int slot);
typedef int UNITWRITE_FUNCTION(int slot, int unit);
typedef int TIMEWRITE_FUNCTION(int slot);
int genericOpCompleteFn(BLE_ESP32::generic_sensor_t *pStruct);
int genericBatReadFn(int slot);
int genericUnitWriteFn(int slot, int unit);
int genericTimeWriteFn(int slot);
int MI32scanCompleteCallback(NimBLEScanResults results);
const char LYWSD02_Svc[] PROGMEM = "EBE0CCB0-7A0A-4B0C-8A1A-6FF2997DA3A6";
const char LYWSD02_BattChar[] PROGMEM = "EBE0CCC4-7A0A-4B0C-8A1A-6FF2997DA3A6";
const char LYWSD02_UnitChar[] PROGMEM = "EBE0CCBE-7A0A-4B0C-8A1A-6FF2997DA3A6";
const char LYWSD02_TimeChar[] PROGMEM = "EBE0CCB7-7A0A-4B0C-8A1A-6FF2997DA3A6";
const char LYWSD02_BattNotifyChar[] PROGMEM = "EBE0CCC1-7A0A-4B0C-8A1A-6FF2997DA3A6";
const char *LYWSD03_Svc = LYWSD02_Svc;
const char *LYWSD03_BattNotifyChar = LYWSD02_BattNotifyChar;
const char *MHOC303_Svc = LYWSD02_Svc;
const char *MHOC303_UnitChar = LYWSD02_UnitChar;
const char *MHOC303_TimeChar = LYWSD02_TimeChar;
const char *MHOC401_Svc = LYWSD02_Svc;
const char *MHOC401_BattNotifyChar = LYWSD02_BattNotifyChar;
const char CGD1_Svc[] PROGMEM = "180F";
const char CGD1_BattChar[] PROGMEM = "2A19";
const char FLORA_Svc[] PROGMEM = "00001204-0000-1000-8000-00805F9B34FB";
const char FLORA_BattChar[] PROGMEM = "00001A02-0000-1000-8000-00805F9B34FB";
/*********************************************************************************************\
* enumerations
\*********************************************************************************************/
// types of operation performed, included in context
enum MI32_MI_OP_TYPES {
OP_TIME_WRITE = 0,
OP_BATT_READ = 1,
OP_UNIT_WRITE = 2,
OP_UNIT_READ = 3,
OP_UNIT_TOGGLE = 4,
OP_READ_HT_LY = 5,
};
enum MI32_MI_KEY_REQ {
KEY_REQUIREMENT_UNKNOWN = 0, // we don't know if a key is needed
KEY_NOT_REQUIRED = 1, // we got an unencrypted payload
KEY_REQUIRED_BUT_NOT_FOUND = 2, // we got an encrypted packet, but had not key
KEY_REQUIRED_AND_FOUND = 3, // we got an encrypted packet, and could decrypt
KEY_REQUIRED_AND_INVALID = 4, // we got an encrypted packet, and could not decrypt
};
/*********************************************************************************************\
* Classes
\*********************************************************************************************/
// fn type READ_CALLBACK
// NOTE!!!: this callback is called DIRECTLY from the operation task, so be careful about cross-thread access of data
// if is called after read, so that you can do a read/modify/write operation on a characteristic.
int toggleUnit(BLE_ESP32::generic_sensor_t *op){
uint32_t context = (uint32_t) op->context;
int opType = context >> 24;
// we only need to op type
int devType = (context >> 16) & 0xff;
int slot = (context) & 0xff;
switch (opType){
case OP_UNIT_TOGGLE:{
uint8_t curUnit = 0;
if( op->dataRead[0] != 0 && op->dataRead[0] < 101 ){
curUnit = op->dataRead[0];
}
curUnit = curUnit == 0x01?0xFF:0x01; // C/F
// copy in ALL of the data, because we don't know how long this is from the existing src code.
memcpy(op->dataToWrite, op->dataRead, op->readlen);
op->writelen = op->readlen;
op->dataToWrite[0] = curUnit;
} break;
case OP_UNIT_WRITE:{
uint8_t curUnit = op->dataToWrite[0];
// copy in ALL of the data, because we don't know how long this is from the existing src code.
memcpy(op->dataToWrite, op->dataRead, op->readlen);
op->writelen = op->readlen;
op->dataToWrite[0] = curUnit;
} break;
}
return 0;
}
bool MI32Operation(int slot, int optype, const char *svc, const char *charactistic, const char *notifychar = nullptr, const uint8_t *data = nullptr, int datalen = 0, uint8_t *addr = nullptr ) {
if (!svc || !svc[0]){
AddLog(LOG_LEVEL_ERROR, PSTR("M32: Op inv svc"));
return 0;
}
BLE_ESP32::generic_sensor_t *op = nullptr;
// ALWAYS use this function to create a new one.
int res = BLE_ESP32::newOperation(&op);
if (!res){
AddLog(LOG_LEVEL_ERROR,PSTR("M32: Can't get a newOperation"));
return 0;
} else {
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: Got a newOperation"));
}
if (slot >= 0){
op->addr = NimBLEAddress(MIBLEsensors[slot].MAC);
} else {
if (!addr){
AddLog(LOG_LEVEL_ERROR, PSTR("M32: No addr"));
BLE_ESP32::freeOperation(&op);
return 0;
}
op->addr = NimBLEAddress(addr);
}
bool havechar = false;
op->serviceUUID = NimBLEUUID(svc);
if (!op->serviceUUID.bitSize()){
BLE_ESP32::freeOperation(&op);
AddLog(LOG_LEVEL_ERROR, PSTR("M32: MI Bad service string %s"), svc);
return 0;
}
if (charactistic && charactistic[0]){
havechar = true;
op->characteristicUUID = NimBLEUUID(charactistic);
if (!op->characteristicUUID.bitSize()){
BLE_ESP32::freeOperation(&op);
AddLog(LOG_LEVEL_ERROR, PSTR("M32: MI Bad characteristic string %s"), charactistic);
return 0;
}
}
if (notifychar && notifychar[0]){
op->notificationCharacteristicUUID = NimBLEUUID(notifychar);
if (!op->notificationCharacteristicUUID.bitSize()){
BLE_ESP32::freeOperation(&op);
AddLog(LOG_LEVEL_ERROR, PSTR("M32: MI Bad notifycharacteristic string %s"), notifychar);
return 0;
}
}
if (data && datalen) {
op->writelen = datalen;
memcpy(op->dataToWrite, data, datalen);
} else {
if (!datalen && havechar){
op->readlen = 1; // if we don't set readlen, then it won't read
}
}
// the only times we intercept between read abnd write
if ((optype == OP_UNIT_WRITE) || (optype == OP_UNIT_TOGGLE)){
op->readlen = 1; // if we don't set readlen, then it won't read
op->readmodifywritecallback = (void *)toggleUnit;
}
// this op will call us back on complete or failure.
op->completecallback = (void *)genericOpCompleteFn;
uint32_t context = (optype << 24) | (MIBLEsensors[slot].type << 16) | slot;
op->context = (void *)context;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: MI s:%d op:%s"), slot, BLE_ESP32::BLETriggerResponse(op).c_str());
res = BLE_ESP32::extQueueOperation(&op);
if (!res){
// if it fails to add to the queue, do please delete it
BLE_ESP32::freeOperation(&op);
AddLog(LOG_LEVEL_ERROR, PSTR("M32: Failed to queue new operation - deleted"));
}
return res;
}
int genericBatReadFn(int slot){
int res = 0;
switch(MIBLEsensors[slot].type) {
// these use notify for battery read, and it comes in the temp packet
case MI_LYWSD03MMC:
res = MI32Operation(slot, OP_BATT_READ, LYWSD03_Svc, nullptr, LYWSD03_BattNotifyChar);
break;
case MI_MHOC401:
res = MI32Operation(slot, OP_BATT_READ, MHOC401_Svc, nullptr, MHOC401_BattNotifyChar);
break;
// these read a characteristic
case MI_FLORA:
res = MI32Operation(slot, OP_BATT_READ, FLORA_Svc, FLORA_BattChar);
break;
case MI_LYWSD02:
res = MI32Operation(slot, OP_BATT_READ, LYWSD02_Svc, LYWSD02_BattChar);
break;
case MI_CGD1:
res = MI32Operation(slot, OP_BATT_READ, CGD1_Svc, CGD1_BattChar);
break;
// this was for testing only - it does work, but no need to read as we get good bat in advert
// case MI_MJ_HT_V1:
// res = MI32Operation(slot, OP_BATT_READ, CGD1_Svc, CGD1_BattChar);
// break;
default:
res = -10; // no need to read
break;
}
if (res > 0){
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_INFO, PSTR("M32: Req batt read slot %d type %d queued"), slot, MIBLEsensors[slot].type);
} else {
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_INFO, PSTR("M32: Req batt read slot %d type %d non-queued res %d"), slot, MIBLEsensors[slot].type, res);
}
return res;
}
int genericSensorReadFn(int slot, int force){
int res = 0;
switch(MIBLEsensors[slot].type) {
/* seen notify timeout consistently with MI_LYWSD02,
so although the characteristic seems to exist, it does not work?
further dev required with sensor to hand.
case MI_LYWSD02:
// don't read if key present and we've decoded at least one advert
if (MIBLEsensors[slot].needkey == KEY_REQUIRED_AND_FOUND) return -2;
res = MI32Operation(slot, OP_READ_HT_LY, LYWSD02_Svc, nullptr, LYWSD02_BattNotifyChar);
break;*/
case MI_LYWSD03MMC:
// don't read if key present and we've decoded at least one advert
if (MIBLEsensors[slot].needkey == KEY_REQUIRED_AND_FOUND && !force) return -2;
res = MI32Operation(slot, OP_READ_HT_LY, LYWSD03_Svc, nullptr, LYWSD03_BattNotifyChar);
break;
case MI_MHOC401:
// don't read if key present and we've decoded at least one advert
if (MIBLEsensors[slot].needkey == KEY_REQUIRED_AND_FOUND && !force) return -2;
res = MI32Operation(slot, OP_READ_HT_LY, MHOC401_Svc, nullptr, MHOC401_BattNotifyChar);
break;
default:
res = -1;
break;
}
return res;
}
// called once per second
int readOneSensor(){
if (MI32.sensorreader.active){
AddLog(LOG_LEVEL_DEBUG, PSTR("M32: readOneSensor - already active reading %d"), MI32.sensorreader.slot-1);
return 0;
}
// loop if the sensor at the slot does not need to be read
// i.e. drop out of loop when we start a read, or hit the end
int res = -1;
do {
// MI32.sensorreader.slot is reset to zero to trigger a read sequence
if (MI32.sensorreader.slot >= MIBLEsensors.size()){
//AddLog(LOG_LEVEL_DEBUG, PSTR("BLE: readOneSensor past end of slots - %d > %d"), MI32.sensorreader.slot, MIBLEsensors.size());
return 0;
}
res = genericSensorReadFn(MI32.sensorreader.slot, 0);
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: genericSensorReadFn slot %d res %d"), MI32.sensorreader.slot, res);
// if this sensor in this slot does not need to be read via notify, just move on top the next one
if (res < 0){
MI32.sensorreader.slot++;
} else {
break;
}
} while (1);
if (res == 0){
// can't read at the moment (no operations available?)
AddLog(LOG_LEVEL_DEBUG, PSTR("M32: readOneSensor no ops available slot %d res %d"), MI32.sensorreader.slot, res);
return 0;
}
// setup next slot to read
MI32.sensorreader.slot++;
// and make it wait until the read/notify is complete
// this is cleared in the response callback.
MI32.sensorreader.active = 1;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: readOneSensor reading for slot %d res %d"), MI32.sensorreader.slot-1, res);
// started one
return 1;
}
// called once per second
int readOneBat(){
if (MI32.batteryreader.active){
return 0;
}
//MI32.batteryreader.slot is rest to zero to trigger a read...
if (MI32.batteryreader.slot >= MIBLEsensors.size()){
return 0;
}
int res = genericBatReadFn(MI32.batteryreader.slot);
// if this sensor in this slot does not support battery read, just move on top the next one
if (res < 0){
MI32.batteryreader.slot++;
if (MI32.batteryreader.slot >= MIBLEsensors.size()){
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_INFO, PSTR("M32: Batt loop complete at %d"), MI32.batteryreader.slot);
}
return 0;
}
if (res == 0){
// can't read at the moment (no operations available?)
return 0;
}
// setup next slot to read
MI32.batteryreader.slot++;
// and make it wait until the read/notify is complete
// this is cleared in the response callback.
MI32.batteryreader.active = 1;
if (MI32.batteryreader.slot >= MIBLEsensors.size()){
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_INFO, PSTR("M32: Batt loop will complete at %d"), MI32.batteryreader.slot);
}
// started one
return 1;
}
/////////////////////////////////////////////////////
// change the unit of measurement?
