Tasmota/sonoff/xdrv_04_light.ino

1646 lines
56 KiB
C++

/*
xdrv_04_light.ino - PWM, WS2812 and sonoff led support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*********************************************************************************************\
* PWM, WS2812, Sonoff B1, AiLight, Sonoff Led and BN-SZ01, H801, MagicHome and Arilux
*
* light_type Module Color ColorTemp Modules
* ---------- --------- ----- --------- ----------------------------
* 1 PWM1 W no (Sonoff BN-SZ)
* 2 PWM2 CW yes (Sonoff Led)
* 3 PWM3 RGB no (H801, MagicHome and Arilux LC01)
* 4 PWM4 RGBW no (H801, MagicHome and Arilux)
* 5 PWM5 RGBCW yes (H801, Arilux LC11)
* 9 reserved no
* 10 reserved yes
* 11 +WS2812 RGB(W) no (One WS2812 RGB or RGBW ledstrip)
* 12 AiLight RGBW no
* 13 Sonoff B1 RGBCW yes
* 19 SM16716 RGB no
* 20 SM16716+W RGBW no
* 21 SM16716+CW RGBCW yes
*
* light_scheme WS2812 3+ Colors 1+2 Colors Effect
* ------------ ------ --------- ---------- -----------------
* 0 yes yes yes Color On/Off
* 1 yes yes yes Wakeup light
* 2 yes yes no Color cycle RGB
* 3 yes yes no Color cycle RBG
* 4 yes yes no Random RGB colors
* 5 yes no no Clock
* 6 yes no no Incandescent
* 7 yes no no RGB
* 8 yes no no Christmas
* 9 yes no no Hanukkah
* 10 yes no no Kwanzaa
* 11 yes no no Rainbow
* 12 yes no no Fire
*
\*********************************************************************************************/
#define XDRV_04 4
#define WS2812_SCHEMES 7 // Number of additional WS2812 schemes supported by xdrv_ws2812.ino
enum LightCommands {
CMND_COLOR, CMND_COLORTEMPERATURE, CMND_DIMMER, CMND_LED, CMND_LEDTABLE, CMND_FADE,
CMND_PIXELS, CMND_RGBWWTABLE, CMND_ROTATION, CMND_SCHEME, CMND_SPEED, CMND_WAKEUP, CMND_WAKEUPDURATION,
CMND_WHITE, CMND_WIDTH, CMND_CHANNEL, CMND_HSBCOLOR, CMND_UNDOCA };
const char kLightCommands[] PROGMEM =
D_CMND_COLOR "|" D_CMND_COLORTEMPERATURE "|" D_CMND_DIMMER "|" D_CMND_LED "|" D_CMND_LEDTABLE "|" D_CMND_FADE "|"
D_CMND_PIXELS "|" D_CMND_RGBWWTABLE "|" D_CMND_ROTATION "|" D_CMND_SCHEME "|" D_CMND_SPEED "|" D_CMND_WAKEUP "|" D_CMND_WAKEUPDURATION "|"
D_CMND_WHITE "|" D_CMND_WIDTH "|" D_CMND_CHANNEL "|" D_CMND_HSBCOLOR "|UNDOCA" ;
struct LRgbColor {
uint8_t R, G, B;
};
#define MAX_FIXED_COLOR 12
const LRgbColor kFixedColor[MAX_FIXED_COLOR] PROGMEM =
{ 255,0,0, 0,255,0, 0,0,255, 228,32,0, 0,228,32, 0,32,228, 188,64,0, 0,160,96, 160,32,240, 255,255,0, 255,0,170, 255,255,255 };
struct LWColor {
uint8_t W;
};
#define MAX_FIXED_WHITE 4
const LWColor kFixedWhite[MAX_FIXED_WHITE] PROGMEM = { 0, 255, 128, 32 };
struct LCwColor {
uint8_t C, W;
};
#define MAX_FIXED_COLD_WARM 4
const LCwColor kFixedColdWarm[MAX_FIXED_COLD_WARM] PROGMEM = { 0,0, 255,0, 0,255, 128,128 };
uint8_t ledTable[] = {
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4,
4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8,
8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14,
14, 15, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22,
22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 32,
