mirror of https://github.com/arendst/Tasmota.git
422 lines
17 KiB
C++
422 lines
17 KiB
C++
/*
|
|
support_flash_log.ino - log to flash support for Sonoff-Tasmota
|
|
|
|
Copyright (C) 2021 Theo Arends & Christian Baars
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
--------------------------------------------------------------------------------------------
|
|
Version Date Action Description
|
|
--------------------------------------------------------------------------------------------
|
|
2.0.0.0 20240625 expand - Add support for ESP32
|
|
---
|
|
1.0.0.0 20190923 started - further development by Christian Baars - https://github.com/Staars/Sonoff-Tasmota
|
|
forked - from arendst/tasmota - https://github.com/arendst/Sonoff-Tasmota
|
|
base - code base from arendst and - written from scratch
|
|
*/
|
|
|
|
/********************************************************************************************\
|
|
| * Generic helper class to log arbitrary data to the OTA-partition
|
|
| * Working principle: Add preferrable small chunks of data to the sector buffer, which will
|
|
| * be written to FLASH when full automatically. The next sector will be
|
|
| * erased and is the anchor point for downloading and state configuration
|
|
| * after reboot.
|
|
\*********************************************************************************************/
|
|
|
|
#ifdef USE_FLOG
|
|
|
|
class FLOG
|
|
|
|
#define MAGIC_WORD_FL 0x464c //F, L
|
|
|
|
{
|
|
|
|
struct header_t{
|
|
uint16_t magic_word; // FL
|
|
uint16_t padding; // leave something for the future
|
|
uint32_t physical_start_sector:10; //first used sector of the current FLOG
|
|
uint32_t number:10; // number of this sector, starting with 0 for the first sector
|
|
uint32_t buf_pointer:12; //internal pointer to the next free position in the buffer = first empty byte when reading
|
|
}; // should be 4-byte-aligned
|
|
|
|
private:
|
|
void _readSector(uint8_t one_sector);
|
|
void _eraseSector(uint8_t one_sector);
|
|
void _writeSector(uint8_t one_sector);
|
|
void _clearBuffer(void);
|
|
void _searchSaves(void);
|
|
void _findFirstErasedSector(void);
|
|
void _showBuffer(void);
|
|
void _initBuffer(void);
|
|
void _saveBufferToSector(void);
|
|
header_t _saved_header;
|
|
|
|
public:
|
|
uint32_t size; // size of OTA-partition
|
|
uint32_t start; // start position of OTA-partition in bytes
|
|
uint32_t end; // end position of OTA-partition in bytes
|
|
uint16_t num_sectors; // calculated number of sectors with a size of 4096 bytes
|
|
|
|
uint16_t first_erased_sector; // this will be our new start
|
|
uint16_t current_sector; // always point to next sector, where data from the buffer will be written to
|
|
|
|
uint16_t bytes_left; // byte per buffer (of sector size 4096 bytes - 8 byte header size)
|
|
uint16_t sectors_left; // number of saved sectors for download
|
|
|
|
uint8_t mode = 0; // 0 - write once on all sectors, then stop, 1 - write infinitely through the sectors
|
|
bool found_saved_data = false; // possible saved data has been found
|
|
bool ready = false; // the FLOG is initialized
|
|
bool running_download = false; // a download operation is running
|
|
bool recording = false; // ready for recording
|
|
|
|
union sector_t{
|
|
uint32_t dword_buffer[SPI_FLASH_SEC_SIZE/4];
|
|
uint8_t byte_buffer[SPI_FLASH_SEC_SIZE];
|
|
header_t header; // should be 4-byte-aligned
|
|
} sector; // the global buffer of 4096 bytes, used for reading and writing
|
|
|
|
void init(void);
|
|
void addToBuffer(uint8_t src[], uint32_t size);
|
|
void startRecording(bool append);
|
|
void stopRecording(void);
|
|
|
|
typedef void (*CallbackNoArgs) (); // simple typedef for a callback
|
|
typedef void (*CallbackWithArgs) (uint8_t *_record); // typedef for a callback with one argument
|
|
|
|
void startDownload(size_t size, CallbackNoArgs sendHeader, CallbackWithArgs sendRecord, CallbackNoArgs sendFooter);
|
|
};
|
|
|
|
/**
|
|
* @brief Will examine the start and end of the OTA-partition. Then the sector size will be computed, saved data should be found and the initial state will be configured.