// call with unit == -1 to cause the unit to be toggled.
int genericUnitWriteFn(int slot, int unit){
int res = 0;
int op = OP_UNIT_WRITE;
if (unit == -1){
op = OP_UNIT_TOGGLE;
}
uint8_t writeData[1];
writeData[0] = unit;
switch (MIBLEsensors[slot].type){
case MI_LYWSD02:
res = MI32Operation(slot, op, LYWSD02_Svc, LYWSD02_UnitChar, nullptr, writeData, 1);
break;
case MI_MHOC303: // actually, EXACTLY the same as above, including the sevice and characteristic...
res = MI32Operation(slot, op, MHOC303_Svc, MHOC303_UnitChar, nullptr, writeData, 1);
break;
default:
res = -1;
break;
}
return res;
}
/////////////////////////////////////////////////////
// read the unit of measurement. genericOpCompleteFn
int genericUnitReadFn(int slot){
int res = 0;
switch (MIBLEsensors[slot].type){
case MI_LYWSD02:
res = MI32Operation(slot, OP_UNIT_READ, LYWSD02_Svc, LYWSD02_UnitChar);
break;
case MI_MHOC303: // actually, EXACTLY the same as above, including the sevice and characteristic...
res = MI32Operation(slot, OP_UNIT_READ, MHOC303_Svc, MHOC303_UnitChar);
break;
default:
res = -1;
break;
}
return res;
}
/////////////////////////////////////////////////////
// write time to a device. genericOpCompleteFn
int genericTimeWriteFn(int slot){
int res = 0;
switch (MIBLEsensors[slot].type){
case MI_LYWSD02: {
union {
uint8_t buf[5];
uint32_t time;
} _utc;
_utc.time = Rtc.utc_time;
_utc.buf[4] = Rtc.time_timezone / 60;
res = MI32Operation(slot, OP_TIME_WRITE, LYWSD02_Svc, LYWSD02_TimeChar, nullptr, _utc.buf, sizeof(_utc.buf));
} break;
case MI_MHOC303: // actually, EXACTLY the same as above, including the sevice and characteristic...
union {
uint8_t buf[5];
uint32_t time;
} _utc;
_utc.time = Rtc.utc_time;
_utc.buf[4] = Rtc.time_timezone / 60;
res = MI32Operation(slot, OP_TIME_WRITE, MHOC303_Svc, MHOC303_TimeChar, nullptr, _utc.buf, sizeof(_utc.buf));
break;
default:
res = -1;
break;
}
return res;
}
int genericOpCompleteFn(BLE_ESP32::generic_sensor_t *op){
uint32_t context = (uint32_t) op->context;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: MI op complete context %x"), context);
int opType = context >> 24;
int devType = (context >> 16) & 0xff;
int slot = (context) & 0xff;
char slotMAC[13];
BLE_ESP32::dump(slotMAC, sizeof(slotMAC), MIBLEsensors[slot].MAC, 6) ;
uint8_t addrrev[6];
memcpy(addrrev, MIBLEsensors[slot].MAC, 6);
//BLE_ESP32::ReverseMAC(addrrev);
NimBLEAddress addr(addrrev);
bool fail = false;
if (op->addr != addr){
// slot changed during operation?
AddLog(LOG_LEVEL_ERROR, PSTR("M32: Slot mac changed during an operation"));
fail = true;
}
if (op->state <= GEN_STATE_FAILED){
AddLog(LOG_LEVEL_ERROR, PSTR("M32: Operation failed %d for %s"), op->state, slotMAC);
fail = true;
}
if (fail){
switch(opType){
case OP_BATT_READ:{
// allow another...
MI32.batteryreader.active = 0;
} break;
case OP_READ_HT_LY: {
// allow another...
MI32.sensorreader.active = 0;
} break;
}
return 0;
}
switch(opType){
case OP_TIME_WRITE:
AddLog(LOG_LEVEL_DEBUG, PSTR("M32: Time write for %s complete"), slotMAC);
return 0; // nothing to do
case OP_BATT_READ:{
uint8_t *data = nullptr;
int len = 0;
if (op->notifylen){
data = op->dataNotify;
len = op->notifylen;
// note: the only thingas that have battery in notify FOR THE MOMENT read it like this.
MI32notifyHT_LY(slot, (char*)op->dataNotify, op->notifylen);
}
if (op->readlen){
data = op->dataRead;
len = op->readlen;
MIParseBatt(slot, data, len);
}
// allow another...
MI32.batteryreader.active = 0;
AddLog(LOG_LEVEL_INFO, PSTR("M32: Batt read slot %d done state %x"), slot, op->state);
} return 0;
case OP_UNIT_WRITE: // nothing more to do?
AddLog(LOG_LEVEL_DEBUG, PSTR("M32: Unit write for %s complete"), slotMAC);
return 0;
case OP_UNIT_READ: {
uint8_t currUnit = op->dataRead[0];
AddLog(LOG_LEVEL_DEBUG, PSTR("M32: Unit read for %s complete %d"), slotMAC, currUnit);
} return 0;
case OP_UNIT_TOGGLE: {
uint8_t currUnit = op->dataToWrite[0];
AddLog(LOG_LEVEL_DEBUG, PSTR("M32: Unit toggle for %s complete %d->%d; datasize was %d"), slotMAC, op->dataRead[0], op->dataToWrite[0], op->readlen);
} return 0;
case OP_READ_HT_LY: {
// allow another...
MI32.sensorreader.active = 0;
MI32notifyHT_LY(slot, (char*)op->dataNotify, op->notifylen);
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: HT_LY notify for %s complete"), slotMAC);
} return 0;
default:
AddLog(LOG_LEVEL_ERROR, PSTR("M32: OpType %d not recognised?"), opType);
return 0;
}
return 0;
}
int MI32advertismentCallback(BLE_ESP32::ble_advertisment_t *pStruct)
{
// we will try not to use this...
BLEAdvertisedDevice *advertisedDevice = pStruct->advertisedDevice;
// AddLog(LOG_LEVEL_DEBUG, PSTR("M32: Advertised Device: %s Buffer: %u"),advertisedDevice->getAddress().toString().c_str(),advertisedDevice->getServiceData(0).length());
int RSSI = pStruct->RSSI;
const uint8_t *addr = pStruct->addr;
if(MI32isInBlockList(addr) == true) return 0;
if (MI32.option.onlyAliased){
const char *alias = BLE_ESP32::getAlias(addr);
if (!alias || !(*alias)){
return 0;
}
}
int svcdataCount = advertisedDevice->getServiceDataCount();
if (svcdataCount == 0) {
return 0;
}
NimBLEUUID UUIDBig = advertisedDevice->getServiceDataUUID(0);//.getNative()->u16.value;
const ble_uuid_any_t* native = UUIDBig.getNative();
if (native->u.type != 16){
//not interested in 128 bit;
return 0;
}
uint16_t UUID = native->u16.value;
char temp[60];
BLE_ESP32::dump(temp, 13, addr, 6);
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("M32: MI:%s svc[0] UUID (%x)"), temp, UUID);
std::string ServiceDataStr = advertisedDevice->getServiceData(0);
uint32_t ServiceDataLength = ServiceDataStr.length();
const uint8_t *ServiceData = (const uint8_t *)ServiceDataStr.data();
BLE_ESP32::dump(temp, 60, ServiceData, ServiceDataLength);
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("M32: MI:%s"), temp);
if (UUID){
// this will take and keep the mutex until the function is over
TasAutoMutex localmutex(&slotmutex, "Mi32AdCB2");
switch(UUID){
case 0xfe95: // std MI?
case 0xfdcd: // CGD1?
{
MI32ParseResponse(ServiceData, ServiceDataLength, addr, RSSI);
} break;
case 0x181a: { //ATC
MI32ParseATCPacket(ServiceData, ServiceDataLength, addr, RSSI);
} break;
case 0x181d: // Mi Scale V1
case 0x181b: // Mi Scale V2
{
MI32ParseMiScalePacket(ServiceData, ServiceDataLength, addr, RSSI, UUID);
} break;
default:{
} break;
}
}
return 0;
}
/*********************************************************************************************\
* Helper functions
\*********************************************************************************************/
/**
* @brief Remove all colons from null terminated char array
*
* @param _string Typically representing a MAC-address like AA:BB:CC:DD:EE:FF
*/
void MI32stripColon(char* _string){
uint32_t _length = strlen(_string);
uint32_t _index = 0;
while (_index < _length) {
char c = _string[_index];
if(c==':'){
memmove(_string+_index,_string+_index+1,_length-_index);
}
_index++;
}
_string[_index] = 0;
}
/**
* @brief Convert string that repesents a hexadecimal number to a byte array
*
* @param _string input string in format: AABBCCDDEEFF or AA:BB:CC:DD:EE:FF, caseinsensitive
* @param _mac target byte array must match the correct size (i.e. AA:BB -> uint8_t bytes[2])
*/
void MI32HexStringToBytes(char* _string, uint8_t* _byteArray) {
MI32stripColon(_string);
UpperCase(_string,_string);
uint32_t index = 0;
uint32_t _end = strlen(_string);
memset(_byteArray,0,_end/2);
while (index < _end) {
char c = _string[index];
uint8_t value = 0;
if(c >= '0' && c <= '9')
value = (c - '0');
else if (c >= 'A' && c <= 'F')
value = (10 + (c - 'A'));
_byteArray[(index/2)] += value << (((index + 1) % 2) * 4);
index++;
}
}
/**
* @brief Reverse an array of 6 bytes
*
* @param _mac a byte array of size 6 (typicalliy representing a MAC address)
*/
void MI32_ReverseMAC(uint8_t _mac[]){
uint8_t _reversedMAC[6];
for (uint8_t i=0; i<6; i++){
_reversedMAC[5-i] = _mac[i];
}
memcpy(_mac,_reversedMAC, sizeof(_reversedMAC));
}
#ifdef USE_MI_DECRYPTION
int MI32AddKey(char* payload, char* key = nullptr){
mi_bindKey_t keyMAC;
if (!key){
MI32HexStringToBytes(payload,keyMAC.buf);
} else {
MI32HexStringToBytes(payload,keyMAC.MAC);
MI32HexStringToBytes(key,keyMAC.key);
}
bool unknownKey = true;
for(uint32_t i=0; i<MIBLEbindKeys.size(); i++){
if(memcmp(keyMAC.MAC,MIBLEbindKeys[i].MAC,sizeof(keyMAC.MAC))==0){
AddLog(LOG_LEVEL_DEBUG, PSTR("M32: Known key"));
memcpy(MIBLEbindKeys[i].key, keyMAC.key, 16);
unknownKey=false;
return 1;
}
}
if(unknownKey){
AddLog(LOG_LEVEL_DEBUG, PSTR("M32: New key"));
MIBLEbindKeys.push_back(keyMAC);
return 1;
}
return 0;
}
int MIDecryptPayload(const uint8_t *macin, const uint8_t *nonce, uint32_t tag, uint8_t *data, int len){
uint8_t payload[32];
uint8_t mac[6];
memcpy(mac, macin, 6);
MI32_ReverseMAC(mac);
uint8_t _bindkey[32] = {0x0};
const unsigned char authData[16] = {0x11};
bool foundNoKey = true;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: Search key for MAC: %02x%02x%02x%02x%02x%02x"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
for(uint32_t i=0; i<MIBLEbindKeys.size(); i++){
if(memcmp(mac, MIBLEbindKeys[i].MAC, 6)==0){
memcpy(_bindkey, MIBLEbindKeys[i].key, 16);
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Decryption Key found"));
foundNoKey = false;
break;
}
}
if(foundNoKey){
AddLog(LOG_LEVEL_DEBUG,PSTR("M32: No Key found"));
return -2; // indicates needs key
}
br_aes_small_ctrcbc_keys keyCtx;
br_aes_small_ctrcbc_init(&keyCtx, _bindkey, 16);
br_ccm_context ctx;
br_ccm_init(&ctx, &keyCtx.vtable);
br_ccm_reset(&ctx, nonce, 12, 1, len, 4);
br_ccm_aad_inject(&ctx, authData, 1);
br_ccm_flip(&ctx);
memcpy(payload, data, len); //we want to be sure about 4-byte alignement
br_ccm_run(&ctx, 0, payload, len);
memcpy(data, payload, len); //back to the packet
// crashed in here - why?, so give it more space to work with?
// returns 1 if matched, else 0
int ret = br_ccm_check_tag(&ctx, &tag);
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Err:%i, Decrypted : %02x %02x %02x %02x %02x"), ret, payload[1],payload[2],payload[3],payload[4],payload[5]);
return ret-1; // -> -1=fail, 0=success
}
#endif // USE_MI_DECRYPTION
// packet examples:
// MJ_HT_V1
// 5020 AA01 41 3AF4DAA8654C 0A100109
// 5020 AA01 43 3AF4DAA8654C 061002E901
// 5020 AA01 48 3AF4DAA8654C 041002BF00
// 5020 AA01 4A 3AF4DAA8654C 0D1004BF00E901
// 7122 AA01 15 3AF4DAA8654C 0D 0200020D10
// LYWSD03 encrypted data:
// 5858 5B05 2F B3E30838C1A4 [69A9FBDF67] ,060000 0791C39A - 23bytes
// 23-9 = 14
// -> nonce B3E30838C1A4|5B02|2F|060000
// 23-6 = 17
// -> tag 0791C39A
// datalen = 23 - 9 - 4 - 3 - 1 - 1 = 5
// CGD1 reconstructed from src: (svcdata on fdcd)
// xxyy FFEEDDCCBBAA MMMM TTTTHHHH|BB
// xxyy FFEEDDCCBBAA 0104 TTTTHHHH
// xxyy FFEEDDCCBBAA 0201 BB
const char *MIaddrStr(const uint8_t *addr, int useAlias = 0){
static char addrstr[32];
const char *id = nullptr;
if (useAlias){
id = BLE_ESP32::getAlias(addr);
}
if (!id || !(*id)){
id = addrstr;
BLE_ESP32::dump(addrstr, 13, addr, 6);
} else {
}
return id;
}
int MIParsePacket(const uint8_t* slotmac, struct mi_beacon_data_t *parsed, const uint8_t *datain, int len){
uint8_t data[32];
memcpy(data, datain, len);
if (!parsed){
return 0;
}
if (len < 5){
return 0;
}
int byteindex = 0;
// 58 58 = 0x5858 = data|comp|mac|enc, v5|auth2
// 30 58 = 0x5830 = comp|mac, v5|auth2
// 30 50 = 0x5030 = comp|mac, v5|auth0
// 48 59 = 0x5948 = data|enc, v5|auth2|registered
// 10 59 = 0x5910 = mac, v5|auth2|registered
// 71 22 = 0x2271 = data|comp|mac v2|bind
// 50 20 = 0x2050 = data|mac v2 - MJ_HT_V1 data
// 71 22 = 0x2271 = data|comp|mac|reserved1 v2|bind - MJ_HT_V1 pair
// data from byte 0 - e.g. 30
parsed->framedata.meshflag = (data[byteindex] & 0x80)>>7; //Byte 0: x.......
parsed->framedata.dataflag = (data[byteindex] & 0x40)>>6; //Byte 0: .x......
parsed->framedata.compatibilityflag = (data[byteindex] & 0x20)>>5; //Byte 0: ..x..... - indicates compatibility data present
parsed->framedata.MACFlag = (data[byteindex] & 0x10)>>4; //Byte 0: ...x....
parsed->framedata.isencrypted = (data[byteindex] & 0x08)>>3; //Byte 0: ....x...
parsed->framedata.reserved = (data[byteindex] & 0x03)>>6; //Byte 0: .....xxx
// data from byte 1 - e.g. 58
byteindex++;
parsed->framedata.version = (data[byteindex] & 0xf0)>>4; //Byte 0: xxxx....
parsed->framedata.authMode = (data[byteindex] & 0x0C)>>6; //Byte 0: ....xx.. // e.g. 2
parsed->framedata.bindingvalidreq = (data[byteindex] & 0x02)>>1; //Byte 0: ......x.
parsed->framedata.registeredflag = (data[byteindex] & 0x01); //Byte 0: .......x
// note:
// if bindingvalidreq, we should connect and establish a key.