33, 33, 34, 35, 36, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 45,
46, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78,
80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99,
101,102,104,105,107,108,110,111,113,114,116,117,119,121,122,124,
125,127,129,130,132,134,135,137,139,141,142,144,146,148,150,151,
153,155,157,159,161,163,165,166,168,170,172,174,176,178,180,182,
184,186,189,191,193,195,197,199,201,204,206,208,210,212,215,217,
219,221,224,226,228,231,233,235,238,240,243,245,248,250,253,255 };
uint8_t light_entry_color[5];
uint8_t light_current_color[5];
uint8_t light_new_color[5];
uint8_t light_last_color[5];
uint8_t light_signal_color[5];
uint8_t light_color_remap[5];
bool light_ct_rgb_linked;
uint8_t light_wheel = 0;
uint8_t light_subtype = 0;
uint8_t light_device = 0;
uint8_t light_power = 0;
uint8_t light_old_power = 1;
uint8_t light_update = 1;
uint8_t light_wakeup_active = 0;
uint8_t light_wakeup_dimmer = 0;
uint16_t light_wakeup_counter = 0;
uint8_t light_fixed_color_index = 1;
unsigned long strip_timer_counter = 0; // Bars and Gradient
#ifdef USE_ARILUX_RF
/*********************************************************************************************\
* Arilux LC11 Rf support stripped from RCSwitch library
\*********************************************************************************************/
#define ARILUX_RF_TIME_AVOID_DUPLICATE 1000 // Milliseconds
#define ARILUX_RF_MAX_CHANGES 51 // Pulses (sync + 2 x 24 bits)
#define ARILUX_RF_SEPARATION_LIMIT 4300 // Microseconds
#define ARILUX_RF_RECEIVE_TOLERANCE 60 // Percentage
unsigned int arilux_rf_timings[ARILUX_RF_MAX_CHANGES];
unsigned long arilux_rf_received_value = 0;
unsigned long arilux_rf_last_received_value = 0;
unsigned long arilux_rf_last_time = 0;
unsigned long arilux_rf_lasttime = 0;
unsigned int arilux_rf_change_count = 0;
unsigned int arilux_rf_repeat_count = 0;
uint8_t arilux_rf_toggle = 0;
#ifndef ARDUINO_ESP8266_RELEASE_2_3_0
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves RF misses
void AriluxRfInterrupt(void) ICACHE_RAM_ATTR; // As iram is tight and it works this way too
#endif // USE_WS2812_DMA
#endif // ARDUINO_ESP8266_RELEASE_2_3_0
void AriluxRfInterrupt(void)
{
unsigned long time = micros();
unsigned int duration = time - arilux_rf_lasttime;
if (duration > ARILUX_RF_SEPARATION_LIMIT) {
if (abs(duration - arilux_rf_timings[0]) < 200) {
arilux_rf_repeat_count++;
if (arilux_rf_repeat_count == 2) {
unsigned long code = 0;
const unsigned int delay = arilux_rf_timings[0] / 31;
const unsigned int delayTolerance = delay * ARILUX_RF_RECEIVE_TOLERANCE / 100;
for (unsigned int i = 1; i < arilux_rf_change_count -1; i += 2) {
code <<= 1;
if (abs(arilux_rf_timings[i] - (delay *3)) < delayTolerance && abs(arilux_rf_timings[i +1] - delay) < delayTolerance) {
code |= 1;
}
}
if (arilux_rf_change_count > 49) { // Need 1 sync bit and 24 data bits
arilux_rf_received_value = code;
}
arilux_rf_repeat_count = 0;
}
}
arilux_rf_change_count = 0;
