Tasmota/tasmota/xdrv_23_zigbee_8_parsers.ino

897 lines
34 KiB
C++

/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
/*********************************************************************************************\
* Parsers for incoming ZNP messages
\*********************************************************************************************/
//
// Handle a "Receive Device Info" incoming message
//
int32_t Z_ReceiveDeviceInfo(int32_t res, class SBuffer &buf) {
// Ex= 6700.00.6263151D004B1200.0000.07.09.02.83869991
// IEEE Adr (8 bytes) = 0x00124B001D156362
// Short Addr (2 bytes) = 0x0000
// Device Type (1 byte) = 0x07 (coord?)
// Device State (1 byte) = 0x09 (coordinator started)
// NumAssocDevices (1 byte) = 0x02
// List of devices: 0x8683, 0x9199
Z_IEEEAddress long_adr = buf.get64(3);
Z_ShortAddress short_adr = buf.get16(11);
uint8_t device_type = buf.get8(13);
uint8_t device_state = buf.get8(14);
uint8_t device_associated = buf.get8(15);
// keep track of the local IEEE address
localIEEEAddr = long_adr;
char hex[20];
Uint64toHex(long_adr, hex, 64);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"IEEEAddr\":\"0x%s\",\"ShortAddr\":\"0x%04X\""
",\"DeviceType\":%d,\"DeviceState\":%d"
",\"NumAssocDevices\":%d"),
ZIGBEE_STATUS_CC_INFO, hex, short_adr, device_type, device_state,
device_associated);
if (device_associated > 0) { // If there are devices registered in CC2530, print the list
uint idx = 16;
ResponseAppend_P(PSTR(",\"AssocDevicesList\":["));
for (uint32_t i = 0; i < device_associated; i++) {
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(idx));
idx += 2;
}
ResponseAppend_P(PSTR("]"));
}
ResponseJsonEnd(); // append '}'
ResponseJsonEnd(); // append '}'
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
XdrvRulesProcess();
return res;
}
int32_t Z_CheckNVWrite(int32_t res, class SBuffer &buf) {
// Check the status after NV Init "ZNP Has Configured"
// Good response should be 610700 or 610709 (Success or Created)
// We only filter the response on 6107 and check the code in this function
uint8_t status = buf.get8(2);
if ((0x00 == status) || (0x09 == status)) {
return 0; // Ok, continue
} else {
return -2; // Error
}
}
int32_t Z_Reboot(int32_t res, class SBuffer &buf) {
// print information about the reboot of device
// 4180.02.02.00.02.06.03
//
uint8_t reason = buf.get8(2);
uint8_t transport_rev = buf.get8(3);
uint8_t product_id = buf.get8(4);
uint8_t major_rel = buf.get8(5);
uint8_t minor_rel = buf.get8(6);
uint8_t hw_rev = buf.get8(7);
const char *reason_str;
switch (reason) {
case 0: reason_str = PSTR("Power-up"); break;
case 1: reason_str = PSTR("External"); break;
case 2: reason_str = PSTR("Watchdog"); break;
default: reason_str = PSTR("Unknown"); break;
}
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"Message\":\"CC2530 booted\",\"RestartReason\":\"%s\""
",\"MajorRel\":%d,\"MinorRel\":%d}}"),
ZIGBEE_STATUS_BOOT, reason_str,
major_rel, minor_rel);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
XdrvRulesProcess();
if ((0x02 == major_rel) && (0x06 == minor_rel)) {
return 0; // version 2.6.x is ok
} else {
return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort
}
}
int32_t Z_ReceiveCheckVersion(int32_t res, class SBuffer &buf) {
// check that the version is supported
// typical version for ZNP 1.2
// 61020200-02.06.03.D9143401.0200000000
// TranportRev = 02
// Product = 00
// MajorRel = 2
// MinorRel = 6
// MaintRel = 3
// Revision = 20190425 d (0x013414D9)
uint8_t major_rel = buf.get8(4);
uint8_t minor_rel = buf.get8(5);
uint8_t maint_rel = buf.get8(6);
uint32_t revision = buf.get32(7);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"MajorRel\":%d,\"MinorRel\":%d"
",\"MaintRel\":%d,\"Revision\":%d}}"),
ZIGBEE_STATUS_CC_VERSION, major_rel, minor_rel,