// However, how do we determine WHICH TAS should do this?
byteindex++;
parsed->devicetype = *((uint16_t *)(data + byteindex));
byteindex += 2;
parsed->framecnt = data[byteindex];
//if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: MI frame %d"), parsed->framecnt);
byteindex++;
if (parsed->framedata.version <= 3){
// e.g. MJ_HT_V1
}
if (parsed->framedata.MACFlag){
if (len < byteindex + 6){
return 0;
}
memcpy(parsed->macdata.mac, &data[byteindex], 6);
byteindex += 6;
}
int decres = 1;
// everything after MAC is encrypted if specified?
if (parsed->framedata.isencrypted){
if (len < byteindex + 3+4+1){
return 0;
}
const uint8_t* mac = slotmac;
if (parsed->framedata.MACFlag){
mac = parsed->macdata.mac;
}
uint8_t nonce[12];
uint8_t *p = nonce;
memcpy(p, mac, 6);
p += 6;
memcpy(p, &parsed->devicetype, 2);
p += 2;
*(p++) = parsed->framecnt;
uint8_t *extCnt = data +(len-7);
memcpy(p, extCnt, 3);
p += 3;
uint32_t tag = *(uint32_t *)(data + (len-4));
// decrypt the data in place
decres = MIDecryptPayload(mac, nonce, tag, data + byteindex, len - byteindex - 7);
// no longer need the nonce data.
len -= 7;
}
switch(decres){
case 1: // decrypt not requested
break;
case 0: // suceeded
parsed->needkey = KEY_REQUIRED_AND_FOUND;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32 %s: Payload decrypted"), MIaddrStr(slotmac));
break;
case -1: // key failed to work
parsed->needkey = KEY_REQUIRED_AND_INVALID;
AddLog(LOG_LEVEL_ERROR,PSTR("M32 %s: Payload decrypt failed"), MIaddrStr(slotmac));
parsed->payloadpresent = 0;
return 0;
break;
case -2: // key not present
parsed->needkey = KEY_REQUIRED_BUT_NOT_FOUND;
AddLog(LOG_LEVEL_ERROR,PSTR("M32 %s: Payload encrypted but no key"), MIaddrStr(slotmac));
parsed->payloadpresent = 0;
return 0;
break;
}
// if set, there could be 1 or 3 bytes here.
if (parsed->framedata.compatibilityflag) {
if (len < byteindex + 1){
return 0;
}
// e.g. in pair: 7122 AA01 15 3AF4DAA8654C [0D] 0200020D10 -> bond|unused2
parsed->compatibility.reserved = (data[byteindex] & 0xc0) >> 6; //Byte 0: xx......
parsed->compatibility.IOcap = (data[byteindex] & 0x20) >> 5; //Byte 0: ..x.....
parsed->compatibility.bondability = (data[byteindex] & 0x18) >> 3; //Byte 0: ...xx...
parsed->compatibility.unused = (data[byteindex] & 0x07) >> 0; //Byte 0: .....xxx
byteindex ++;
if (parsed->compatibility.IOcap) {
if (len < byteindex + 2){
return 0;
}
parsed->compatibility.IOCapability = *((uint16_t *)(data + byteindex)); // bytes 1-2, e.g. 01 00 -> 0001
byteindex += 2;
}
}
// rest is payload
int rem = (len - byteindex);
if (rem > sizeof(parsed->payload)){
rem = sizeof(parsed->payload);
return 0;
}
if ((len - byteindex) == 0){
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32 %s: No payload"), MIaddrStr(slotmac));
parsed->payload.size = 0;
parsed->payloadpresent = 0;
return 0;
}
// we have payload which did not need decrypt.
if (decres == 1){
parsed->needkey = KEY_NOT_REQUIRED;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32 %s: Payload unencrypted"), MIaddrStr(slotmac));
}
// already decrypted if required
parsed->payloadpresent = 1;
memcpy(&parsed->payload, (data + byteindex), (len - byteindex));
if (parsed->payload.size != (len - byteindex) - 3){
AddLog(LOG_LEVEL_DEBUG,PSTR("M32 %s: Payload length mismatch"), MIaddrStr(slotmac));
}
return 1;
}
/*********************************************************************************************\
* common functions
\*********************************************************************************************/
/**
* @brief Return the slot number of a known sensor or return create new sensor slot
*
* @param _MAC BLE address of the sensor
* @param _type Type number of the sensor
* @return uint32_t Known or new slot in the sensors-vector
*/
uint32_t MIBLEgetSensorSlot(const uint8_t *mac, uint16_t _type, uint8_t counter){
//AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: %s: will test ID-type: %x"),D_CMND_MI32, _type);
bool _success = false;
for (uint32_t i=0; i < MI_MI32_TYPES; i++){ // i < sizeof(kMI32DeviceID) gives compiler warning
if(_type == kMI32DeviceID[i]){
_type = i+1;
_success = true;
break;
}
else {
//AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: %s: ID-type is not: %x"),D_CMND_MI32,kMI32DeviceID[i]);
}
}
if(!_success) {
_type = 1; // unknown
}
//AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: %s: vector size %u"),D_CMND_MI32, MIBLEsensors.size());
for(uint32_t i=0; i<MIBLEsensors.size(); i++){
if(memcmp(mac, MIBLEsensors[i].MAC, 6)==0){
// AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Counters: %x %x"),MIBLEsensors[i].lastCnt, counter);
if(MIBLEsensors[i].lastCnt==counter) {
// AddLog(LOG_LEVEL_DEBUG,PSTR("Old packet"));
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: %s: slot: %u/%u - ign repeat"),D_CMND_MI32, i, MIBLEsensors.size());
//return 0xff; // packet received before, stop here
}
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Frame %d, last %d"), counter, MIBLEsensors[i].lastCnt);
MIBLEsensors[i].lastCnt = counter;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: %s: slot: %u/%u"),D_CMND_MI32, i, MIBLEsensors.size());
if (MIBLEsensors[i].type != _type){
// this happens on incorrectly configured pvvx ATC firmware
AddLog(LOG_LEVEL_ERROR,PSTR("M32: %s: slot: %u - device type 0x%04x(%s) -> 0x%04x(%s) - check device is only sending one type of advert."),D_CMND_MI32, i,
kMI32DeviceID[MIBLEsensors[i].type-1], kMI32DeviceType[MIBLEsensors[i].type-1], kMI32DeviceID[_type-1], kMI32DeviceType[_type-1]);
MIBLEsensors[i].type = _type;
}
return i;
}
//AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: %s: i: %x %x %x %x %x %x"),D_CMND_MI32, MIBLEsensors[i].MAC[5], MIBLEsensors[i].MAC[4],MIBLEsensors[i].MAC[3],MIBLEsensors[i].MAC[2],MIBLEsensors[i].MAC[1],MIBLEsensors[i].MAC[0]);
//AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: %s: n: %x %x %x %x %x %x"),D_CMND_MI32, mac[5], mac[4], mac[3],mac[2],mac[1],mac[0]);
}
//AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: %s: new sensor -> slot: %u"),D_CMND_MI32, MIBLEsensors.size());
//AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: %s: found new sensor"),D_CMND_MI32);
mi_sensor_t _newSensor;
memset(&_newSensor, 0 , sizeof(_newSensor));
memcpy(_newSensor.MAC, mac, 6);
_newSensor.type = _type;
_newSensor.eventType.raw = 0;
_newSensor.feature.raw = 0;
_newSensor.temp = NAN;
_newSensor.needkey = KEY_REQUIREMENT_UNKNOWN;
_newSensor.bat = 0x00;
_newSensor.RSSI = 0xffff;
_newSensor.lux = 0x00ffffff;
_newSensor.light = -1;
_newSensor.Btn = -1;
switch (_type)
{
case MI_FLORA:
_newSensor.moisture =0xff;
_newSensor.fertility =0xffff;
_newSensor.firmware[0]='\0';
_newSensor.feature.temp=1;
_newSensor.feature.moist=1;
_newSensor.feature.fert=1;
_newSensor.feature.lux=1;
_newSensor.feature.bat=1;
break;
case MI_NLIGHT:
_newSensor.events=0x00;
_newSensor.feature.PIR=1;
_newSensor.feature.NMT=1;
_newSensor.feature.events=1;
break;
case MI_MJYD2S:
_newSensor.NMT=0;
_newSensor.events=0x00;
_newSensor.feature.PIR=1;
_newSensor.feature.NMT=1;
_newSensor.feature.lux=1;
_newSensor.feature.bat=1;
_newSensor.feature.events=1;
break;
case MI_YEERC:
_newSensor.feature.Btn=1;
break;
case MI_DOOR: // MCCGQ02HL
_newSensor.feature.Btn=1;
_newSensor.feature.light=1;
_newSensor.feature.bat=1;
break;
case MI_SCALE_V1:
_newSensor.feature.scale=1;
break;
case MI_SCALE_V2:
_newSensor.feature.scale=1;
_newSensor.feature.impedance=1;
break;
default:
_newSensor.hum=NAN;
_newSensor.feature.temp=1;
_newSensor.feature.hum=1;
_newSensor.feature.tempHum=1;
_newSensor.feature.bat=1;
break;
}
MIBLEsensors.push_back(_newSensor);
AddLog(LOG_LEVEL_DEBUG,PSTR("M32: %s: new %s at slot: %u"),D_CMND_MI32, kMI32DeviceType[_type-1],MIBLEsensors.size()-1);
MI32.mode.shallShowStatusInfo = 1;
return MIBLEsensors.size()-1;
};
/**
* @brief trigger real-time message for PIR or RC
*
*/
void MI32triggerTele(void){
MI32.mode.triggeredTele = 1;
MI32ShowTriggeredSensors();
MI32.mode.triggeredTele = 0;
}
/**
* @brief Is called after every finding of new BLE sensor
*
*/
void MI32StatusInfo() {
MI32.mode.shallShowStatusInfo = 0;
Response_P(PSTR("{\"%s\":{\"found\":%u}}"), D_CMND_MI32, MIBLEsensors.size());
XdrvRulesProcess(0);
}
/*********************************************************************************************\
* BLE callbacks section
* These are called from main thread only.
\*********************************************************************************************/
int MI32scanCompleteCallback(NimBLEScanResults results){
// we actually don't need to do anything here....
