Tasmota/lib/RF24/examples_linux/gettingstarted.cpp

217 lines
5.7 KiB
C++

/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
03/17/2013 : Charles-Henri Hallard (http://hallard.me)
Modified to use with Arduipi board http://hallard.me/arduipi
Changed to use modified bcm2835 and RF24 library
TMRh20 2014 - Updated to work with optimized RF24 Arduino library
*/
/**
* Example RF Radio Ping Pair
*
* This is an example of how to use the RF24 class on RPi, communicating to an Arduino running
* the GettingStarted sketch.
*/
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <unistd.h>
#include <RF24/RF24.h>
using namespace std;
//
// Hardware configuration
// Configure the appropriate pins for your connections
/****************** Raspberry Pi ***********************/
// Radio CE Pin, CSN Pin, SPI Speed
// See http://www.airspayce.com/mikem/bcm2835/group__constants.html#ga63c029bd6500167152db4e57736d0939 and the related enumerations for pin information.
// Setup for GPIO 22 CE and CE0 CSN with SPI Speed @ 4Mhz
//RF24 radio(RPI_V2_GPIO_P1_22, BCM2835_SPI_CS0, BCM2835_SPI_SPEED_4MHZ);
// NEW: Setup for RPi B+
//RF24 radio(RPI_BPLUS_GPIO_J8_15,RPI_BPLUS_GPIO_J8_24, BCM2835_SPI_SPEED_8MHZ);
// Setup for GPIO 15 CE and CE0 CSN with SPI Speed @ 8Mhz
//RF24 radio(RPI_V2_GPIO_P1_15, RPI_V2_GPIO_P1_24, BCM2835_SPI_SPEED_8MHZ);
// RPi generic:
RF24 radio(22,0);
/*** RPi Alternate ***/
//Note: Specify SPI BUS 0 or 1 instead of CS pin number.
// See http://tmrh20.github.io/RF24/RPi.html for more information on usage
//RPi Alternate, with MRAA
//RF24 radio(15,0);
//RPi Alternate, with SPIDEV - Note: Edit RF24/arch/BBB/spi.cpp and set 'this->device = "/dev/spidev0.0";;' or as listed in /dev
//RF24 radio(22,0);
/****************** Linux (BBB,x86,etc) ***********************/
// See http://tmrh20.github.io/RF24/pages.html for more information on usage
// See http://iotdk.intel.com/docs/master/mraa/ for more information on MRAA
// See https://www.kernel.org/doc/Documentation/spi/spidev for more information on SPIDEV
// Setup for ARM(Linux) devices like BBB using spidev (default is "/dev/spidev1.0" )
//RF24 radio(115,0);
//BBB Alternate, with mraa
// CE pin = (Header P9, Pin 13) = 59 = 13 + 46
//Note: Specify SPI BUS 0 or 1 instead of CS pin number.
//RF24 radio(59,0);
/********** User Config *********/
// Assign a unique identifier for this node, 0 or 1
bool radioNumber = 1;
/********************************/
// Radio pipe addresses for the 2 nodes to communicate.
const uint8_t pipes[][6] = {"1Node","2Node"};
int main(int argc, char** argv){
bool role_ping_out = true, role_pong_back = false;
bool role = role_pong_back;
cout << "RF24/examples/GettingStarted/\n";
// Setup and configure rf radio
radio.begin();
// optionally, increase the delay between retries & # of retries
radio.setRetries(15,15);
// Dump the configuration of the rf unit for debugging
radio.printDetails();
/********* Role chooser ***********/
printf("\n ************ Role Setup ***********\n");
string input = "";
char myChar = {0};
cout << "Choose a role: Enter 0 for pong_back, 1 for ping_out (CTRL+C to exit) \n>";
getline(cin,input);
if(input.length() == 1) {
myChar = input[0];
if(myChar == '0'){
cout << "Role: Pong Back, awaiting transmission " << endl << endl;
}else{ cout << "Role: Ping Out, starting transmission " << endl << endl;
role = role_ping_out;
}
}
/***********************************/
// This simple sketch opens two pipes for these two nodes to communicate
// back and forth.
if ( !radioNumber ) {
radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1,pipes[1]);
} else {
radio.openWritingPipe(pipes[1]);
radio.openReadingPipe(1,pipes[0]);
}
radio.startListening();
// forever loop
while (1)
{
if (role == role_ping_out)
{
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
printf("Now sending...\n");
unsigned long time = millis();
bool ok = radio.write( &time, sizeof(unsigned long) );
if (!ok){
printf("failed.\n");
}
// Now, continue listening
radio.startListening();
// Wait here until we get a response, or timeout (250ms)
unsigned long started_waiting_at = millis();
bool timeout = false;
while ( ! radio.available() && ! timeout ) {
if (millis() - started_waiting_at > 200 )
timeout = true;
}
// Describe the results
if ( timeout )
{
printf("Failed, response timed out.\n");
}
else
{
// Grab the response, compare, and send to debugging spew
unsigned long got_time;
radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got response %lu, round-trip delay: %lu\n",got_time,millis()-got_time);
}
sleep(1);
}
//
// Pong back role. Receive each packet, dump it out, and send it back
//
if ( role == role_pong_back )
{
// if there is data ready
if ( radio.available() )
{
// Dump the payloads until we've gotten everything
unsigned long got_time;
// Fetch the payload, and see if this was the last one.
while(radio.available()){
radio.read( &got_time, sizeof(unsigned long) );
}
radio.stopListening();
radio.write( &got_time, sizeof(unsigned long) );
// Now, resume listening so we catch the next packets.
radio.startListening();
// Spew it
printf("Got payload(%d) %lu...\n",sizeof(unsigned long), got_time);
delay(925); //Delay after payload responded to, minimize RPi CPU time
}
}
} // forever loop
return 0;
}