maint_rel, revision);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
XdrvRulesProcess();
if ((0x02 == major_rel) && (0x06 == minor_rel)) {
return 0; // version 2.6.x is ok
} else {
return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort
}
}
// checks the device type (coordinator, router, end-device)
// If coordinator continue
// If router goto ZIGBEE_LABEL_START_ROUTER
// If device goto ZIGBEE_LABEL_START_DEVICE
int32_t Z_SwitchDeviceType(int32_t res, class SBuffer &buf) {
switch (Settings.zb_pan_id) {
case 0xFFFF: return ZIGBEE_LABEL_INIT_ROUTER;
case 0xFFFE: return ZIGBEE_LABEL_INIT_DEVICE;
default: return 0; // continue
}
}
//
// Helper function, checks if the incoming buffer matches the 2-bytes prefix, i.e. message type in PMEM
//
bool Z_ReceiveMatchPrefix(const class SBuffer &buf, const uint8_t *match) {
if ( (pgm_read_byte(&match[0]) == buf.get8(0)) &&
(pgm_read_byte(&match[1]) == buf.get8(1)) ) {
return true;
} else {
return false;
}
}
//
// Handle Permit Join response
//
int32_t Z_ReceivePermitJoinStatus(int32_t res, const class SBuffer &buf) {
// we received a PermitJoin status change
uint8_t duration = buf.get8(2);
uint8_t status_code;
const char* message;
if (0xFF == duration) {
status_code = ZIGBEE_STATUS_PERMITJOIN_OPEN_XX;
message = PSTR("Enable Pairing mode until next boot");
} else if (duration > 0) {
status_code = ZIGBEE_STATUS_PERMITJOIN_OPEN_60;
message = PSTR("Enable Pairing mode for %d seconds");
} else {
status_code = ZIGBEE_STATUS_PERMITJOIN_CLOSE;
message = PSTR("Disable Pairing mode");
}
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"Message\":\""),
status_code);
ResponseAppend_P(message, duration);
ResponseAppend_P(PSTR("\"}}"));
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
XdrvRulesProcess();
return -1;
}
int32_t Z_ReceiveNodeDesc(int32_t res, const class SBuffer &buf) {
// Received ZDO_NODE_DESC_RSP
Z_ShortAddress srcAddr = buf.get16(2);
uint8_t status = buf.get8(4);
Z_ShortAddress nwkAddr = buf.get16(5);
uint8_t logicalType = buf.get8(7);
uint8_t apsFlags = buf.get8(8);
uint8_t MACCapabilityFlags = buf.get8(9);
uint16_t manufacturerCapabilities = buf.get16(10);
uint8_t maxBufferSize = buf.get8(12);
uint16_t maxInTransferSize = buf.get16(13);
uint16_t serverMask = buf.get16(15);
uint16_t maxOutTransferSize = buf.get16(17);
uint8_t descriptorCapabilities = buf.get8(19);
if (0 == status) {
uint8_t deviceType = logicalType & 0x7; // 0=coordinator, 1=router, 2=end device
const char * deviceTypeStr;
switch (deviceType) {
case 0: deviceTypeStr = PSTR("Coordinator"); break;
case 1: deviceTypeStr = PSTR("Router"); break;
case 2: deviceTypeStr = PSTR("Device"); break;
default: deviceTypeStr = PSTR("Unknown"); break;
}
bool complexDescriptorAvailable = (logicalType & 0x08) ? 1 : 0;
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"NodeType\":\"%s\",\"ComplexDesc\":%s}}"),
ZIGBEE_STATUS_NODE_DESC, deviceTypeStr,
complexDescriptorAvailable ? PSTR("true") : PSTR("false")
);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
}
return -1;
}
//
// Porcess Receive Active Endpoint
//
int32_t Z_ReceiveActiveEp(int32_t res, const class SBuffer &buf) {
// Received ZDO_ACTIVE_EP_RSP
Z_ShortAddress srcAddr = buf.get16(2);
uint8_t status = buf.get8(4);
Z_ShortAddress nwkAddr = buf.get16(5);
uint8_t activeEpCount = buf.get8(7);
uint8_t* activeEpList = (uint8_t*) buf.charptr(8);
for (uint32_t i = 0; i < activeEpCount; i++) {
zigbee_devices.addEndpoint(nwkAddr, activeEpList[i]);
}
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"ActiveEndpoints\":["),
ZIGBEE_STATUS_ACTIVE_EP);
for (uint32_t i = 0; i < activeEpCount; i++) {
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"0x%02X\""), activeEpList[i]);
}
ResponseAppend_P(PSTR("]}}"));
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
Z_SendAFInfoRequest(nwkAddr); // probe for ModelId and ManufId