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Scan complete"));
return 0;
}
/*********************************************************************************************\
* init BLE_32
\*********************************************************************************************/
void MI32Init(void) {
MIBLEsensors.reserve(10);
MIBLEbindKeys.reserve(10);
MI32.mode.init = false;
//test section for options
MI32.option.allwaysAggregate = 1;
MI32.option.noSummary = 0;
MI32.option.minimalSummary = 0;
MI32.option.directBridgeMode = 0;
MI32.option.showRSSI = 1;
MI32.option.ignoreBogusBattery = 1; // from advertisements
MI32.option.holdBackFirstAutodiscovery = 1;
BLE_ESP32::registerForAdvertismentCallbacks((const char *)"MI32", MI32advertismentCallback);
BLE_ESP32::registerForScanCallbacks((const char *)"MI32", MI32scanCompleteCallback);
// note: for operations, we will set individual callbacks in the operations we request
//void registerForOpCallbacks(const char *tag, BLE_ESP32::OPCOMPLETE_CALLBACK* pFn);
AddLog(LOG_LEVEL_INFO,PSTR("M32: init: request callbacks"));
MI32.period = Settings->tele_period;
MI32.mode.init = 1;
return;
}
/*********************************************************************************************\
* Task section
\*********************************************************************************************/
int MIParseBatt(int slot, uint8_t *data, int len){
int value = data[0];
char slotMAC[13];
BLE_ESP32::dump(slotMAC, sizeof(slotMAC), MIBLEsensors[slot].MAC, 6) ;
if ((value != 0) && (value < 101)){
MIBLEsensors[slot].bat = value;
if(MIBLEsensors[slot].type==MI_FLORA){
if (len < 7){
AddLog(LOG_LEVEL_ERROR,PSTR("M32: FLORA: not enough bytes read for firmware?"));
} else {
memcpy(MIBLEsensors[slot].firmware, data+2, 5);
MIBLEsensors[slot].firmware[5] = '\0';
AddLog(LOG_LEVEL_DEBUG,PSTR("M32: %s: FLORA Firmware: %s"),D_CMND_MI32,MIBLEsensors[slot].firmware);
}
}
MIBLEsensors[slot].eventType.bat = 1;
MIBLEsensors[slot].shallSendMQTT = 1;
MI32.mode.shallTriggerTele = 1;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Batt read for %s complete %d"), slotMAC, value);
} else {
AddLog(LOG_LEVEL_ERROR,PSTR("M32: Batt read for %s complete but out of range 1-101 (%d)"), slotMAC, value);
}
return 0;
}
/*********************************************************************************************\
* parse the response from advertisements
\*********************************************************************************************/
void MI32ParseATCPacket(const uint8_t * _buf, uint32_t length, const uint8_t *addr, int RSSI){
ATCPacket_t *_packet = (ATCPacket_t*)_buf;
PVVXPacket_t *ppv_packet = (PVVXPacket_t*)_buf;
if (length == 15){ // 19-1-1-2
uint8_t addrrev[6];
memcpy(addrrev, addr, 6);
MI32_ReverseMAC(addrrev);
if (!memcmp(addrrev, ppv_packet->MAC, 6)){
//int16_t temperature; // x 0.1 degree
//uint16_t humidity; // x 0.01 %
//uint16_t battery_mv; // mV
//uint8_t battery_level; // 0..100 %
//uint8_t counter; // measurement count
//uint8_t flags;
uint32_t _slot = MIBLEgetSensorSlot(addr, 0x0a1c, ppv_packet->counter); // This must be a hard-coded fake ID
if(_slot==0xff) return;
if ((_slot >= 0) && (_slot < MIBLEsensors.size())){
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: %s:pvvx at slot %u"), kMI32DeviceType[MIBLEsensors[_slot].type-1],_slot);
MIBLEsensors[_slot].RSSI=RSSI;
MIBLEsensors[_slot].needkey=KEY_NOT_REQUIRED;
MIBLEsensors[_slot].temp = (float)(ppv_packet->temperature)/100.0f;
MIBLEsensors[_slot].hum = (float)(ppv_packet->humidity)/100.0f;
MIBLEsensors[_slot].eventType.tempHum = 1;
MIBLEsensors[_slot].bat = ppv_packet->battery_level;
MIBLEsensors[_slot].eventType.bat = 1;
MIBLEsensors[_slot].Btn = (ppv_packet->flags) & 0x1; // First bit is reed switch status
MIBLEsensors[_slot].eventType.Btn = 1;
MIBLEsensors[_slot].feature.Btn = 1;
if(MI32.option.directBridgeMode) {
MIBLEsensors[_slot].shallSendMQTT = 1;
MI32.mode.shallTriggerTele = 1;
}
}
return;
} else {
AddLog(LOG_LEVEL_ERROR, PSTR("M32: PVVX packet mac mismatch - ignored?"));
return;
}
}
uint8_t addrrev[6];
memcpy(addrrev, addr, 6);
//MI32_ReverseMAC(addrrev);
// if packet tell a different address to origin, use the different address
if (memcmp(addrrev, _packet->MAC, 6)){
MI32_ReverseMAC(_packet->MAC);
if (!memcmp(addrrev, _packet->MAC, 6)){
AddLog(LOG_LEVEL_ERROR, PSTR("M32: ATC packet with reversed MAC addr?"));
} else {
AddLog(LOG_LEVEL_ERROR, PSTR("M32: ATC packet with MAC addr mismatch - is this mesh?"));
memcpy(addrrev, _packet->MAC, 6);
}
addr = addrrev;
}
uint32_t _slot = MIBLEgetSensorSlot(addr, 0x0a1c, _packet->frameCnt); // This must be a hard-coded fake ID
if(_slot==0xff) return;
if ((_slot >= 0) && (_slot < MIBLEsensors.size())){
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: %s at slot %u"), kMI32DeviceType[MIBLEsensors[_slot].type-1],_slot);
MIBLEsensors[_slot].RSSI=RSSI;
MIBLEsensors[_slot].needkey=KEY_NOT_REQUIRED;
MIBLEsensors[_slot].temp = (float)(int16_t(__builtin_bswap16(_packet->temp)))/10.0f;
MIBLEsensors[_slot].hum = (float)_packet->hum;
MIBLEsensors[_slot].eventType.tempHum = 1;
MIBLEsensors[_slot].bat = _packet->batPer;
MIBLEsensors[_slot].eventType.bat = 1;
if(MI32.option.directBridgeMode) {
MIBLEsensors[_slot].shallSendMQTT = 1;
MI32.mode.shallTriggerTele = 1;
}
} else {
}
}
void MI32ParseMiScalePacket(const uint8_t * _buf, uint32_t length, const uint8_t *addr, int RSSI, int UUID) {
MiScaleV1Packet_t *_packetV1 = (MiScaleV1Packet_t*)_buf;
MiScaleV2Packet_t *_packetV2 = (MiScaleV2Packet_t*)_buf;
uint8_t weight_stabilized = 0;
uint8_t weight_removed = 0;
uint8_t impedance_stabilized = 0;
// Mi Scale V1
if (length == 10 && UUID == 0x181d) { // 14-1-1-2
weight_stabilized = (_packetV1->status & (1 << 5)) ? 1 : 0;
weight_removed = (_packetV1->status & (1 << 7)) ? 1 : 0;
if (!MI32.option.directBridgeMode && (!weight_stabilized || weight_removed))
return;
uint32_t _slot = MIBLEgetSensorSlot(addr, UUID, 0);
if (_slot==0xff) return;
if ((_slot >= 0) && (_slot < MIBLEsensors.size())) {
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: %s: at slot %u"), kMI32DeviceType[MIBLEsensors[_slot].type-1],_slot);
MIBLEsensors[_slot].RSSI = RSSI;
MIBLEsensors[_slot].needkey = KEY_NOT_REQUIRED;
MIBLEsensors[_slot].eventType.scale = 1;
MIBLEsensors[_slot].weight_stabilized = weight_stabilized;
MIBLEsensors[_slot].weight_removed = weight_removed;
if (_packetV1->status & (1 << 0)) {
strcpy(MIBLEsensors[_slot].weight_unit, PSTR("lbs"));
MIBLEsensors[_slot].weight = (float)_packetV1->weight / 100.0f;
} else if(_packetV1->status & (1 << 4)) {
strcpy(MIBLEsensors[_slot].weight_unit, PSTR("jin"));
MIBLEsensors[_slot].weight = (float)_packetV1->weight / 100.0f;
} else {
strcpy(MIBLEsensors[_slot].weight_unit, PSTR("kg"));
MIBLEsensors[_slot].weight = (float)_packetV1->weight / 200.0f;
}
if (MIBLEsensors[_slot].weight_removed) {
MIBLEsensors[_slot].weight = 0.0f;
}
MIBLEsensors[_slot].shallSendMQTT = 1;
MI32.mode.shallTriggerTele = 1;
}
}
// Mi Scale V2
else if (length == 13 && UUID == 0x181b) { // 17-1-1-2
weight_stabilized = (_packetV2->status & (1 << 5)) ? 1 : 0;
weight_removed = (_packetV2->status & (1 << 7)) ? 1 : 0;
impedance_stabilized = (_packetV2->status & (1 << 1)) ? 1 : 0;
if (!MI32.option.directBridgeMode && (!weight_stabilized || weight_removed))
return;
uint32_t _slot = MIBLEgetSensorSlot(addr, UUID, 0);
if (_slot==0xff) return;
if ((_slot >= 0) && (_slot < MIBLEsensors.size())) {
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: %s: at slot %u"), kMI32DeviceType[MIBLEsensors[_slot].type-1],_slot);
MIBLEsensors[_slot].RSSI = RSSI;
MIBLEsensors[_slot].needkey = KEY_NOT_REQUIRED;
MIBLEsensors[_slot].eventType.scale = 1;
MIBLEsensors[_slot].weight_stabilized = weight_stabilized;
MIBLEsensors[_slot].weight_removed = weight_removed;
if (_packetV2->weight_unit & (1 << 4)) {
strcpy(MIBLEsensors[_slot].weight_unit, PSTR("jin"));
MIBLEsensors[_slot].weight = (float)_packetV2->weight / 100.0f;
} else if(_packetV2->weight_unit == 3) {
strcpy(MIBLEsensors[_slot].weight_unit, PSTR("lbs"));
MIBLEsensors[_slot].weight = (float)_packetV2->weight / 100.0f;
} else if(_packetV2->weight_unit == 2) {
strcpy(MIBLEsensors[_slot].weight_unit, PSTR("kg"));
MIBLEsensors[_slot].weight = (float)_packetV2->weight / 200.0f;
} else {
strcpy(MIBLEsensors[_slot].weight_unit, PSTR(""));
MIBLEsensors[_slot].weight = (float)_packetV2->weight / 100.0f;
}
if (weight_removed) {
MIBLEsensors[_slot].weight = 0.0f;
}
MIBLEsensors[_slot].impedance = 0;
if (MI32.option.directBridgeMode || impedance_stabilized)
{
MIBLEsensors[_slot].impedance_stabilized = impedance_stabilized;
MIBLEsensors[_slot].impedance = _packetV2->impedance;
if (weight_removed) {
MIBLEsensors[_slot].impedance = 0;
}
}
MIBLEsensors[_slot].shallSendMQTT = 1;
MI32.mode.shallTriggerTele = 1;
}
}
}
////////////////////////////////////////////////////////////
// this SHOULD parse any MI payload.
int MI32parseMiPayload(int _slot, struct mi_beacon_data_t *parsed){
struct mi_beacon_data_payload_data_t *pld =
(struct mi_beacon_data_payload_data_t *) &parsed->payload.data;
int res = 1;
if (!parsed->payloadpresent){
return 0;
}
char tmp[20];
BLE_ESP32::dump(tmp, 20, (uint8_t*)&(parsed->payload), parsed->payload.size+3);
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: MI%d payload %s"), _slot, tmp);
// clear this for every payload
MIBLEsensors[_slot].pairing = 0;
MIBLEsensors[_slot].eventType.PairBtn = 0;
//https://iot.mi.com/new/doc/embedded-development/ble/object-definition
switch(parsed->payload.type){
case 0x0002: // related to pair button? 'easypairing'
MIBLEsensors[_slot].pairing = 1;
MIBLEsensors[_slot].eventType.PairBtn = 1;
MIBLEsensors[_slot].feature.pairing = 1;
MI32.mode.shallTriggerTele = 1;
MIBLEsensors[_slot].shallSendMQTT = 1;
break;
case 0x0003: {// motion? 1 byte 'near'
uint8_t motion = parsed->payload.data[0];
res = 0;
}break;
case 0x000f: // 'Someone is moving (with light)'
MIBLEsensors[_slot].eventType.motion = 1;
MIBLEsensors[_slot].lastTime = millis();
MIBLEsensors[_slot].events++;
MIBLEsensors[_slot].lux = pld->lux;
MIBLEsensors[_slot].eventType.lux = 1;
MIBLEsensors[_slot].NMT = 0;
MI32.mode.shallTriggerTele = 1;
MIBLEsensors[_slot].shallSendMQTT = 1;
MIBLEsensors[_slot].feature.lux = 1;
MIBLEsensors[_slot].feature.NMT = 1;
MIBLEsensors[_slot].feature.events=1;
// AddLog(LOG_LEVEL_DEBUG,PSTR("M32: PIR: primary"),MIBLEsensors[_slot].lux );
break;
case 0x1001: // button press
MIBLEsensors[_slot].Btn = pld->Btn.num + (pld->Btn.longPress/2)*6;
MIBLEsensors[_slot].feature.Btn = 1;
MIBLEsensors[_slot].eventType.Btn = 1;
MI32.mode.shallTriggerTele = 1;
MIBLEsensors[_slot].shallSendMQTT = 1;
break;
//case 0x1002: // 'sleep'
//case 0x1003: // 'RSSI'
case 0x1004:{ // 'temperature'
float _tempFloat=(float)(pld->temp)/10.0f;
if(_tempFloat<60){
MIBLEsensors[_slot].temp=_tempFloat;
MIBLEsensors[_slot].feature.temp = 1;
MIBLEsensors[_slot].eventType.temp = 1;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode 4: temp updated"));
} else {
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode 4: temp ignored > 60 (%2_f)"), &_tempFloat);
}
// AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Mode 4: U16: %u Temp"), _beacon.temp );
} break;
// 0x1005 - not documented
case 0x1006: { // 'humidity'
float _tempFloat=(float)(pld->hum)/10.0f;
if(_tempFloat<101){
MIBLEsensors[_slot].hum=_tempFloat;
MIBLEsensors[_slot].feature.hum = 1;
MIBLEsensors[_slot].eventType.hum = 1;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode 6: hum updated"));
} else {
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode 6: hum ignored > 101 (%2_f)"), &_tempFloat);
}
// AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Mode 6: U16: %u Hum"), _beacon.hum);
} break;
case 0x1007: // 'Light illuminance'
MIBLEsensors[_slot].lux=pld->lux & 0x00ffffff;
if(MIBLEsensors[_slot].type==MI_MJYD2S){
MIBLEsensors[_slot].eventType.noMotion = 1;
}
MIBLEsensors[_slot].eventType.lux = 1;
MIBLEsensors[_slot].feature.lux = 1;
// AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Mode 7: U24: %u Lux"), _beacon.lux & 0x00ffffff);
break;
case 0x1008: //'Soil moisture'
MIBLEsensors[_slot].moisture=pld->moist;
MIBLEsensors[_slot].eventType.moist = 1;
MIBLEsensors[_slot].feature.moist = 1;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode 8: moisture updated"));
// AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Mode 8: U8: %u Moisture"), _beacon.moist);
break;
case 0x1009: // 'conductivity' / 'Soil EC value'
MIBLEsensors[_slot].fertility=pld->fert;
MIBLEsensors[_slot].eventType.fert = 1;
MIBLEsensors[_slot].feature.fert = 1;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode 9: fertility updated"));
// AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Mode 9: U16: %u Fertility"), _beacon.fert);
break;
case 0x100a:// 'Electricity'
if(MI32.option.ignoreBogusBattery){
if(MIBLEsensors[_slot].type==MI_LYWSD03MMC || MIBLEsensors[_slot].type==MI_MHOC401){
res = 0;
break;
}
}
MIBLEsensors[_slot].feature.bat = 1;
if(pld->bat<101){
MIBLEsensors[_slot].bat = pld->bat;
MIBLEsensors[_slot].eventType.bat = 1;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode a: bat updated"));
} else {
MIBLEsensors[_slot].bat = 100;
MIBLEsensors[_slot].eventType.bat = 1;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode a: bat > 100 (%d)"), pld->bat);
}
// AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Mode a: U8: %u %%"), _beacon.bat);
break;
// 100b-100d -> undefioend in docs.
case 0x100d:{ // is this right????