|
|
*/
|
|
void FLOG::init(void)
|
|
{
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: init ..."));
|
|
size = ESP_getSketchSize();
|
|
start = FlashWriteStartSector() * SPI_FLASH_SEC_SIZE;
|
|
end = FlashWriteMaxSector() * SPI_FLASH_SEC_SIZE;
|
|
num_sectors = (end - start) / SPI_FLASH_SEC_SIZE;
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: size: 0x%lx, start: 0x%lx, end: 0x%lx, num_sectors(dec): %lu"), size, start, end, num_sectors );
|
|
_findFirstErasedSector();
|
|
if(first_erased_sector == 0xffff){
|
|
_eraseSector(0);
|
|
first_erased_sector = 0; // start with sector 0, could be first run or after crash
|
|
}
|
|
_searchSaves();
|
|
_initBuffer();
|
|
ready = true;
|
|
}
|
|
|
|
/********************************************************************************************\
|
|
| *
|
|
| * private helper functions
|
|
| *
|
|
\*********************************************************************************************/
|
|
|
|
/**
|
|
* @brief Read a sector into the global buffer
|
|
*
|
|
* @param one_sector as an uint8_t
|
|
*/
|
|
void FLOG::_readSector(uint8_t one_sector){
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: read sector number: %u" ), one_sector);
|
|
ESP.flashRead(start+(one_sector * SPI_FLASH_SEC_SIZE),(uint32_t *)§or.dword_buffer, SPI_FLASH_SEC_SIZE);
|
|
}
|
|
/**
|
|
* @brief Erase the given sector og the OTA-partition
|
|
*
|
|
* @param one_sector as an uint8_t
|
|
*/
|
|
void FLOG::_eraseSector(uint8_t one_sector){ // Erase sector of FLOG/OTA
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: erasing sector number: %u" ), one_sector);
|
|
ESP.flashEraseSector((start/SPI_FLASH_SEC_SIZE)+one_sector);
|
|
}
|
|
/**
|
|
* @brief Write the global buffer to the given sector
|
|
*
|
|
* @param one_sector as an uint8_t
|
|
*/
|
|
void FLOG::_writeSector(uint8_t one_sector){ // Write sector of FLOG/OTA
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: write buffer to sector number: %u" ), one_sector);
|
|
ESP.flashWrite(start+(one_sector * SPI_FLASH_SEC_SIZE),(uint32_t *)§or.dword_buffer, SPI_FLASH_SEC_SIZE);
|
|
}
|
|
/**
|
|
* @brief Clear the global buffer, but leave the header intact
|
|
*
|
|
*/
|
|
void FLOG::_clearBuffer(){ //not the header
|
|
for (uint32_t i = sizeof(sector.header)/4; i<(sizeof(sector.dword_buffer)/4); i++){
|
|
sector.dword_buffer[i] = 0;
|
|
}
|
|
sector.header.buf_pointer = sizeof(sector.header);
|
|
// _showBuffer();
|
|
}
|
|
/**
|
|
* @brief Write global buffer to FLASH and set the current sector to the next valid position, maybe to 0
|
|
*
|
|
*/
|
|
void FLOG::_saveBufferToSector(){ // save buffer to already erased(!) sector, erase next sector, clear buffer, increment number
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: write buffer to current sector: %u" ),current_sector);
|
|
_writeSector(current_sector);
|
|
if(current_sector == num_sectors){ // 1 MB means ~110 sectors in OTA-partition, if we reach this, start a again
|
|
current_sector = 0;
|
|
}
|
|
else{
|
|
current_sector++;
|
|
}
|
|
_eraseSector(current_sector); // we always erase the next sector, to find out were we are after restart
|
|
_clearBuffer();
|
|
sector.header.number++;
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: new sector header number: %u" ),sector.header.number);
|
|
}
|
|
|
|
/**
|
|
* @brief Typically after restart find the first erased sector as a starting point for further operations
|
|
*
|
|
*/
|
|
void FLOG::_findFirstErasedSector(){
|
|
for (uint32_t i = 0; i<num_sectors; i++){
|
|
bool success = true;
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: read sector: %u"), i);
|
|
_readSector(i);
|
|
for (uint32_t j = 0; j<(sizeof(sector.dword_buffer)/4); j++){