return -1;
}
//
// Handle IEEEAddr incoming message
//
int32_t Z_ReceiveIEEEAddr(int32_t res, const class SBuffer &buf) {
uint8_t status = buf.get8(2);
Z_IEEEAddress ieeeAddr = buf.get64(3);
Z_ShortAddress nwkAddr = buf.get16(11);
// uint8_t startIndex = buf.get8(13); // not used
// uint8_t numAssocDev = buf.get8(14);
if (0 == status) { // SUCCESS
zigbee_devices.updateDevice(nwkAddr, ieeeAddr);
char hex[20];
Uint64toHex(ieeeAddr, hex, 64);
// Ping response
const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_PING "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""
",\"" D_JSON_ZIGBEE_IEEE "\":\"0x%s\""), nwkAddr, hex);
if (friendlyName) {
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName);
}
ResponseAppend_P(PSTR("\"}}"));
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
}
return -1;
}
//
// Report any AF_DATA_CONFIRM message
// Ex: {"ZbConfirm":{"Endpoint":1,"Status":0,"StatusMessage":"SUCCESS"}}
//
int32_t Z_DataConfirm(int32_t res, const class SBuffer &buf) {
uint8_t status = buf.get8(2);
uint8_t endpoint = buf.get8(3);
//uint8_t transId = buf.get8(4); // unused
if (status) { // only report errors
Response_P(PSTR("{\"" D_JSON_ZIGBEE_CONFIRM "\":{\"" D_CMND_ZIGBEE_ENDPOINT "\":%d"
",\"" D_JSON_ZIGBEE_STATUS "\":%d"
",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\""
"}}"), endpoint, status, getZigbeeStatusMessage(status).c_str());
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
}
return -1;
}
//
// Handle State Change Indication incoming message
//
// Reference:
// 0x00: Initialized - not started automatically
// 0x01: Initialized - not connected to anything
// 0x02: Discovering PAN's to join
// 0x03: Joining a PAN
// 0x04: Rejoining a PAN, only for end devices
// 0x05: Joined but not yet authenticated by trust center
// 0x06: Started as device after authentication
// 0x07: Device joined, authenticated and is a router
// 0x08: Starting as ZigBee Coordinator
// 0x09: Started as ZigBee Coordinator
// 0x0A: Device has lost information about its parent
int32_t Z_ReceiveStateChange(int32_t res, const class SBuffer &buf) {
uint8_t state = buf.get8(2);
const char * msg = nullptr;
switch (state) {
case ZDO_DEV_NWK_DISC: // 0x02
msg = PSTR("Scanning Zigbee network");
break;
case ZDO_DEV_NWK_JOINING: // 0x03
case ZDO_DEV_NWK_REJOIN: // 0x04
msg = PSTR("Joining a PAN");
break;
case ZDO_DEV_END_DEVICE_UNAUTH: // 0x05
msg = PSTR("Joined, not yet authenticated");
break;
case ZDO_DEV_END_DEVICE: // 0x06
msg = PSTR("Started as device");
break;
case ZDO_DEV_ROUTER: // 0x07
msg = PSTR("Started as router");
break;
case ZDO_DEV_ZB_COORD: // 0x09
msg = PSTR("Started as coordinator");
break;
case ZDO_DEV_NWK_ORPHAN: // 0x0A
msg = PSTR("Device has lost its parent");
break;
};
if (msg) {
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"NewState\":%d,\"Message\":\"%s\"}}"),
ZIGBEE_STATUS_SCANNING, state, msg
);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
}
if ((ZDO_DEV_END_DEVICE == state) || (ZDO_DEV_ROUTER == state) || (ZDO_DEV_ZB_COORD == state)) {
return 0; // device sucessfully started
} else {
return -1; // ignore
}
}
//
// Handle Receive End Device Announce incoming message
// This message is also received when a previously paired device is powered up
// Send back Active Ep Req message
//
int32_t Z_ReceiveEndDeviceAnnonce(int32_t res, const class SBuffer &buf) {
Z_ShortAddress srcAddr = buf.get16(2);
Z_ShortAddress nwkAddr = buf.get16(4);
Z_IEEEAddress ieeeAddr = buf.get64(6);
uint8_t capabilities = buf.get8(14);
zigbee_devices.updateDevice(nwkAddr, ieeeAddr);
char hex[20];
Uint64toHex(ieeeAddr, hex, 64);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"IEEEAddr\":\"0x%s\",\"ShortAddr\":\"0x%04X\""
",\"PowerSource\":%s,\"ReceiveWhenIdle\":%s,\"Security\":%s}}"),
