Tasmota/tasmota/xsns_43_hre.ino

288 lines
8.5 KiB
C++

/*
xsns_43_hre.ino - Badger HR-E Water Meter Encoder interface
Copyright (C) 2020 Jon Little
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_HRE
/*********************************************************************************************\
* HR-E LCD Water meter register interface
*
* https://www.badgermeter.com/business-lines/utility/high-resolution-lcd-encoders-hr-e-lcd/
* Source: Jon Little, https://github.com/burundiocibu/particle/blob/master/water_meter/src/HRE_Reader.cpp
*
* This code marches the bits out the data line as ASCII characters with the form
* KG44?Q45484=0444444V;RB000000022;IB018435683
* where the RB...; is the miligalons used
*
* Note that this sensor takes a _long_ time to read. 62 bits * 4 ms/bit for the
* sync sequence plus 46 bytes * 40 ms/byte = 2088 ms minimum. If we aren't alligned
* to the sync sequence, it could be almost twice that.
* To keep from bogging the kernel down, we read 8 bits at a time on the 50 ms callback.
* It will take seconds to discover if the device is there.
*
* In lieu of an actual schematic to describe the electrical interface, here is a description:
*
* hre_clock_pin: drives the power/clock for the water meter through a 1k resister to
* the base of a pnp transistor
* hre_data_pin: is the data and has a 1 k pulldown
*
* The pnp transitor has the collector connected to the power/clock and is pulled up
* to +5 via a 1 k resistor.
* The emitter is connected to ground
*
\*********************************************************************************************/
#define XSNS_43 43
enum hre_states {
hre_idle, // Initial state,
hre_sync, // Start search for sync sequence
hre_syncing, // Searching for sync sequence
hre_read, // Start reading data block
hre_reading, // Reading data
hre_sleep, // Start sleeping
hre_sleeping // pausing before reading again
};
hre_states hre_state = hre_idle;
float hre_usage = 0; // total water usage, in gal
float hre_rate = 0; // flow rate, in gal/min
uint32_t hre_usage_time = 0; // uptime associated with hre_usage and hre_rate
int hre_read_errors = 0; // total number of read errors since boot
bool hre_good = false;
// The settling times here were determined using a single unit hooked to a scope
int hreReadBit()
{
digitalWrite(Pin(GPIO_HRE_CLOCK), HIGH);
delay(1);
int bit = digitalRead(Pin(GPIO_HRE_DATA));
digitalWrite(Pin(GPIO_HRE_CLOCK), LOW);
delay(1);
return bit;
}
// With the times in the HreReadBit routine, a characer will take
// 20 ms plus io time.
char hreReadChar(int &parity_errors)
{
// start bit
hreReadBit();
unsigned ch=0;
int sum=0;
for (uint32_t i=0; i<7; i++)
{
int b = hreReadBit();
ch |= b << i;
sum += b;
}
// parity
if ( (sum & 0x1) != hreReadBit())
parity_errors++;
// stop bit
hreReadBit();
return ch;
}
void hreInit(void)
{
hre_read_errors = 0;
hre_good = false;
pinMode(Pin(GPIO_HRE_CLOCK), OUTPUT);
pinMode(Pin(GPIO_HRE_DATA), INPUT);
// Note that the level shifter inverts this line and we want to leave it
// high when not being read.
digitalWrite(Pin(GPIO_HRE_CLOCK), LOW);
hre_state = hre_sync;
}
void hreEvery50ms(void)
{
static int sync_counter = 0; // Number of sync bit reads
static int sync_run = 0; // Number of consecutive '1's read
static uint32_t curr_start = 0; // uptime when entered hre_reading for current read
static int read_counter = 0; // number of bytes in the current read
static int parity_errors = 0; // Number of parity errors in current read
static char buff[46]; // 8 char and a term
static char ch;
static size_t i;
switch (hre_state)
{
case hre_sync:
if (uptime < 10)
break;
sync_run = 0;
sync_counter = 0;
hre_state = hre_syncing;
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_HRE "hre_state:hre_syncing"));
break;
case hre_syncing:
// Find the header, a string of 62 '1's
// Since each bit taks 2 ms, we just read 20 bits at a time
for (uint32_t i=0; i<20; i++)
{
if (hreReadBit())
sync_run++;
else
sync_run = 0;
if (sync_run == 62)
{
hre_state = hre_read;
break;
}
sync_counter++;
}
// If the meter doesn't get in sync within 1000 bits, give up for now
if (sync_counter > 1000)
{
hre_state = hre_sleep;
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_HRE D_ERROR));
}
break;
// Start reading the data block
case hre_read:
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_HRE "sync_run:%d, sync_counter:%d"), sync_run, sync_counter);
read_counter = 0;
parity_errors = 0;
curr_start = uptime;
memset(buff, 0, sizeof(buff));
hre_state = hre_reading;
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_HRE "hre_state:hre_reading"));
// So this is intended to fall through to the hre_reading section.
// it seems that if there is much of a delay between getting the sync
// bits and starting the read, the HRE won't output the message we
// are looking for...
case hre_reading:
// Read two characters at a time...
buff[read_counter++] = hreReadChar(parity_errors);
buff[read_counter++] = hreReadChar(parity_errors);
if (read_counter == 46)
{
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_HRE "pe:%d, re:%d, buff:%s"),
parity_errors, hre_read_errors, buff);
if (parity_errors == 0)
{
float curr_usage;
curr_usage = 0.01 * atol(buff+24); // useage in gal
if (hre_usage_time)
{
double dt = 1.666e-2 * (curr_start - hre_usage_time); // dt in minutes
hre_rate = (curr_usage - hre_usage)/dt; // gallons/min
}
hre_usage = curr_usage;
hre_usage_time = curr_start;
hre_good = true;
hre_state = hre_sleep;
}
else
{
hre_read_errors++;
hre_state = hre_sleep;
}
}
break;
case hre_sleep:
hre_usage_time = curr_start;
hre_state = hre_sleeping;
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_HRE "hre_state:hre_sleeping"));
case hre_sleeping:
// If there isn't some delay between readings, rate calculations
// aren't as accurate. 27 seconds will give about a 30 second refresh rate
if (uptime - hre_usage_time >= 27)
hre_state = hre_sync;
}
}
void hreShow(boolean json)
{
if (!hre_good)
return;
const char *id = "HRE";
char usage[16];
char rate[16];
dtostrfd(hre_usage, 2, usage);
dtostrfd(hre_rate, 3, rate);
if (json)
{
ResponseAppend_P(JSON_SNS_GNGPM, id, usage, rate);
#ifdef USE_WEBSERVER
}
else
{
WSContentSend_PD(HTTP_SNS_GALLONS, id, usage);
WSContentSend_PD(HTTP_SNS_GPM, id, rate);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns43(byte function)
{
// If we don't have pins assigned give up quickly.
if (!PinUsed(GPIO_HRE_CLOCK) || !PinUsed(GPIO_HRE_DATA)) { return false; }
switch (function)
{
case FUNC_INIT:
hreInit();
break;
case FUNC_EVERY_50_MSECOND:
hreEvery50ms();
break;
case FUNC_EVERY_SECOND:
break;
case FUNC_JSON_APPEND:
hreShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
hreShow(0);
break;
#endif // USE_WEBSERVER
}
return false;
}
#endif // USE_HRE