|
|
if(sector.dword_buffer[j]!=0xffffffff){
|
|
// DEBUG_SENSOR_LOG(PSTR("FLOG: buffer_dword: %u"), sector.dword_buffer[j]);
|
|
success = false;
|
|
}
|
|
}
|
|
if(success){
|
|
first_erased_sector = i; // save this for the whole next write operation
|
|
sector.header.physical_start_sector = i; // save to header for every sector
|
|
current_sector = i; // this is our actual sector to write to
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: first erased sector: %u, now init ..."), first_erased_sector);
|
|
return;
|
|
}
|
|
}
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: no erased sector found"));
|
|
first_erased_sector = 0xffff; // this will not happen unless we have 256 MByte FLASH
|
|
}
|
|
/**
|
|
* @brief Look at the sector before the first erased sector to check, if there could be saved data
|
|
*
|
|
*/
|
|
void FLOG::_searchSaves(void){
|
|
//check if old Data is present
|
|
found_saved_data = false;
|
|
uint32_t s;
|
|
if(first_erased_sector==0){
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: sector 0 was erased before, examine sector: %u"), num_sectors);
|
|
s = num_sectors; //count back to the highest possible sector
|
|
}
|
|
else{
|
|
s = first_erased_sector-1;
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: examine sector: %u"), s);
|
|
}
|
|
_readSector(s); //read the sector before the first erased sector
|
|
if(sector.header.magic_word!=MAGIC_WORD_FL){
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: wrong magic number, no saved data found"));
|
|
return;
|
|
}
|
|
sectors_left = sector.header.number + 1; // this might be wrong, but this less important
|
|
_saved_header = sector.header; // back this up for appending mode
|
|
s = sector.header.physical_start_sector;
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: will check pysical start sector: %u"), s);
|
|
_readSector(s); //read the physical_start_sector
|
|
_showBuffer();
|
|
if(sector.header.magic_word!=MAGIC_WORD_FL){ //F, L
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: wrong magic number, no saved data found"));
|
|
sectors_left = 0;
|
|
return;
|
|
}
|
|
if(sector.header.number==0){ //physical_start_sector should have number 0
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: possible saved data found"));
|
|
found_saved_data = true; // TODO: this is only a very rough check and should be completed later
|
|
}
|
|
else{
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: number: %u should be 0"), sector.header.number);
|
|
sectors_left = 0;
|
|
}
|
|
}
|
|
/**
|
|
* @brief Start with a new buffer to be able to start a write session
|
|
*
|
|
*/
|
|
void FLOG::_initBuffer(void){
|
|
if(!found_saved_data){ // we must re-init this, because the buffer is in an undefined state
|
|
sector.header.physical_start_sector = (uint16_t)first_erased_sector;
|
|
}
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: init header"));
|
|
sector.header.magic_word = MAGIC_WORD_FL; //F, L
|
|
sector.header.number = 0;
|
|
sector.header.buf_pointer = (uint16_t)sizeof(sector.header);
|
|
current_sector = first_erased_sector;
|
|
ready = true;
|
|
_clearBuffer();
|
|
}
|
|
/**
|
|
* @brief - a pure debug function
|
|
*
|
|
*/
|
|
void FLOG::_showBuffer(void){
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: Header: %c %c"), sector.byte_buffer[0],sector.byte_buffer[1]);
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: V_Start_sector: %u, sector number: %u, pointer: %u "), sector.header.physical_start_sector, sector.header.number, sector.header.buf_pointer);
|
|
uint32_t j = 0;
|
|
for (uint32_t i = sector.header.buf_pointer-16; i<(sizeof(sector.byte_buffer)); i+=8){
|
|