ZIGBEE_STATUS_DEVICE_ANNOUNCE, hex, nwkAddr,
(capabilities & 0x04) ? PSTR("true") : PSTR("false"),
(capabilities & 0x08) ? PSTR("true") : PSTR("false"),
(capabilities & 0x40) ? PSTR("true") : PSTR("false")
);
// query the state of the bulb (for Alexa)
uint32_t wait_ms = 2000; // wait for 2s
Z_Query_Bulb(nwkAddr, wait_ms);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
Z_SendActiveEpReq(nwkAddr);
return -1;
}
//
// Handle Receive TC Dev Ind incoming message
// 45CA
//
int32_t Z_ReceiveTCDevInd(int32_t res, const class SBuffer &buf) {
Z_ShortAddress srcAddr = buf.get16(2);
Z_IEEEAddress ieeeAddr = buf.get64(4);
Z_ShortAddress parentNw = buf.get16(12);
zigbee_devices.updateDevice(srcAddr, ieeeAddr);
char hex[20];
Uint64toHex(ieeeAddr, hex, 64);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"IEEEAddr\":\"0x%s\",\"ShortAddr\":\"0x%04X\""
",\"ParentNetwork\":\"0x%04X\"}}"),
ZIGBEE_STATUS_DEVICE_INDICATION, hex, srcAddr, parentNw
);
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
return -1;
}
//
// Handle Bind Rsp incoming message
//
int32_t Z_BindRsp(int32_t res, const class SBuffer &buf) {
Z_ShortAddress nwkAddr = buf.get16(2);
uint8_t status = buf.get8(4);
const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_BIND "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""), nwkAddr);
if (friendlyName) {
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName);
}
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS "\":%d"
",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\""
"}}"), status, getZigbeeStatusMessage(status).c_str());
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
return -1;
}
//
// Handle Unbind Rsp incoming message
//
int32_t Z_UnbindRsp(int32_t res, const class SBuffer &buf) {
Z_ShortAddress nwkAddr = buf.get16(2);
uint8_t status = buf.get8(4);
const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_UNBIND "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""), nwkAddr);
if (friendlyName) {
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName);
}
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\""
"}}"), status, getZigbeeStatusMessage(status).c_str());
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
return -1;
}
//
// Handle MgMt Bind Rsp incoming message
//
int32_t Z_MgmtBindRsp(int32_t res, const class SBuffer &buf) {
uint16_t shortaddr = buf.get16(2);
uint8_t status = buf.get8(4);
uint8_t bind_total = buf.get8(5);
uint8_t bind_start = buf.get8(6);
uint8_t bind_len = buf.get8(7);
const char * friendlyName = zigbee_devices.getFriendlyName(shortaddr);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_BIND_STATE "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""), shortaddr);
if (friendlyName) {
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName);
}
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS "\":%d"
",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\""
",\"BindingsTotal\":%d"
",\"Bindings\":["
), status, getZigbeeStatusMessage(status).c_str(), bind_total);
uint32_t idx = 8;
for (uint32_t i = 0; i < bind_len; i++) {
if (idx + 14 > buf.len()) { break; } // overflow, frame size is between 14 and 21
//uint64_t srcaddr = buf.get16(idx); // unused
uint8_t srcep = buf.get8(idx + 8);
uint8_t cluster = buf.get16(idx + 9);
uint8_t addrmode = buf.get8(idx + 11);
uint16_t group = 0x0000;
uint64_t dstaddr = 0;
uint8_t dstep = 0x00;
if (Z_Addr_Group == addrmode) { // Group address mode
group = buf.get16(idx + 12);
idx += 14;
} else if (Z_Addr_IEEEAddress == addrmode) { // IEEE address mode
dstaddr = buf.get64(idx + 12);
dstep = buf.get8(idx + 20);
idx += 21;
} else {
//AddLog_P2(LOG_LEVEL_INFO, PSTR("Z_MgmtBindRsp unknwon address mode %d"), addrmode);
break; // abort for any other value since we don't know the length of the field
}
if (i > 0) {