MIBLEsensors[_slot].feature.tempHum = 1;
float _tempFloat=(float)(pld->HT.temp)/10.0f;
if(_tempFloat < 60){
MIBLEsensors[_slot].temp = _tempFloat;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode d: temp updated"));
} else {
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode d: temp ignored > 60 (%2_f)"), &_tempFloat);
}
_tempFloat=(float)(pld->HT.hum)/10.0f;
if(_tempFloat < 100){
MIBLEsensors[_slot].hum = _tempFloat;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode d: hum updated"));
} else {
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: Mode d: hum ignored > 100 (%2_f)"), &_tempFloat);
}
MIBLEsensors[_slot].eventType.tempHum = 1;
// AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Mode d: U16: %x Temp U16: %x Hum"), _beacon.HT.temp, _beacon.HT.hum);
} break;
// 100e = 'lock'
// 100f = 'door'
case 0x1010:{ // 'formaldehide'
const uint16_t f = uint16_t(parsed->payload.data[0]) | (uint16_t(parsed->payload.data[1]) << 8);
float formaldehyde = (float)f / 100.0f;
res = 0;
} break;
// 1011 = 'bind'
case 0x1012:{ // 'switch'
int active = parsed->payload.data[0];
res = 0;
} break;
case 0x1013:{ // 'Remaining amount of consumables' - mosquito tablet
int tablet = parsed->payload.data[0];
res = 0;
} break;
//Flooding 0x1014 1 1
//smoke 0x1015 1 1
//Gas 0x1016
case 0x1017:{ // 'No one moves'
const uint32_t idle_time =
uint32_t(parsed->payload.data[0]) | (uint32_t(parsed->payload.data[1]) << 8) | (uint32_t(parsed->payload.data[2]) << 16) | (uint32_t(parsed->payload.data[2]) << 24);
float idlemins = (float)idle_time / 60.0f;
int has_motion = (idle_time) ? 0 : 0;
MIBLEsensors[_slot].NMT = pld->NMT;
MIBLEsensors[_slot].eventType.NMT = 1;
MI32.mode.shallTriggerTele = 1;
MIBLEsensors[_slot].shallSendMQTT = 1;
MIBLEsensors[_slot].feature.NMT = 1;
// AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Mode 17: NMT: %u seconds"), _beacon.NMT);
} break;
//Light intensity 0x1018
case 0x1018:{ //'Light intensity' - 0=dark, 1=light? - MCCGQ02HL
MIBLEsensors[_slot].light = parsed->payload.data[0];
MIBLEsensors[_slot].eventType.light = 1;
MI32.mode.shallTriggerTele = 1;
MIBLEsensors[_slot].shallSendMQTT = 1;
MIBLEsensors[_slot].feature.light = 1;
} break;
case 0x1019:{ //'Door sensor' - 0=open, 1=closed, 2=timeout? - MCCGQ02HL
MIBLEsensors[_slot].Btn = (uint8_t) parsed->payload.data[0]; // just an 8 bit value in a union.
MIBLEsensors[_slot].eventType.Btn = 1;
MI32.mode.shallTriggerTele = 1;
MIBLEsensors[_slot].shallSendMQTT = 1;
MIBLEsensors[_slot].feature.Btn = 1;
} break;
//Weight attributes 0x101A 600 0
//No one moves over time 0x101B 1 1
//Smart pillow 0x101C 60 1
//Formaldehyde (new) 0x101D
default: {
AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Unknown MI pld type %x %s"), parsed->payload.type, tmp);
res = 0;
} break;
}
if(res && MI32.option.directBridgeMode) {
MIBLEsensors[_slot].shallSendMQTT = 1;
MI32.mode.shallTriggerTele = 1;
}
return res;
}
////////////////////////////////////////////////////////////
// this SHOULD parse any MI packet, including encrypted.
void MI32ParseResponse(const uint8_t *buf, uint16_t bufsize, const uint8_t* addr, int RSSI) {
struct mi_beacon_data_t parsed;
memset(&parsed, 0, sizeof(parsed));
int res = MIParsePacket(addr, &parsed, buf, bufsize);
uint8_t addrrev[6];
memcpy(addrrev, addr, 6);
MI32_ReverseMAC(addrrev);
if (memcmp(addrrev, parsed.macdata.mac, 6)){
AddLog(LOG_LEVEL_ERROR, PSTR("M32: MI packet with MAC addr mismatch - is this mesh?"));
memcpy(addrrev, parsed.macdata.mac, 6);
MI32_ReverseMAC(addrrev);
addr = addrrev;
}
uint16_t _slot = MIBLEgetSensorSlot( addr, parsed.devicetype, parsed.framecnt );
if(_slot==0xff) return;
if ((_slot >= 0) && (_slot < MIBLEsensors.size())){
if (parsed.needkey != KEY_REQUIREMENT_UNKNOWN){
MIBLEsensors[_slot].needkey = parsed.needkey;
}
MIBLEsensors[_slot].RSSI=RSSI;
if (!res){ // - if the payload is not valid
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: MIParsePacket returned %d"), res);
return;
} else {
}
MI32parseMiPayload(_slot, &parsed);
}
}
bool MI32isInBlockList(const uint8_t* MAC){
bool isBlocked = false;
for(auto &_blockedMAC : MIBLEBlockList){
if(memcmp(_blockedMAC.buf,MAC,6) == 0) isBlocked = true;
}
return isBlocked;
}
void MI32removeMIBLEsensor(uint8_t* MAC){
// this will take and keep the mutex until the function is over
TasAutoMutex localmutex(&slotmutex, "Mi32Rem");
MIBLEsensors.erase( std::remove_if( MIBLEsensors.begin() , MIBLEsensors.end(), [MAC]( mi_sensor_t _sensor )->bool
{ return (memcmp(_sensor.MAC,MAC,6) == 0); }
), end( MIBLEsensors ) );
}
/***********************************************************************\
* Read data from connections
\***********************************************************************/
void MI32notifyHT_LY(int slot, char *_buf, int len){
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: %s: raw data: %x%x%x%x%x%x%x"),D_CMND_MI32,_buf[0],_buf[1],_buf[2],_buf[3],_buf[4],_buf[5],_buf[6]);
// the value 0b00 is 28.16 C?
if(_buf[0] != 0 || _buf[1] != 0){
memcpy(&LYWSD0x_HT,(void *)_buf,sizeof(LYWSD0x_HT));
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: %s: T * 100: %u, H: %u, V: %u"),D_CMND_MI32,LYWSD0x_HT.temp,LYWSD0x_HT.hum, LYWSD0x_HT.volt);
uint32_t _slot = slot;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: MIBLE: Sensor slot: %u"), _slot);
static float _tempFloat;
_tempFloat=(float)(LYWSD0x_HT.temp)/100.0f;
if(_tempFloat<60){
MIBLEsensors[_slot].temp=_tempFloat;
// MIBLEsensors[_slot].showedUp=255; // this sensor is real
}
_tempFloat=(float)LYWSD0x_HT.hum;
if(_tempFloat<100){
MIBLEsensors[_slot].hum = _tempFloat;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG_MORE,PSTR("M32: LYWSD0x: hum updated"));
}
MIBLEsensors[_slot].eventType.tempHum = 1;
if (MIBLEsensors[_slot].type == MI_LYWSD03MMC || MIBLEsensors[_slot].type == MI_MHOC401){
// ok, so CR2032 is 3.0v, but drops immediately to ~2.9.
// so we'll go with the 2.1 min, 2.95 max.
float minVolts = 2100.0;
//float maxVolts = 2950.0;
//float range = maxVolts - minVolts;
//float divisor = range/100; // = 8.5
float percent = (((float)LYWSD0x_HT.volt) - minVolts)/ 8.5; //divisor;
if (percent > 100) percent = 100;
MIBLEsensors[_slot].bat = (int) percent;
MIBLEsensors[_slot].eventType.bat = 1;
}
if(MI32.option.directBridgeMode) {
MIBLEsensors[_slot].shallSendMQTT = 1;
MI32.mode.shallTriggerTele = 1;
}
}
}
/**
* @brief Launch functions from Core 1 to make race conditions less likely
*
*/
void MI32Every50mSecond(){
if(MI32.mode.shallTriggerTele){
MI32.mode.shallTriggerTele = 0;
MI32triggerTele();
}
}
/**
* @brief Main loop of the driver, "high level"-loop
*
*/
void MI32EverySecond(bool restart){
// AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("M32: onesec"));
MI32TimeoutSensors();
if (MI32.option.MQTTType == 0){
// show tas style sensor MQTT
MI32ShowSomeSensors();
}
if (MI32.option.MQTTType == 1
#ifdef USE_HOME_ASSISTANT
||
Settings->flag.hass_discovery
#endif
) {
// these two share a counter
// discovery only sent if hass_discovery
MI32DiscoveryOneMISensor();
// show independent style sensor MQTT
// note - if !MQTTType, then this is IN ADDITION to 'normal'
MI32ShowOneMISensor();
}
// read a battery if
// MI32.batteryreader.slot < filled and !MI32.batteryreader.active
readOneBat();
// read a sensor if
// MI32.sensorreader.slot < filled and !MI32.sensorreader.active
// for sensors which need to get data through notify...
readOneSensor();
if (MI32.secondsCounter >= MI32.period){
// only if we finished the last read
if (MI32.sensorreader.slot >= MIBLEsensors.size()){
AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Kick off readOneSensor"));
// kick off notification sensor reading every period.
MI32.sensorreader.slot = 0;
MI32.secondsCounter = 0;
}
}
MI32.secondsCounter ++;
if (MI32.secondsCounter2 >= MI32.period){
if (MI32.mqttCurrentSlot >= MIBLEsensors.size()){
AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Kick off tele sending"));
MI32.mqttCurrentSlot = 0;
MI32.secondsCounter2 = 0;
MI32.mqttCurrentSingleSlot = 0;
} else {
AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Hit tele time, restarted but not finished last - lost from slot %d")+MI32.mqttCurrentSlot);
MI32.mqttCurrentSlot = 0;
MI32.secondsCounter2 = 0;
MI32.mqttCurrentSingleSlot = 0;
}
}
MI32.secondsCounter2++;
static uint32_t _counter = MI32.period - 15;
static uint32_t _nextSensorSlot = 0;
uint32_t _idx = 0;
int numsensors = MIBLEsensors.size();
for (uint32_t i = 0; i < numsensors; i++) {
if(MIBLEsensors[i].type==MI_NLIGHT || MIBLEsensors[i].type==MI_MJYD2S){
MIBLEsensors[i].NMT++;
}
}
if(MI32.mode.shallShowStatusInfo == 1){
MI32StatusInfo();
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void CmndMi32Period(void) {
if (XdrvMailbox.data_len > 0) {
if (1 == XdrvMailbox.payload) {
MI32EverySecond(true);
} else {
MI32.period = XdrvMailbox.payload;
}
}
ResponseCmndNumber(MI32.period);
}
int findSlot(char *addrOrAlias){
uint8_t mac[7];
int res = BLE_ESP32::getAddr(mac, addrOrAlias);
if (!res) return -1;
for (int i = MIBLEsensors.size()-1; i >= 0 ; i--) {
if (!memcmp(MIBLEsensors[i].MAC, mac, 6)){
return i;
}
}
return -1;
}
void CmndMi32Time(void) {
if (XdrvMailbox.data_len > 0) {
int slot = findSlot(XdrvMailbox.data);
if (slot < 0) {
slot = XdrvMailbox.payload;
}
if (MIBLEsensors.size() > slot) {
int res = genericTimeWriteFn(slot);
if (res > 0){
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: will set Time"));
ResponseCmndNumber(slot);
return;
}
if (res < 0) {
AddLog(LOG_LEVEL_ERROR, PSTR("M32: cannot set Time on sensor type"));
}
if (res == 0) {
AddLog(LOG_LEVEL_ERROR, PSTR("M32: cannot set Time right now"));
}
}
}
ResponseCmndChar_P("fail");
}
void CmndMi32Page(void) {
if (XdrvMailbox.payload > 0) {
MI32.perPage = XdrvMailbox.payload;
}
ResponseCmndNumber(MI32.perPage);
}
// read ALL battery values where we can?
void CmndMi32Battery(void) {
// trigger a read cycle
MI32.batteryreader.slot = 0;
ResponseCmndDone();
}
void CmndMi32Unit(void) {
if (XdrvMailbox.data_len > 0) {
int slot = findSlot(XdrvMailbox.data);
if (slot < 0) {
slot = XdrvMailbox.payload;
}
if (MIBLEsensors.size() > slot) {
// TOGGLE unit?