// DEBUG_SENSOR_LOG(PSTR("FLOG: buffer: %c %c %c %c %c %c %c %c "), sector.byte_buffer[i], sector.byte_buffer[i+1], sector.byte_buffer[i+2], sector.byte_buffer[i+3], sector.byte_buffer[i+4], sector.byte_buffer[i+5], sector.byte_buffer[i+6], sector.byte_buffer[i+7]);
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: buffer: %u %u %u %u %u %u %u %u "), sector.byte_buffer[i], sector.byte_buffer[i+1], sector.byte_buffer[i+2], sector.byte_buffer[i+3], sector.byte_buffer[i+4], sector.byte_buffer[i+5], sector.byte_buffer[i+6], sector.byte_buffer[i+7]);
|
|
j++;
|
|
if(j>3){
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief pass a data entry/record as uint8_t array with its size
|
|
*
|
|
* @param src uint8_t array
|
|
* @param size uint32_t size of the array
|
|
*/
|
|
void FLOG::addToBuffer(uint8_t src[], uint32_t size){
|
|
if(mode == 0){
|
|
if(sector.header.number == num_sectors && !ready){
|
|
return; // we ignore additional calls and are done, TODO: maybe use meaningful return values
|
|
}
|
|
}
|
|
if((SPI_FLASH_SEC_SIZE-sector.header.buf_pointer-sizeof(sector.header))>size){
|
|
// DEBUG_SENSOR_LOG(PSTR("FLOG: enough space left in buffer: %u"), SPI_FLASH_SEC_SIZE - sector.header.buf_pointer - sizeof(sector.header));
|
|
// DEBUG_SENSOR_LOG(PSTR("FLOG: current buf_pointer: %u, size of added: %u"), sector.header.buf_pointer, size);
|
|
|
|
memcpy(sector.byte_buffer + sector.header.buf_pointer, src, size);
|
|
sector.header.buf_pointer+=size; // this is the next free spot
|
|
// DEBUG_SENSOR_LOG(PSTR("FLOG: current buf_pointer: %u"), sector.header.buf_pointer);
|
|
}
|
|
else{
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: save buffer to flash sector: %u"), current_sector);
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: current buf_pointer: %u"), sector.header.buf_pointer);
|
|
_saveBufferToSector();
|
|
sectors_left++;
|
|
// but now save the data to the fresh buffer
|
|
if((SPI_FLASH_SEC_SIZE-sector.header.buf_pointer-sizeof(sector.header))>size){
|
|
memcpy(sector.byte_buffer + sector.header.buf_pointer, src, size);
|
|
sector.header.buf_pointer+=size; // this is the next free spot
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief shows that it is ready to accept recording
|
|
*
|
|
* @param append - if true append to current log, else start a new log
|
|
*/
|
|
void FLOG::startRecording(bool append){
|
|
if(recording){
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: already recording"));
|
|
return;
|
|
}
|
|
recording = true;
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: start recording"));
|
|
_initBuffer();
|
|
if(!found_saved_data) {
|
|
append = false; // nothing to append to, we silently start a new log
|
|
}
|
|
if(append){
|
|
sector.header.number = _saved_header.number+1; // continue with the next number
|
|
sector.header.physical_start_sector = _saved_header.physical_start_sector; // keep the old start sector
|
|
}
|
|
else{ //new log, old data is lost
|
|
sector.header.physical_start_sector = (uint16_t)first_erased_sector;
|
|
found_saved_data = false;
|
|
sectors_left = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief stop recording including saving current buffer to FLASH
|
|
*
|
|
*/
|
|
void FLOG::stopRecording(void){
|
|
_saveBufferToSector();
|
|
_findFirstErasedSector();
|
|
_searchSaves();
|
|
_initBuffer();
|
|
recording = false;
|
|
found_saved_data = true;
|
|
}
|
|
|
|
/**
|
|
* @brief Will start a downloads, needs the correct implementation of 3 callback functions
|
|
*
|
|
* @param size: size of the data entry/record in bytes, i.e. sizeof(myStruct)
|
|
* @param sendHeader: should implement at least something like:
|
|
* @example Webserver->setContentLength(CONTENT_LENGTH_UNKNOWN); // This is very likely unknown!!