ResponseAppend_P(PSTR(","));
}
ResponseAppend_P(PSTR("{\"Cluster\":\"0x%04X\",\"Endpoint\":%d,"), cluster, srcep);
if (Z_Addr_Group == addrmode) { // Group address mode
ResponseAppend_P(PSTR("\"ToGroup\":%d}"), group);
} else if (Z_Addr_IEEEAddress == addrmode) { // IEEE address mode
char hex[20];
Uint64toHex(dstaddr, hex, 64);
ResponseAppend_P(PSTR("\"ToDevice\":\"0x%s\",\"ToEndpoint\":%d}"), hex, dstep);
}
}
ResponseAppend_P(PSTR("]}}"));
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_BIND_STATE));
XdrvRulesProcess();
return -1;
}
/*********************************************************************************************\
* Send specific ZNP messages
\*********************************************************************************************/
//
// Send ZDO_IEEE_ADDR_REQ request to get IEEE long address
//
void Z_SendIEEEAddrReq(uint16_t shortaddr) {
uint8_t IEEEAddrReq[] = { Z_SREQ | Z_ZDO, ZDO_IEEE_ADDR_REQ, Z_B0(shortaddr), Z_B1(shortaddr), 0x00, 0x00 };
ZigbeeZNPSend(IEEEAddrReq, sizeof(IEEEAddrReq));
}
//
// Send ACTIVE_EP_REQ to collect active endpoints for this address
//
void Z_SendActiveEpReq(uint16_t shortaddr) {
uint8_t ActiveEpReq[] = { Z_SREQ | Z_ZDO, ZDO_ACTIVE_EP_REQ, Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr) };
ZigbeeZNPSend(ActiveEpReq, sizeof(ActiveEpReq));
}
//
// Send AF Info Request
//
void Z_SendAFInfoRequest(uint16_t shortaddr) {
uint8_t endpoint = zigbee_devices.findFirstEndpoint(shortaddr);
if (0x00 == endpoint) { endpoint = 0x01; } // if we don't know the endpoint, try 0x01
uint8_t transacid = zigbee_devices.getNextSeqNumber(shortaddr);
uint8_t AFInfoReq[] = { Z_SREQ | Z_AF, AF_DATA_REQUEST, Z_B0(shortaddr), Z_B1(shortaddr), endpoint,
0x01, 0x00, 0x00, transacid, 0x30, 0x1E, 3 + 2*sizeof(uint16_t),
0x00, transacid, ZCL_READ_ATTRIBUTES, 0x04, 0x00, 0x05, 0x00
};
ZigbeeZNPSend(AFInfoReq, sizeof(AFInfoReq));
}
/*********************************************************************************************\
* Callbacks
\*********************************************************************************************/
// Aqara Occupancy behavior: the Aqara device only sends Occupancy: true events every 60 seconds.
// Here we add a timer so if we don't receive a Occupancy event for 90 seconds, we send Occupancy:false
void Z_AqaraOccupancy(uint16_t shortaddr, uint16_t cluster, uint8_t endpoint, const JsonObject &json) {
static const uint32_t OCCUPANCY_TIMEOUT = 90 * 1000; // 90 s
// Read OCCUPANCY value if any
const JsonVariant &val_endpoint = GetCaseInsensitive(json, PSTR(OCCUPANCY));
if (nullptr != &val_endpoint) {
uint32_t occupancy = strToUInt(val_endpoint);
if (occupancy) {
zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, OCCUPANCY_TIMEOUT, cluster, endpoint, Z_CAT_VIRTUAL_OCCUPANCY, 0, &Z_OccupancyCallback);
} else {
zigbee_devices.resetTimersForDevice(shortaddr, 0 /* groupaddr */, Z_CAT_VIRTUAL_OCCUPANCY);
}
}
}
// Publish the received values once they have been coalesced
int32_t Z_PublishAttributes(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
const JsonObject *json = zigbee_devices.jsonGet(shortaddr);
if (json == nullptr) { return 0; } // don't crash if not found
zigbee_devices.jsonPublishFlush(shortaddr);
return 1;
}
/*********************************************************************************************\
* Global dispatcher for incoming messages
\*********************************************************************************************/
int32_t Z_ReceiveAfIncomingMessage(int32_t res, const class SBuffer &buf) {
uint16_t groupid = buf.get16(2);
uint16_t clusterid = buf.get16(4);
uint16_t srcaddr = buf.get16(6);
uint8_t srcendpoint = buf.get8(8);
uint8_t dstendpoint = buf.get8(9);
uint8_t wasbroadcast = buf.get8(10);
uint8_t linkquality = buf.get8(11);