int res = genericUnitWriteFn(slot, -1);
if (res > 0){
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG, PSTR("M32: will toggle Unit"));
ResponseCmndNumber(slot);
return;
}
if (res < 0) {
AddLog(LOG_LEVEL_ERROR, PSTR("M32: cannot toggle Unit on sensor type"));
}
if (res == 0) {
AddLog(LOG_LEVEL_ERROR, PSTR("M32: cannot toggle Unit right now"));
}
}
}
ResponseCmndIdxChar(PSTR("Invalid"));
}
#ifdef USE_MI_DECRYPTION
void CmndMi32Key(void) {
if (44 == XdrvMailbox.data_len) { // a KEY-MAC-string
MI32AddKey(XdrvMailbox.data, nullptr);
MI32KeyListResp();
} else {
ResponseCmndIdxChar(PSTR("Invalid"));
}
}
#endif // USE_MI_DECRYPTION
void MI32BlockListResp(){
Response_P(PSTR("{\"MI32Block\":{"));
for (int i = 0; i < MIBLEBlockList.size(); i++){
if (i){
ResponseAppend_P(PSTR(","));
}
char tmp[20];
ToHex_P(MIBLEBlockList[i].buf,6,tmp,20,0);
ResponseAppend_P(PSTR("\"%s\":1"), tmp);
}
ResponseAppend_P(PSTR("}}"));
}
void CmndMi32Block(void){
if (XdrvMailbox.data_len == 0) {
switch (XdrvMailbox.index) {
case 0: {
//TasAutoMutex localmutex(&slotmutex, "Mi32Block1");
MIBLEBlockList.clear();
} break;
default:
case 1:
break;
}
MI32BlockListResp();
return;
}
MAC_t _MACasBytes;
int res = BLE_ESP32::getAddr(_MACasBytes.buf, XdrvMailbox.data);
if (!res){
ResponseCmndIdxChar(PSTR("Addr invalid"));
return;
}
//MI32HexStringToBytes(XdrvMailbox.data,_MACasBytes.buf);
switch (XdrvMailbox.index) {
case 0: {
//TasAutoMutex localmutex(&slotmutex, "Mi32Block2");
MIBLEBlockList.erase( std::remove_if( begin( MIBLEBlockList ), end( MIBLEBlockList ), [_MACasBytes]( MAC_t& _entry )->bool
{ return (memcmp(_entry.buf,_MACasBytes.buf,6) == 0); }
), end( MIBLEBlockList ) );
} break;
case 1: {
//TasAutoMutex localmutex(&slotmutex, "Mi32Block3");
bool _notYetInList = true;
for (auto &_entry : MIBLEBlockList) {
if (memcmp(_entry.buf,_MACasBytes.buf,6) == 0){
_notYetInList = false;
}
}
if (_notYetInList) {
MIBLEBlockList.push_back(_MACasBytes);
MI32removeMIBLEsensor(_MACasBytes.buf);
}
// AddLog(LOG_LEVEL_INFO,PSTR("M32: size of ilist: %u"), MIBLEBlockList.size());
} break;
}
MI32BlockListResp();
}
void CmndMi32Option(void){
bool set = false;
if (strlen(XdrvMailbox.data)){
set = true;
}
int onOff = atoi(XdrvMailbox.data);
switch(XdrvMailbox.index) {
case 0:
if (set){
MI32.option.allwaysAggregate = onOff;
} else {
onOff = MI32.option.allwaysAggregate;
}
break;
case 1:
if (set){
MI32.option.noSummary = onOff;
} else {
onOff = MI32.option.noSummary;
}
break;
case 2:
if (set){
MI32.option.directBridgeMode = onOff;
} else {
onOff = MI32.option.directBridgeMode;
}
break;
case 4:{
if (set){
MI32.option.ignoreBogusBattery = onOff;
} else {
onOff = MI32.option.ignoreBogusBattery;
}
} break;
case 5:{
if (set){
MI32.option.onlyAliased = onOff;
if (MI32.option.onlyAliased){
// discard all sensors for a restart
MIBLEsensors.clear();
}
} else {
onOff = MI32.option.onlyAliased;
}
} break;
case 6:{
if (set){
MI32.option.MQTTType = onOff;
} else {
onOff = MI32.option.MQTTType;
}
} break;
default:{
ResponseCmndIdxError();
return;
} break;
}
ResponseCmndIdxNumber(onOff);
return;
}
void MI32KeyListResp(){
Response_P(PSTR("{\"MIKeys\":{"));
for (int i = 0; i < MIBLEbindKeys.size(); i++){
if (i){
ResponseAppend_P(PSTR(","));
}
char tmp[20];
ToHex_P(MIBLEbindKeys[i].MAC,6,tmp,20,0);
char key[16*2+1];
ToHex_P(MIBLEbindKeys[i].key,16,key,33,0);
ResponseAppend_P(PSTR("\"%s\":\"%s\""), tmp, key);
}
ResponseAppend_P(PSTR("}}"));
}
void CmndMi32Keys(void){
#ifdef BLE_ESP32_ALIASES
int op = XdrvMailbox.index;
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Key %d %s"), op, XdrvMailbox.data);
int res = -1;
switch(op){
case 0:
case 1:{
char *p = strtok(XdrvMailbox.data, " ,=");
bool trigger = false;
int added = 0;
do {
if (!p || !(*p)){
break;
}
uint8_t addr[7];
char *mac = p;
int addrres = BLE_ESP32::getAddr(addr, p);
if (!addrres){
ResponseCmndChar("invalidmac");
return;
}
p = strtok(nullptr, " ,=");
char *key = p;
if (!p || !(*p)){
int i = 0;
for (i = 0; i < MIBLEbindKeys.size(); i++){
mi_bindKey_t *key = &MIBLEbindKeys[i];
if (!memcmp(key->MAC, addr, 6)){
MIBLEbindKeys.erase(MIBLEbindKeys.begin() + i);
MI32KeyListResp();
return;
}
}
ResponseCmndChar("invalidmac");
return;
}
AddLog(LOG_LEVEL_ERROR,PSTR("M32: Add key mac %s = key %s"), mac, key);
char tmp[20];
// convert mac back to string
ToHex_P(addr,6,tmp,20,0);
if (MI32AddKey(tmp, key)){
added++;
}
p = strtok(nullptr, " ,=");
} while (p);
if (added){
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Added %d Keys"), added);
MI32KeyListResp();
} else {
MI32KeyListResp();
}
return;
} break;
case 2:{ // clear
if (BLE_ESP32::BLEDebugMode > 0) AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Keys clearing %d"), MIBLEbindKeys.size());
for (int i = MIBLEbindKeys.size()-1; i >= 0; i--){
MIBLEbindKeys.pop_back();
}
MI32KeyListResp();
return;
} break;
}
ResponseCmndChar("invalididx");
#endif
}
/*********************************************************************************************\
* Presentation
\*********************************************************************************************/
const char HTTP_MI32[] PROGMEM = "{s}MI ESP32 v0921{m}%u%s / %u{e}";
const char HTTP_MI32_ALIAS[] PROGMEM = "{s}%s Alias {m}%s{e}";
const char HTTP_MI32_MAC[] PROGMEM = "{s}%s %s{m}%s{e}";
const char HTTP_RSSI[] PROGMEM = "{s}%s " D_RSSI "{m}%d dBm{e}";
const char HTTP_BATTERY[] PROGMEM = "{s}%s" " Battery" "{m}%u %%{e}";
const char HTTP_LASTBUTTON[] PROGMEM = "{s}%s Last Button{m}%u {e}";
const char HTTP_EVENTS[] PROGMEM = "{s}%s Events{m}%u {e}";
const char HTTP_NMT[] PROGMEM = "{s}%s No motion{m}> %u seconds{e}";
const char HTTP_MI32_FLORA_DATA[] PROGMEM = "{s}%s" " Fertility" "{m}%u us/cm{e}";
const char HTTP_MI32_HL[] PROGMEM = "{s}<hr>{m}<hr>{e}";
const char HTTP_MI32_LIGHT[] PROGMEM = "{s}%s" " Light" "{m}%d{e}";
const char HTTP_MISCALE_WEIGHT[] PROGMEM = "{s}%s" " Weight" "{m}%*_f %s{e}";
const char HTTP_MISCALE_WEIGHT_REMOVED[] PROGMEM = "{s}%s" " Weight removed" "{m}%s{e}";
const char HTTP_MISCALE_WEIGHT_STABILIZED[] PROGMEM = "{s}%s" " Weight stabilized" "{m}%s{e}";
const char HTTP_MISCALE_IMPEDANCE[] PROGMEM = "{s}%s" " Impedance" "{m}%u{e}";
const char HTTP_MISCALE_IMPEDANCE_STABILIZED[] PROGMEM = "{s}%s" " Impedance stabilized" "{m}%s{e}";
//const char HTTP_NEEDKEY[] PROGMEM = "{s}%s <a target=\"_blank\" href=\""
// "https://atc1441.github.io/TelinkFlasher.html?mac=%s&cb=http%%3A%%2F%%2F%s%%2Fmikey"
// "\">%s</a>{m} {e}";
//const char HTTP_NEEDKEY[] PROGMEM = "{s}%s <a target=\"_blank\" href=\""
// "http://127.0.0.1:8887/keys/TelinkFlasher.html?mac=%s&cb=http%%3A%%2F%%2F%s%%2Fmikey"
// "\">%s</a>{m} {e}";
const char HTTP_NEEDKEY[] PROGMEM = "{s}%s <a target=\"_blank\" href=\""
"https://tasmota.github.io/ble_key_extractor?mac=%s&cb=http%%3A%%2F%%2F%s%%2Fmikey"
"\">%s</a>{m} {e}";
const char HTTP_PAIRING[] PROGMEM = "{s}%s Pair Button Pressed{m} {e}";
const char HTTP_KEY_ERROR[] PROGMEM = "Key error %s";
const char HTTP_MAC_ERROR[] PROGMEM = "MAC error %s";
const char HTTP_KEY_ADDED[] PROGMEM = "Cmnd: MI32Keys %s=%s";
const char HTTP_MI_KEY_STYLE[] PROGMEM = "";
#define D_MI32_KEY "MI32 Set Key"
void HandleMI32Key(){
AddLog(LOG_LEVEL_DEBUG, PSTR("M32: HandleMI32Key hit"));
if (!HttpCheckPriviledgedAccess()) {
AddLog(LOG_LEVEL_DEBUG, PSTR("M32: !HttpCheckPriviledgedAccess()"));
return;
}
WSContentStart_P(PSTR(D_MI32_KEY));
WSContentSendStyle_P(HTTP_MI_KEY_STYLE);
char key[64] = {0};
WebGetArg("key", key, sizeof(key));
if (strlen(key) != 16*2){
WSContentSend_P(HTTP_KEY_ERROR, key);
WSContentStop();
return;
}
char mac[13] = {0};
WebGetArg("mac", mac, sizeof(mac));
if (strlen(mac) != 12){
WSContentSend_P(HTTP_MAC_ERROR, mac);
WSContentStop();
return;
}
WSContentSend_P(HTTP_KEY_ADDED, mac, key);
strncat(key, mac, sizeof(key));
MI32AddKey(key, nullptr);
// WSContentSpaceButton(BUTTON_CONFIGURATION);
WSContentStop();
}
void MI32TimeoutSensors(){
// whatever, this function access all the arrays....
// so block for as long as it takes.
// PROBLEM: when we take this, it hangs the BLE loop.