}
if (arilux_rf_change_count >= ARILUX_RF_MAX_CHANGES) {
arilux_rf_change_count = 0;
arilux_rf_repeat_count = 0;
}
arilux_rf_timings[arilux_rf_change_count++] = duration;
arilux_rf_lasttime = time;
}
void AriluxRfHandler(void)
{
unsigned long now = millis();
if (arilux_rf_received_value && !((arilux_rf_received_value == arilux_rf_last_received_value) && (now - arilux_rf_last_time < ARILUX_RF_TIME_AVOID_DUPLICATE))) {
arilux_rf_last_received_value = arilux_rf_received_value;
arilux_rf_last_time = now;
uint16_t hostcode = arilux_rf_received_value >> 8 & 0xFFFF;
if (Settings.rf_code[1][6] == Settings.rf_code[1][7]) {
Settings.rf_code[1][6] = hostcode >> 8 & 0xFF;
Settings.rf_code[1][7] = hostcode & 0xFF;
}
uint16_t stored_hostcode = Settings.rf_code[1][6] << 8 | Settings.rf_code[1][7];
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_RFR D_HOST D_CODE " 0x%04X, " D_RECEIVED " 0x%06X"), stored_hostcode, arilux_rf_received_value);
AddLog(LOG_LEVEL_DEBUG);
if (hostcode == stored_hostcode) {
char command[33];
char value = '-';
command[0] = '\0';
uint8_t keycode = arilux_rf_received_value & 0xFF;
switch (keycode) {
case 1: // Power On
case 3: // Power Off
snprintf_P(command, sizeof(command), PSTR(D_CMND_POWER " %d"), (1 == keycode) ? 1 : 0);
break;
case 2: // Toggle
arilux_rf_toggle++;
arilux_rf_toggle &= 0x3;
snprintf_P(command, sizeof(command), PSTR(D_CMND_COLOR " %d"), 200 + arilux_rf_toggle);
break;
case 4: // Speed +
value = '+';
case 7: // Speed -
snprintf_P(command, sizeof(command), PSTR(D_CMND_SPEED " %c"), value);
break;
case 5: // Scheme +
value = '+';
case 8: // Scheme -
snprintf_P(command, sizeof(command), PSTR(D_CMND_SCHEME " %c"), value);
break;
case 6: // Dimmer +
value = '+';
case 9: // Dimmer -
snprintf_P(command, sizeof(command), PSTR(D_CMND_DIMMER " %c"), value);
break;
default: {
if ((keycode >= 10) && (keycode <= 21)) {
snprintf_P(command, sizeof(command), PSTR(D_CMND_COLOR " %d"), keycode -9);
}
}
}
if (strlen(command)) {
ExecuteCommand(command, SRC_LIGHT);
}
}
}
arilux_rf_received_value = 0;
}
void AriluxRfInit(void)
{
if ((pin[GPIO_ARIRFRCV] < 99) && (pin[GPIO_LED4] < 99)) {
if (Settings.last_module != Settings.module) {
Settings.rf_code[1][6] = 0;
Settings.rf_code[1][7] = 0;
Settings.last_module = Settings.module;
}
arilux_rf_received_value = 0;
digitalWrite(pin[GPIO_LED4], !bitRead(led_inverted, 3)); // Turn on RF
attachInterrupt(pin[GPIO_ARIRFRCV], AriluxRfInterrupt, CHANGE);
}
}
void AriluxRfDisable(void)
{
if ((pin[GPIO_ARIRFRCV] < 99) && (pin[GPIO_LED4] < 99)) {
detachInterrupt(pin[GPIO_ARIRFRCV]);
digitalWrite(pin[GPIO_LED4], bitRead(led_inverted, 3)); // Turn off RF
}
}
#endif // USE_ARILUX_RF
/*********************************************************************************************\
* Sonoff B1 and AiLight inspired by OpenLight https://github.com/icamgo/noduino-sdk
\*********************************************************************************************/
extern "C" {
void os_delay_us(unsigned int);