uint8_t securityuse = buf.get8(12);
uint32_t timestamp = buf.get32(13);
uint8_t seqnumber = buf.get8(17);
bool defer_attributes = false; // do we defer attributes reporting to coalesce
ZCLFrame zcl_received = ZCLFrame::parseRawFrame(buf, 19, buf.get8(18), clusterid, groupid,
srcaddr,
srcendpoint, dstendpoint, wasbroadcast,
linkquality, securityuse, seqnumber,
timestamp);
zcl_received.log();
char shortaddr[8];
snprintf_P(shortaddr, sizeof(shortaddr), PSTR("0x%04X"), srcaddr);
DynamicJsonBuffer jsonBuffer;
JsonObject& json = jsonBuffer.createObject();
if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_DEFAULT_RESPONSE == zcl_received.getCmdId())) {
zcl_received.parseResponse(); // Zigbee general "Degault Response", publish ZbResponse message
} else {
// Build the ZbReceive json
if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_REPORT_ATTRIBUTES == zcl_received.getCmdId())) {
zcl_received.parseReportAttributes(json); // Zigbee report attributes from sensors
if (clusterid) { defer_attributes = true; } // don't defer system Cluster=0 messages
} else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_READ_ATTRIBUTES_RESPONSE == zcl_received.getCmdId())) {
zcl_received.parseReadAttributesResponse(json);
if (clusterid) { defer_attributes = true; } // don't defer system Cluster=0 messages
} else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_READ_ATTRIBUTES == zcl_received.getCmdId())) {
zcl_received.parseReadAttributes(json);
// never defer read_attributes, so the auto-responder can send response back on a per cluster basis
} else if (zcl_received.isClusterSpecificCommand()) {
zcl_received.parseClusterSpecificCommand(json);
}
{ // fence to force early de-allocation of msg
String msg("");
msg.reserve(100);
json.printTo(msg);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE D_JSON_ZIGBEEZCL_RAW_RECEIVED ": {\"0x%04X\":%s}"), srcaddr, msg.c_str());
}
zcl_received.postProcessAttributes(srcaddr, json);
// Add Endpoint
json[F(D_CMND_ZIGBEE_ENDPOINT)] = srcendpoint;
// Add Group if non-zero
if (groupid) {
json[F(D_CMND_ZIGBEE_GROUP)] = groupid;
}
// Add linkquality
json[F(D_CMND_ZIGBEE_LINKQUALITY)] = linkquality;
// since we just receveived data from the device, it is reachable
zigbee_devices.resetTimersForDevice(srcaddr, 0 /* groupaddr */, Z_CAT_REACHABILITY); // remove any reachability timer already there
zigbee_devices.setReachable(srcaddr, true); // mark device as reachable
// Post-provess for Aqara Presence Senson
Z_AqaraOccupancy(srcaddr, clusterid, srcendpoint, json);
if (defer_attributes) {
// Prepare for publish
if (zigbee_devices.jsonIsConflict(srcaddr, json)) {
// there is conflicting values, force a publish of the previous message now and don't coalesce
zigbee_devices.jsonPublishFlush(srcaddr);
}
zigbee_devices.jsonAppend(srcaddr, json);
zigbee_devices.setTimer(srcaddr, 0 /* groupaddr */, USE_ZIGBEE_COALESCE_ATTR_TIMER, clusterid, srcendpoint, Z_CAT_READ_ATTR, 0, &Z_PublishAttributes);
} else {
// Publish immediately
zigbee_devices.jsonPublishNow(srcaddr, json);
// Add auto-responder here
Z_AutoResponder(srcaddr, clusterid, srcendpoint, json[F("ReadNames")]);
}
}
return -1;
}
// Structure for the Dispatcher callbacks table
typedef struct Z_Dispatcher {
const uint8_t* match;
ZB_RecvMsgFunc func;
} Z_Dispatcher;
// Ffilters based on ZNP frames
ZBM(AREQ_AF_DATA_CONFIRM, Z_AREQ | Z_AF, AF_DATA_CONFIRM) // 4480
ZBM(AREQ_AF_INCOMING_MESSAGE, Z_AREQ | Z_AF, AF_INCOMING_MSG) // 4481
// ZBM(AREQ_STATE_CHANGE_IND, Z_AREQ | Z_ZDO, ZDO_STATE_CHANGE_IND) // 45C0
ZBM(AREQ_END_DEVICE_ANNCE_IND, Z_AREQ | Z_ZDO, ZDO_END_DEVICE_ANNCE_IND) // 45C1
ZBM(AREQ_END_DEVICE_TC_DEV_IND, Z_AREQ | Z_ZDO, ZDO_TC_DEV_IND) // 45CA
ZBM(AREQ_PERMITJOIN_OPEN_XX, Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND ) // 45CB