// BUT, devicePresent uses the
// remove devices for which the adverts have timed out
for (int i = MIBLEsensors.size()-1; i >= 0 ; i--) {
//if (MIBLEsensors[i].MAC[2] || MIBLEsensors[i].MAC[3] || MIBLEsensors[i].MAC[4] || MIBLEsensors[i].MAC[5]){
if (!BLE_ESP32::devicePresent(MIBLEsensors[i].MAC)){
uint8_t *mac = MIBLEsensors[i].MAC;
AddLog(LOG_LEVEL_DEBUG,PSTR("M32: Dev no longer present MAC: %02x%02x%02x%02x%02x%02x"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
TasAutoMutex localmutex(&slotmutex, "Mi32Timeout");
MIBLEsensors.erase(MIBLEsensors.begin() + i);
}
//}
}
}
// this assumes that we're adding to a ResponseTime_P
void MI32GetOneSensorJson(int slot, int hidename){
mi_sensor_t *p;
p = &MIBLEsensors[slot];
// remove hyphen - make it difficult to configure HASS
if (!hidename) {
ResponseAppend_P(PSTR("\"%s%02x%02x%02x\":{"),
kMI32DeviceType[p->type-1],
p->MAC[3], p->MAC[4], p->MAC[5]);
}
const char *alias = BLE_ESP32::getAlias(p->MAC);
if (alias && alias[0]){
ResponseAppend_P(PSTR("\"alias\":\"%s\","),
alias);
}
ResponseAppend_P(PSTR("\"mac\":\"%02x%02x%02x%02x%02x%02x\""),
p->MAC[0], p->MAC[1], p->MAC[2],
p->MAC[3], p->MAC[4], p->MAC[5]);
if((!MI32.mode.triggeredTele && !MI32.option.minimalSummary)||MI32.mode.triggeredTele){
bool tempHumSended = false;
if(p->feature.tempHum){
if(p->eventType.tempHum || !MI32.mode.triggeredTele || MI32.option.allwaysAggregate){
if (!isnan(p->hum) && !isnan(p->temp)
#ifdef USE_HOME_ASSISTANT
||(hass_mode!=-1)
#endif //USE_HOME_ASSISTANT
) {
ResponseAppend_P(PSTR(","));
ResponseAppendTHD(ConvertTempToFahrenheit(p->temp), p->hum); // convert if SO8 on
tempHumSended = true;
}
}
}
if(p->feature.temp && !tempHumSended){
if(p->eventType.temp || !MI32.mode.triggeredTele || MI32.option.allwaysAggregate) {
if (!isnan(p->temp)
#ifdef USE_HOME_ASSISTANT
||(hass_mode!=-1)
#endif //USE_HOME_ASSISTANT
) {
float temp = ConvertTempToFahrenheit(p->temp); // convert if SO8 on
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE "\":%*_f"),
Settings->flag2.temperature_resolution, &temp);
}
}
}
if(p->feature.hum && !tempHumSended){
if(p->eventType.hum || !MI32.mode.triggeredTele || MI32.option.allwaysAggregate) {
if (!isnan(p->hum)
#ifdef USE_HOME_ASSISTANT
||(hass_mode!=-1)
#endif //USE_HOME_ASSISTANT
) {
char hum[FLOATSZ];
dtostrfd(p->hum, Settings->flag2.humidity_resolution, hum);
ResponseAppend_P(PSTR(",\"" D_JSON_HUMIDITY "\":%s"), hum);
}
}
}
if (p->feature.lux){
if(p->eventType.lux || !MI32.mode.triggeredTele || MI32.option.allwaysAggregate){
#ifdef USE_HOME_ASSISTANT
if ((hass_mode != -1) && (p->lux == 0x0ffffff)) {
ResponseAppend_P(PSTR(",\"" D_JSON_ILLUMINANCE "\":null"));
} else
#endif //USE_HOME_ASSISTANT
if ((p->lux != 0x0ffffff)
#ifdef USE_HOME_ASSISTANT
|| (hass_mode != -1)
#endif //USE_HOME_ASSISTANT
) { // this is the error code -> no lux
ResponseAppend_P(PSTR(",\"" D_JSON_ILLUMINANCE "\":%u"), p->lux);
}
}
}
if (p->feature.light){
if(p->eventType.light || !MI32.mode.triggeredTele || MI32.option.allwaysAggregate
#ifdef USE_HOME_ASSISTANT
||(hass_mode==2)
#endif //USE_HOME_ASSISTANT
){
ResponseAppend_P(PSTR(",\"Light\":%d"), p->light);
}
}
if (p->feature.moist){
if(p->eventType.moist || !MI32.mode.triggeredTele || MI32.option.allwaysAggregate){
#ifdef USE_HOME_ASSISTANT
if ((hass_mode != -1) && (p->moisture == 0xff)) {
ResponseAppend_P(PSTR(",\"" D_JSON_MOISTURE "\":null"));
} else
#endif //USE_HOME_ASSISTANT
if ((p->moisture != 0xff)
#ifdef USE_HOME_ASSISTANT
|| (hass_mode != -1)
#endif //USE_HOME_ASSISTANT
) {
ResponseAppend_P(PSTR(",\"" D_JSON_MOISTURE "\":%u"), p->moisture);
}
}
}
if (p->feature.fert){
if(p->eventType.fert || !MI32.mode.triggeredTele || MI32.option.allwaysAggregate){
#ifdef USE_HOME_ASSISTANT
if ((hass_mode != -1) && (p->fertility == 0xffff)) {
ResponseAppend_P(PSTR(",\"Fertility\":null"));
} else
#endif //USE_HOME_ASSISTANT
if ((p->fertility != 0xffff)
#ifdef USE_HOME_ASSISTANT
|| (hass_mode != -1)
#endif //USE_HOME_ASSISTANT
) {
ResponseAppend_P(PSTR(",\"Fertility\":%u"), p->fertility);
}
}
}
if (p->feature.scale){
if(p->eventType.scale || !MI32.mode.triggeredTele || MI32.option.allwaysAggregate
#ifdef USE_HOME_ASSISTANT
||(hass_mode==2)
#endif //USE_HOME_ASSISTANT
){
if (MI32.option.directBridgeMode) {
ResponseAppend_P(PSTR(",\"WeightRemoved\":%u"), p->weight_removed);
ResponseAppend_P(PSTR(",\"WeightStabilized\":%u"), p->weight_stabilized);
}
ResponseAppend_P(PSTR(",\"WeightUnit\":\"%s\""), p->weight_unit);
ResponseAppend_P(PSTR(",\"Weight\":%*_f"),
Settings->flag2.weight_resolution, &p->weight);
if (p->feature.impedance) {
if (MI32.option.directBridgeMode) {
ResponseAppend_P(PSTR(",\"ImpedanceStabilized\":%u"), p->impedance_stabilized);
}
ResponseAppend_P(PSTR(",\"Impedance\":%u"), p->impedance);
}
}
}
if (p->feature.Btn){
if(p->eventType.Btn || !MI32.mode.triggeredTele || MI32.option.allwaysAggregate
#ifdef USE_HOME_ASSISTANT
||(hass_mode==2)
#endif //USE_HOME_ASSISTANT
){
ResponseAppend_P(PSTR(",\"Btn\":%d"),p->Btn);
}
}
if(p->eventType.PairBtn && p->pairing){
ResponseAppend_P(PSTR(",\"Pair\":%u"),p->pairing);
}
} // minimal summary
if (p->feature.PIR){
if(p->eventType.motion || !MI32.mode.triggeredTele){
if(MI32.mode.triggeredTele) ResponseAppend_P(PSTR(",\"PIR\":1")); // only real-time
ResponseAppend_P(PSTR(",\"Events\":%u"),p->events);
}
else if(p->eventType.noMotion && MI32.mode.triggeredTele){
ResponseAppend_P(PSTR(",\"PIR\":0"));
}
}
if (p->type == MI_FLORA && !MI32.mode.triggeredTele) {
if (p->firmware[0] != '\0') { // this is the error code -> no firmware
ResponseAppend_P(PSTR(",\"Firmware\":\"%s\""), p->firmware);
}
}
if (p->feature.NMT || !MI32.mode.triggeredTele){
if(p->eventType.NMT){
ResponseAppend_P(PSTR(",\"NMT\":%u"), p->NMT);
}
}
if (p->feature.bat){
if(p->eventType.bat || !MI32.mode.triggeredTele || MI32.option.allwaysAggregate){
#ifdef USE_HOME_ASSISTANT
if ((hass_mode != -1) && (p->bat == 0x00)) {
ResponseAppend_P(PSTR(",\"Battery\":null"));
} else
#endif //USE_HOME_ASSISTANT
if ((p->bat != 0x00)
#ifdef USE_HOME_ASSISTANT
|| (hass_mode != -1)
#endif //USE_HOME_ASSISTANT
) {
ResponseAppend_P(PSTR(",\"Battery\":%u"), p->bat);
}
}
}
if (MI32.option.showRSSI) ResponseAppend_P(PSTR(",\"RSSI\":%d"), p->RSSI);
if (!hidename) {
ResponseAppend_P(PSTR("}"));
}
p->eventType.raw = 0;
p->shallSendMQTT = 0;
}
///////////////////////////////////////////////
// starts a completely fresh MQTT message.
// sends up to 4 sensors
// triggered by setting MI32.mqttCurrentSlot = 0
void MI32ShowSomeSensors(){
// don't detect half-added ones here
int numsensors = MIBLEsensors.size();
if (MI32.mqttCurrentSlot >= numsensors){
// if we got to the end of the sensors, then don't send more
return;
}
#ifdef USE_HOME_ASSISTANT
bool _noSummarySave = MI32.option.noSummary;
bool _minimalSummarySave = MI32.option.minimalSummary;
if(hass_mode==2){
if(MI32.option.holdBackFirstAutodiscovery){
if(!MI32.mode.firstAutodiscoveryDone){
MI32.mode.firstAutodiscoveryDone = 1;
return;
}
}
MI32.option.noSummary = false;
MI32.option.minimalSummary = false;
}
#endif //USE_HOME_ASSISTANT
ResponseTime_P(PSTR(""));
int cnt = 0;
int maxcnt = 4;
mi_sensor_t *p;
for (; (MI32.mqttCurrentSlot < numsensors) && (cnt < maxcnt); MI32.mqttCurrentSlot++, cnt++) {
ResponseAppend_P(PSTR(","));
p = &MIBLEsensors[MI32.mqttCurrentSlot];
MI32GetOneSensorJson(MI32.mqttCurrentSlot, (maxcnt == 1));
int mlen = ResponseLength();
// if we ran out of room, leave here.
if (ResponseSize() - mlen < 100){
MI32.mqttCurrentSlot++;
break;
}
cnt++;
}
if (ResponseContains_P(PSTR(D_JSON_TEMPERATURE))) {
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE_UNIT "\":\"%c\""), TempUnit());
}
ResponseAppend_P(PSTR("}"));
MqttPublishPrefixTopicRulesProcess_P(TELE, PSTR(D_RSLT_SENSOR), Settings->flag.mqtt_sensor_retain);
//AddLog(LOG_LEVEL_DEBUG,PSTR("M32: %s: show some %d %s"),D_CMND_MI32, MI32.mqttCurrentSlot, ResponseData());
#ifdef USE_HOME_ASSISTANT
if(hass_mode==2){
MI32.option.noSummary = _noSummarySave;
MI32.option.minimalSummary = _minimalSummarySave;
}
#endif //USE_HOME_ASSISTANT
}
///////////////////////////////////////////////
// starts a completely fresh MQTT message.
// sends ONE sensor on a dedicated topic NOT related to this TAS
// triggered by setting MI32.mqttCurrentSingleSlot = 0
void MI32ShowOneMISensor(){
// don't detect half-added ones here
int numsensors = MIBLEsensors.size();
if (MI32.mqttCurrentSingleSlot >= numsensors){
// if we got to the end of the sensors, then don't send more
return;
}
if(
#ifdef USE_HOME_ASSISTANT
Settings->flag.hass_discovery
||
#endif //USE_HOME_ASSISTANT
MI32.option.MQTTType == 1
){
ResponseTime_P(PSTR(","));
MI32GetOneSensorJson(MI32.mqttCurrentSingleSlot, 1);
mi_sensor_t *p;
p = &MIBLEsensors[MI32.mqttCurrentSingleSlot];
if (ResponseContains_P(PSTR(D_JSON_TEMPERATURE))) {
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE_UNIT "\":\"%c\""), TempUnit());
}
ResponseAppend_P(PSTR("}"));
char idstr[32];
const char *alias = BLE_ESP32::getAlias(p->MAC);
const char *id = idstr;
if (alias && *alias){
id = alias;
} else {
sprintf(idstr, PSTR("%s%02x%02x%02x"),
kMI32DeviceType[p->type-1],
p->MAC[3], p->MAC[4], p->MAC[5]);
}
char SensorTopic[TOPSZ];
GetTopic_P(SensorTopic, TELE, (char*)"tasmota_ble", id);
MqttPublish(SensorTopic, Settings->flag.mqtt_sensor_retain);
//AddLog(LOG_LEVEL_DEBUG,PSTR("M32: %s: show some %d %s"),D_CMND_MI32, MI32.mqttCurrentSlot, ResponseData());
}
MI32.mqttCurrentSingleSlot++;
}
///////////////////////////////////////////////
// starts a completely fresh MQTT message.
// sends ONE sensor's worth of HA discovery msg
const char MI_HA_DISCOVERY_TEMPLATE[] PROGMEM =
"{\"availability\":[],\"device\":"
"{\"identifiers\":[\"BLE%s\"],"
"\"name\":\"%s\","
"\"manufacturer\":\"tas\","
"\"model\":\"%s\","
"\"via_device\":\"%s\""
"},"
"%s%s%s"
"\"expire_after\":600,"
"\"json_attr_t\":\"%s\","
"\"name\":\"%s_%s\","
"\"state_topic\":\"%s\","
"\"uniq_id\":\"%s_%s\","
"%s%s%s"
"\"val_tpl\":\"{{ %s%s%s }}\"}";
// careful - a missing comma causes a crash!!!!
// because of the way we loop?