|
|
* Webserver->sendHeader(F("Content-Disposition"), F("attachment; filename=myfile.txt"));
|
|
* @param sendRecord: will receive the memory address as "uint8_t* addr" and should consume the current entry/record
|
|
* @example myStruct_t *entry = (myStruct_t*)addr;
|
|
* Then make useful Strings and send it, i.e.: Webserver->sendContent_P(myString);
|
|
* @param sendFooter: finish the download, should implement at least:
|
|
* @example Webserver->sendContent("");
|
|
*/
|
|
void FLOG::startDownload(size_t size, CallbackNoArgs sendHeader, CallbackWithArgs sendRecord, CallbackNoArgs sendFooter){
|
|
|
|
_readSector(sector.header.physical_start_sector);
|
|
uint32_t next_sector = sector.header.physical_start_sector;
|
|
bytes_left = sector.header.buf_pointer - sizeof(sector.header);
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: create file for download, will process %u bytes"), bytes_left);
|
|
running_download = true;
|
|
// Callback 1: Create the header incl. file name, content length (probably unknown!!) and additional header stuff
|
|
sendHeader();
|
|
|
|
while(sectors_left){
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: next sector: %u"), next_sector);
|
|
//initially we have the first sector already loaded, so we do it at the bottom
|
|
uint32_t k = sizeof(sector.header);
|
|
while(bytes_left){
|
|
// DEBUG_SENSOR_LOG(PSTR("FLOG: DL %u %u"), Flog->sector.byte_buffer[k],Flog->sector.byte_buffer[k+1]);
|
|
uint8_t *_record_start = (uint8_t*)§or.byte_buffer[k]; // this is basically the start address of the current record/entry of the Log
|
|
// Callback 2: send the pointer for consuming the next record/entry and doing something useful to create a file
|
|
sendRecord(_record_start);
|
|
if(k%128 == 0){ // give control to the system every x iteration, TODO: This will fail, when record/entry-size is not 8
|
|
// DEBUG_SENSOR_LOG(PSTR("FLOG: now loop(), %u bytes left"), Flog->bytes_left);
|
|
OsWatchLoop();
|
|
delay(TasmotaGlobal.sleep);
|
|
}
|
|
k+=size;
|
|
if(bytes_left>7){
|
|
bytes_left-=size;
|
|
}
|
|
else{
|
|
bytes_left = 0;
|
|
DEBUG_SENSOR_LOG(PSTR("FLOG: Flog->bytes_left not dividable by 8 ??????"));
|
|
}
|
|
}
|
|
next_sector++;
|
|
if(next_sector>num_sectors){
|
|
next_sector = 0;
|
|
}
|
|
sectors_left--;
|
|
_readSector(next_sector);
|
|
bytes_left = sector.header.buf_pointer - sizeof(sector.header);
|
|
OsWatchLoop();
|
|
delay(TasmotaGlobal.sleep);
|
|
}
|
|
running_download = false;
|
|
// Callback 3: create a footer or simply finish the download with an empty payload
|
|
sendFooter();
|
|
// refresh settings for another download
|
|
_searchSaves();
|
|
_initBuffer();
|
|
}
|
|
|
|
#endif // USE_FLOG
|