ZBM(AREQ_ZDO_ACTIVEEPRSP, Z_AREQ | Z_ZDO, ZDO_ACTIVE_EP_RSP) // 4585
ZBM(AREQ_ZDO_SIMPLEDESCRSP, Z_AREQ | Z_ZDO, ZDO_SIMPLE_DESC_RSP) // 4584
ZBM(AREQ_ZDO_IEEE_ADDR_RSP, Z_AREQ | Z_ZDO, ZDO_IEEE_ADDR_RSP) // 4581
ZBM(AREQ_ZDO_BIND_RSP, Z_AREQ | Z_ZDO, ZDO_BIND_RSP) // 45A1
ZBM(AREQ_ZDO_UNBIND_RSP, Z_AREQ | Z_ZDO, ZDO_UNBIND_RSP) // 45A2
ZBM(AREQ_ZDO_MGMT_BIND_RSP, Z_AREQ | Z_ZDO, ZDO_MGMT_BIND_RSP) // 45B3
// Dispatcher callbacks table
const Z_Dispatcher Z_DispatchTable[] PROGMEM = {
{ AREQ_AF_DATA_CONFIRM, &Z_DataConfirm },
{ AREQ_AF_INCOMING_MESSAGE, &Z_ReceiveAfIncomingMessage },
// { AREQ_STATE_CHANGE_IND, &Z_ReceiveStateChange },
{ AREQ_END_DEVICE_ANNCE_IND, &Z_ReceiveEndDeviceAnnonce },
{ AREQ_END_DEVICE_TC_DEV_IND, &Z_ReceiveTCDevInd },
{ AREQ_PERMITJOIN_OPEN_XX, &Z_ReceivePermitJoinStatus },
{ AREQ_ZDO_NODEDESCRSP, &Z_ReceiveNodeDesc },
{ AREQ_ZDO_ACTIVEEPRSP, &Z_ReceiveActiveEp },
{ AREQ_ZDO_IEEE_ADDR_RSP, &Z_ReceiveIEEEAddr },
{ AREQ_ZDO_BIND_RSP, &Z_BindRsp },
{ AREQ_ZDO_UNBIND_RSP, &Z_UnbindRsp },
{ AREQ_ZDO_MGMT_BIND_RSP, &Z_MgmtBindRsp },
};
/*********************************************************************************************\
* Default resolver
\*********************************************************************************************/
int32_t Z_Recv_Default(int32_t res, const class SBuffer &buf) {
// Default message handler for new messages
if (zigbee.init_phase) {
// if still during initialization phase, ignore any unexpected message
return -1; // ignore message
} else {
for (uint32_t i = 0; i < sizeof(Z_DispatchTable)/sizeof(Z_Dispatcher); i++) {
if (Z_ReceiveMatchPrefix(buf, Z_DispatchTable[i].match)) {
(*Z_DispatchTable[i].func)(res, buf);
}
}
return -1;
}
}
/*********************************************************************************************\
* Functions called by State Machine
\*********************************************************************************************/
//
// Callback for loading Zigbee configuration from Flash, called by the state machine
//
int32_t Z_Load_Devices(uint8_t value) {
// try to hidrate from known devices
loadZigbeeDevices();
return 0; // continue
}
//
// Query the state of a bulb (light) if its type allows it
//
void Z_Query_Bulb(uint16_t shortaddr, uint32_t &wait_ms) {
const uint32_t inter_message_ms = 100; // wait 100ms between messages
if (0 <= zigbee_devices.getHueBulbtype(shortaddr)) {
uint8_t endpoint = zigbee_devices.findFirstEndpoint(shortaddr);
if (endpoint) { // send only if we know the endpoint
zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0006, endpoint, Z_CAT_NONE, 0 /* value */, &Z_ReadAttrCallback);
wait_ms += inter_message_ms;
zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0008, endpoint, Z_CAT_NONE, 0 /* value */, &Z_ReadAttrCallback);
wait_ms += inter_message_ms;
zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0300, endpoint, Z_CAT_NONE, 0 /* value */, &Z_ReadAttrCallback);
wait_ms += inter_message_ms;
zigbee_devices.setTimer(shortaddr, 0, wait_ms + Z_CAT_REACHABILITY_TIMEOUT, 0, endpoint, Z_CAT_REACHABILITY, 0 /* value */, &Z_Unreachable);
wait_ms += 1000; // wait 1 second between devices
}
}
}
//
// Send messages to query the state of each Hue emulated light
//
int32_t Z_Query_Bulbs(uint8_t value) {
// Scan all devices and send deferred requests to know the state of bulbs
uint32_t wait_ms = 1000; // start with 1.0 s delay
for (uint32_t i = 0; i < zigbee_devices.devicesSize(); i++) {
const Z_Device &device = zigbee_devices.devicesAt(i);
Z_Query_Bulb(device.shortaddr, wait_ms);
}
return 0; // continue
}
//
// Zigbee initialization is complete, let the party begin
//
int32_t Z_State_Ready(uint8_t value) {
zigbee.init_phase = false; // initialization phase complete
return 0; // continue
}
//
// Auto-responder for Read request from extenal devices.