const char *classes[] = {
// 0
"temperature",
"Temperature",
"°C",
// 1
"humidity",
"Humidity",
"%",
// 2
"temperature",
"DewPoint",
"°C",
// 3
"battery",
"Battery",
"%",
// 4
"signal_strength",
"RSSI",
"dB",
// 5
"",//- empty device class
"Btn",
"",
// 6
"", //- empty device class
"Light",
"",
// 7
"", //- empty device class
"Moisture",
"%",
// 8
"", //- empty device class
"Illuminance",
"lx",
// 9
"", //- empty device class
"Fertility",
"µS/cm",
// 10
"", //- empty device class
"Firmware",
"",
// 11
"", //- empty device class
"Weight",
"", // Will be set to p->weight_unit
// 12
"", //- empty device class
"Impedance",
"Ohm",
};
void MI32DiscoveryOneMISensor(){
// don't detect half-added ones here
int numsensors = MIBLEsensors.size();
if (MI32.mqttCurrentSingleSlot >= numsensors){
// if we got to the end of the sensors, then don't send more
return;
}
#ifdef USE_HOME_ASSISTANT
if(Settings->flag.hass_discovery){
mi_sensor_t *p;
p = &MIBLEsensors[MI32.mqttCurrentSingleSlot];
int datacount = (sizeof(classes)/sizeof(*classes))/3;
if (p->nextDiscoveryData >= datacount){
p->nextDiscoveryData = 0;
}
char DiscoveryTopic[80];
const char *host = NetworkHostname();
const char *devtype = kMI32DeviceType[p->type-1];
char idstr[32];
const char *alias = BLE_ESP32::getAlias(p->MAC);
const char *id = idstr;
if (alias && *alias){
id = alias;
} else {
sprintf(idstr, PSTR("%s%02x%02x%02x"),
devtype,
p->MAC[3], p->MAC[4], p->MAC[5]);
}
char SensorTopic[TOPSZ];
GetTopic_P(SensorTopic, TELE, (char*)"tasmota_ble", id);
//int i = p->nextDiscoveryData*3;
for (int i = 0; i < datacount*3; i += 3){
if (!classes[i] || !classes[i+1] || !classes[i+2]){
return;
}
uint8_t isBinary = 0;
ResponseClear();
switch(i/3){
case 0: // temp
if (!p->feature.temp && !p->feature.tempHum){
continue;
}
break;
case 1:// hum
if (!p->feature.hum && !p->feature.tempHum){
continue;
}
break;
case 2: //dew
if (!p->feature.tempHum && !(p->feature.temp && p->feature.hum)){
continue;
}
break;
case 3: //bat
if (!p->feature.bat){
continue;
}
break;
case 4: //rssi - all
break;
case 5: // button
if (!p->feature.Btn){
continue;
}
//isBinary = 2; // invert payload
break;
case 6: // binary light sense
if (!p->feature.light){
continue;
}
//isBinary = 1;
break;
case 7: // moisture
if (!p->feature.moist){
continue;
}
//isBinary = 1;
break;
case 8: // lux
if (!p->feature.lux){
continue;
}
break;
case 9: // fertility
if (!p->feature.fert){
continue;
}
break;
case 10: // firmware
if (!p->feature.fert){ // Flora only
continue;
}
break;
case 11: // weight
if (!p->feature.scale){ // Mi Scale V1 and V2 only
continue;
}
break;
case 12: // impedance
if (!p->feature.impedance){ // Mi Scale V2 only
continue;
}
break;
}
/*
{"availability":[],"device":{"identifiers":["TasmotaBLEa4c1387fc1e1"],"manufacturer":"simon","model":"someBLEsensor","name":"TASBLEa4c1387fc1e1","sw_version":"0.0.0"},"dev_cla":"temperature","json_attr_t":"tele/tasmota_esp32/SENSOR","name":"TASLYWSD037fc1e1Temp","state_topic":"tele/tasmota_esp32/SENSOR","uniq_id":"Tasmotaa4c1387fc1e1temp","unit_of_meas":"°C","val_tpl":"{{ value_json.LYWSD037fc1e1.Temperature }}"}
{"availability":[],"device":{"identifiers":["TasmotaBLEa4c1387fc1e1"],
"name":"TASBLEa4c1387fc1e1"},"dev_cla":"temperature",
"json_attr_t":"tele/tasmota_esp32/SENSOR",
"name":"TASLYWSD037fc1e1Temp","state_topic": "tele/tasmota_esp32/SENSOR",
"uniq_id":"Tasmotaa4c1387fc1e1temp","unit_of_meas":"°C",
"val_tpl":"{{ value_json.LYWSD037fc1e1.Temperature }}"}
*/
ResponseAppend_P(MI_HA_DISCOVERY_TEMPLATE,
//"{\"identifiers\":[\"BLE%s\"],"
id,
//"\"name\":\"%s\"},"
id,
//\"model\":\"%s\",
devtype,
//\"via_device\":\"%s\"
host,
//"\"dev_cla\":\"%s\","
(classes[i][0]?"\"dev_cla\":\"":""),
classes[i],
(classes[i][0]?"\",":""),
//"\"json_attr_t\":\"%s\"," - the topic the sensor publishes on
SensorTopic,
//"\"name\":\"%s_%s\"," - the name of this DATA
id, classes[i+1],
//"\"state_topic\":\"%s\"," - the topic the sensor publishes on?
SensorTopic,
//"\"uniq_id\":\"%s_%s\"," - unique for this data,
id, classes[i+1],
//"\"unit_of_meas\":\"%s\"," - the measure of this type of data
((i/3==11)||classes[i+2][0]?"\"unit_of_meas\":\"":""),
(i/3==11)?p->weight_unit:classes[i+2],
((i/3==11)||classes[i+2][0]?"\",":""),
//"\"val_tpl\":\"{{ %s%s }}") // e.g. Temperature
// inverted binary - {{ 'off' if value_json.posn else 'on' }}
// binary - {{ 'on' if value_json.posn else 'off' }}
((isBinary < 1)?"value_json.":
((isBinary < 2)?"value_json.":"'off' if value_json.")
),
classes[i+1],
((isBinary < 1)?"":
((isBinary < 2)?"":" else 'on'")
)
//
);
sprintf(DiscoveryTopic, "homeassistant/%ssensor/%s/%s/config",
(isBinary? "binary_":""), id, classes[i+1]);
MqttPublish(DiscoveryTopic);
p->nextDiscoveryData++;
//vTaskDelay(100/ portTICK_PERIOD_MS);
}
} // end if hass discovery
//AddLog(LOG_LEVEL_DEBUG,PSTR("M32: %s: show some %d %s"),D_CMND_MI32, MI32.mqttCurrentSlot, ResponseData());
#endif //USE_HOME_ASSISTANT
}
///////////////////////////////////////////////
// starts a completely fresh MQTT message.
// sends up to 4 sensors pe5r msg
// sends only those which are raw and triggered.
// triggered by setting MI32.mode.triggeredTele = 1
void MI32ShowTriggeredSensors(){
if (!MI32.mode.triggeredTele) return; // none to show
MI32.mode.triggeredTele = 0;
// don't detect half-added ones here
int numsensors = MIBLEsensors.size();
int sensor = 0;
int maxcnt = 4;
if(
#ifdef USE_HOME_ASSISTANT
Settings->flag.hass_discovery
||
#endif //USE_HOME_ASSISTANT
MI32.option.MQTTType == 1
){
maxcnt = 1;
}
do {
ResponseTime_P(PSTR(""));
int cnt = 0;
mi_sensor_t *p;
for (; (sensor < numsensors) && (cnt < maxcnt); sensor++) {
p = &MIBLEsensors[sensor];
if(p->eventType.raw == 0) continue;
if(p->shallSendMQTT==0) continue;
cnt++;
ResponseAppend_P(PSTR(","));
// hide sensor name if HASS or option6
MI32GetOneSensorJson(sensor, (maxcnt == 1));
int mlen = ResponseLength();
// if we ran out of room, leave here.
if (ResponseSize() - mlen < 100){
sensor++;
break;
}
}
if (cnt){ // if we got one, then publish
if (ResponseContains_P(PSTR(D_JSON_TEMPERATURE))) {
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE_UNIT "\":\"%c\""), TempUnit());
}
ResponseAppend_P(PSTR("}"));
if(
#ifdef USE_HOME_ASSISTANT
Settings->flag.hass_discovery
||
#endif //USE_HOME_ASSISTANT
MI32.option.MQTTType == 1
){
char SensorTopic[TOPSZ];
char idstr[32];
const char *alias = BLE_ESP32::getAlias(p->MAC);
const char *id = idstr;
if (alias && *alias){
id = alias;
} else {
snprintf_P(idstr, sizeof(idstr), PSTR("%s%02x%02x%02x"),
kMI32DeviceType[p->type-1],
p->MAC[3], p->MAC[4], p->MAC[5]);
}
GetTopic_P(SensorTopic, TELE, (char*)"tasmota_ble", id);
MqttPublish(SensorTopic, Settings->flag.mqtt_sensor_retain);
AddLog(LOG_LEVEL_DEBUG, PSTR("M32: triggered %d %s"), sensor, ResponseData());
XdrvRulesProcess(0);
} else {
MqttPublishPrefixTopicRulesProcess_P(STAT, PSTR(D_RSLT_SENSOR), Settings->flag.mqtt_sensor_retain);
}
} else { // else don't and clear
ResponseClear();
}
} while (sensor < numsensors);
}
void MI32Show(bool json)
{
// don't detect half-added ones here
int numsensors = MIBLEsensors.size();
if (json) {
// TELE JSON messages now do nothing here, apart from set MI32.mqttCurrentSlot
// which will trigger send next second of up to 4 sensors, then the next four in the next second, etc.
//MI32.mqttCurrentSlot = 0;
#ifdef USE_WEBSERVER
} else {
static uint16_t _page = 0;
static uint16_t _counter = 0;
int32_t i = _page * MI32.perPage;
uint32_t j = i + MI32.perPage;
if (j+1 > numsensors){
j = numsensors;
}
char stemp[5] ={0};
if (numsensors-(_page*MI32.perPage)>1 && MI32.perPage!=1) {
sprintf_P(stemp,"-%u",j);
}
if (numsensors==0) i=-1; // only for the GUI
WSContentSend_PD(HTTP_MI32, i+1,stemp,numsensors);
for (i; i<j; i++) {
WSContentSend_PD(HTTP_MI32_HL);
mi_sensor_t *p;
p = &MIBLEsensors[i];
const char *typeName = kMI32DeviceType[p->type-1];
const char *alias = BLE_ESP32::getAlias(p->MAC);
if (alias && *alias){
WSContentSend_PD(HTTP_MI32_ALIAS, typeName, alias);
}
char _MAC[18];
ToHex_P(p->MAC,6,_MAC,18);//,':');
WSContentSend_PD(HTTP_MI32_MAC, typeName, D_MAC_ADDRESS, _MAC);
WSContentSend_PD(HTTP_RSSI, typeName, p->RSSI);
// for some reason, display flora differently
switch(p->type){
case MI_FLORA:{
if (!isnan(p->temp)) {
WSContentSend_Temp(typeName, ConvertTempToFahrenheit(p->temp)); // convert if SO8 on
}
if (p->moisture!=0xff) {
WSContentSend_PD(HTTP_SNS_MOISTURE, typeName, p->moisture);
}
if (p->fertility!=0xffff) {
WSContentSend_PD(HTTP_MI32_FLORA_DATA, typeName, p->fertility);
}
} break;
default:{
if (!isnan(p->hum) && !isnan(p->temp)) {
WSContentSend_THD(typeName, ConvertTempToFahrenheit(p->temp), p->hum); // convert if SO8 on
}
}
}
#ifdef USE_MI_DECRYPTION
bool showkey = false;
char tmp[40];
strcpy(tmp, PSTR("KeyRqd"));
switch(p->needkey) {
default:{
snprintf(tmp, 39, PSTR("?%d?"), p->needkey );
showkey = true;
} break;
case KEY_REQUIREMENT_UNKNOWN: {
strcpy(tmp, PSTR("WAIT"));
showkey = true;
} break;
case KEY_NOT_REQUIRED: {
strcpy(tmp, PSTR("NOTKEY"));
//showkey = true;
} break;
case KEY_REQUIRED_BUT_NOT_FOUND: {
strcpy(tmp, PSTR("NoKey"));
showkey = true;
} break;
case KEY_REQUIRED_AND_FOUND: {
strcpy(tmp, PSTR("KeyOk"));
showkey = true;
} break;
case KEY_REQUIRED_AND_INVALID: {
strcpy(tmp, PSTR("KeyInv"));
showkey = true;
} break;
}
// adds the link to get the key.
// provides mac and callback address to receive the key, if we had a website which did this
// (future work)
if (showkey){
BLE_ESP32::dump(_MAC, 13, p->MAC,6);
WSContentSend_PD(HTTP_NEEDKEY, typeName, _MAC, Webserver->client().localIP().toString().c_str(), tmp );
}
#endif //USE_MI_DECRYPTION
if (p->feature.events){
WSContentSend_PD(HTTP_EVENTS, typeName, p->events);
}
if (p->feature.NMT){
// no motion time
if(p->NMT>0) WSContentSend_PD(HTTP_NMT, typeName, p->NMT);
}
if (p->feature.lux){
if (p->lux!=0x00ffffff) { // this is the error code -> no valid value
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, typeName, p->lux);
}
}
if (p->feature.light){
WSContentSend_PD(HTTP_MI32_LIGHT, typeName, p->light);
}
if (p->feature.scale){
WSContentSend_PD(HTTP_MISCALE_WEIGHT, typeName, Settings->flag2.weight_resolution, &p->weight, p->weight_unit);
if (MI32.option.directBridgeMode) {
WSContentSend_PD(HTTP_MISCALE_WEIGHT_REMOVED, typeName, p->weight_removed? PSTR("yes") : PSTR("no"));
WSContentSend_PD(HTTP_MISCALE_WEIGHT_STABILIZED, typeName, p->weight_stabilized ? PSTR("yes") : PSTR("no"));
}
if (p->feature.impedance) {
WSContentSend_PD(HTTP_MISCALE_IMPEDANCE, typeName, p->impedance);
if (MI32.option.directBridgeMode) {
WSContentSend_PD(HTTP_MISCALE_IMPEDANCE_STABILIZED, typeName, p->impedance_stabilized? PSTR("yes") : PSTR("no"));
}
}
}
if(p->bat!=0x00){
WSContentSend_PD(HTTP_BATTERY, typeName, p->bat);
}
if (p->feature.Btn){
WSContentSend_PD(HTTP_LASTBUTTON, typeName, p->Btn);
}
if (p->pairing){
WSContentSend_PD(HTTP_PAIRING, typeName);
}
}
_counter++;
if(_counter>3) {
_page++;
_counter=0;
}
if (MIBLEsensors.size()%MI32.perPage==0 && _page==MIBLEsensors.size()/MI32.perPage) { _page = 0; }
if (_page>MIBLEsensors.size()/MI32.perPage) { _page = 0; }
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define WEB_HANDLE_MI32 "mikey"
bool Xsns62(uint8_t function)
{
// if (!Settings->flag5.mi32_enable) { return false; } // SetOption115 - Enable ESP32 MI32 BLE
// return false;
bool result = false;
switch (function) {
case FUNC_INIT:
MI32Init();
break;
case FUNC_EVERY_50_MSECOND:
MI32Every50mSecond();
break;
case FUNC_EVERY_SECOND:
MI32EverySecond(false);
break;
case FUNC_COMMAND:
result = DecodeCommand(kMI32_Commands, MI32_Commands);
break;
case FUNC_JSON_APPEND:
// we are not in control of when this is called...
//MI32Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_ADD_HANDLER:
WebServer_on(PSTR("/" WEB_HANDLE_MI32), HandleMI32Key);
break;
case FUNC_WEB_SENSOR:
MI32Show(0);
break;
#endif // USE_WEBSERVER
}
return result;
}
#endif // USE_MI_ESP32
#endif // CONFIG_IDF_TARGET_ESP32 or CONFIG_IDF_TARGET_ESP32C3
#endif // ESP32
#endif