//
// Mostly used for routers/end-devices
// json: holds the attributes in JSON format
void Z_AutoResponder(uint16_t srcaddr, uint16_t cluster, uint8_t endpoint, const JsonObject &json) {
DynamicJsonBuffer jsonBuffer;
JsonObject& json_out = jsonBuffer.createObject();
// responder
switch (cluster) {
case 0x0000:
if (HasKeyCaseInsensitive(json, PSTR("ModelId"))) { json_out[F("ModelId")] = F("Tasmota Z2T"); }
if (HasKeyCaseInsensitive(json, PSTR("Manufacturer"))) { json_out[F("Manufacturer")] = F("Tasmota"); }
break;
#ifdef USE_LIGHT
case 0x0006:
if (HasKeyCaseInsensitive(json, PSTR("Power"))) { json_out[F("Power")] = Light.power ? 1 : 0; }
break;
case 0x0008:
if (HasKeyCaseInsensitive(json, PSTR("Dimmer"))) { json_out[F("Dimmer")] = LightGetDimmer(0); }
break;
case 0x0300:
{
uint16_t hue;
uint8_t sat;
float XY[2];
LightGetHSB(&hue, &sat, nullptr);
LightGetXY(&XY[0], &XY[1]);
uint16_t uxy[2];
for (uint32_t i = 0; i < ARRAY_SIZE(XY); i++) {
uxy[i] = XY[i] * 65536.0f;
uxy[i] = (uxy[i] > 0xFEFF) ? uxy[i] : 0xFEFF;
}
if (HasKeyCaseInsensitive(json, PSTR("Hue"))) { json_out[F("Hue")] = changeUIntScale(hue, 0, 360, 0, 254); }
if (HasKeyCaseInsensitive(json, PSTR("Sat"))) { json_out[F("Sat")] = changeUIntScale(sat, 0, 255, 0, 254); }
if (HasKeyCaseInsensitive(json, PSTR("CT"))) { json_out[F("CT")] = LightGetColorTemp(); }
if (HasKeyCaseInsensitive(json, PSTR("X"))) { json_out[F("X")] = uxy[0]; }
if (HasKeyCaseInsensitive(json, PSTR("Y"))) { json_out[F("Y")] = uxy[1]; }
}
break;
#endif
case 0x000A: // Time
if (HasKeyCaseInsensitive(json, PSTR("Time"))) { json_out[F("Time")] = Rtc.utc_time; }
if (HasKeyCaseInsensitive(json, PSTR("TimeStatus"))) { json_out[F("TimeStatus")] = (Rtc.utc_time > (60 * 60 * 24 * 365 * 10)) ? 0x02 : 0x00; } // if time is beyond 2010 then we are synchronized
if (HasKeyCaseInsensitive(json, PSTR("TimeZone"))) { json_out[F("TimeZone")] = Settings.toffset[0] * 60; } // seconds
break;
}
if (json_out.size() > 0) {
// we have a non-empty output
// log first
String msg("");
msg.reserve(100);
json_out.printTo(msg);
AddLog_P2(LOG_LEVEL_INFO, PSTR("ZIG: Auto-responder: ZbSend {\"Device\":\"0x%04X\""
",\"Cluster\":\"0x%04X\""
",\"Endpoint\":%d"
",\"Response\":%s}"
),
srcaddr, cluster, endpoint,
msg.c_str());
// send
const JsonVariant &json_out_v = json_out;
ZbSendReportWrite(json_out_v, srcaddr, 0 /* group */,cluster, endpoint, 0 /* manuf */, ZCL_READ_ATTRIBUTES_RESPONSE);
}
}
#endif // USE_ZIGBEE