}
uint8_t light_pdi_pin;
uint8_t light_pdcki_pin;
void LightDiPulse(uint8_t times)
{
for (uint8_t i = 0; i < times; i++) {
digitalWrite(light_pdi_pin, HIGH);
digitalWrite(light_pdi_pin, LOW);
}
}
void LightDckiPulse(uint8_t times)
{
for (uint8_t i = 0; i < times; i++) {
digitalWrite(light_pdcki_pin, HIGH);
digitalWrite(light_pdcki_pin, LOW);
}
}
void LightMy92x1Write(uint8_t data)
{
for (uint8_t i = 0; i < 4; i++) { // Send 8bit Data
digitalWrite(light_pdcki_pin, LOW);
digitalWrite(light_pdi_pin, (data & 0x80));
digitalWrite(light_pdcki_pin, HIGH);
data = data << 1;
digitalWrite(light_pdi_pin, (data & 0x80));
digitalWrite(light_pdcki_pin, LOW);
digitalWrite(light_pdi_pin, LOW);
data = data << 1;
}
}
void LightMy92x1Init(void)
{
uint8_t chips = 1; // 1 (AiLight)
if (LT_RGBWC == light_type) {
chips = 2; // 2 (Sonoff B1)
}
LightDckiPulse(chips * 32); // Clear all duty register
os_delay_us(12); // TStop > 12us.
// Send 12 DI pulse, after 6 pulse's falling edge store duty data, and 12
// pulse's rising edge convert to command mode.
LightDiPulse(12);
os_delay_us(12); // Delay >12us, begin send CMD data
for (uint8_t n = 0; n < chips; n++) { // Send CMD data
LightMy92x1Write(0x18); // ONE_SHOT_DISABLE, REACTION_FAST, BIT_WIDTH_8, FREQUENCY_DIVIDE_1, SCATTER_APDM
}
os_delay_us(12); // TStart > 12us. Delay 12 us.
// Send 16 DI pulse, at 14 pulse's falling edge store CMD data, and
// at 16 pulse's falling edge convert to duty mode.
LightDiPulse(16);
os_delay_us(12); // TStop > 12us.
}
void LightMy92x1Duty(uint8_t duty_r, uint8_t duty_g, uint8_t duty_b, uint8_t duty_w, uint8_t duty_c)
{
uint8_t channels[2] = { 4, 6 };
uint8_t didx = 0; // 0 (AiLight)
if (LT_RGBWC == light_type) {
didx = 1; // 1 (Sonoff B1)
}
uint8_t duty[2][6] = {{ duty_r, duty_g, duty_b, duty_w, 0, 0 }, // Definition for RGBW channels
{ duty_w, duty_c, 0, duty_g, duty_r, duty_b }}; // Definition for RGBWC channels
os_delay_us(12); // TStop > 12us.
for (uint8_t channel = 0; channel < channels[didx]; channel++) {
LightMy92x1Write(duty[didx][channel]); // Send 8bit Data
}
os_delay_us(12); // TStart > 12us. Ready for send DI pulse.
LightDiPulse(8); // Send 8 DI pulse. After 8 pulse falling edge, store old data.
os_delay_us(12); // TStop > 12us.
}
#ifdef USE_SM16716
/*********************************************************************************************\
* SM16716 - Controlling RGB over a synchronous serial line
* Copyright (C) 2019 Gabor Simon
*
* Source: https://community.home-assistant.io/t/cheap-uk-wifi-bulbs-with-tasmota-teardown-help-tywe3s/40508/27
*
\*********************************************************************************************/
// Enable this for debug logging
//#define D_LOG_SM16716 "SM16716: "
uint8_t sm16716_pin_clk = 100;
uint8_t sm16716_pin_dat = 100;
uint8_t sm16716_pin_sel = 100;
uint8_t sm16716_enabled = 0;
void SM16716_SendBit(uint8_t v)
{
/* NOTE:
* According to the spec sheet, max freq is 30 MHz, that is 16.6 ns per high/low half of the
* clk square wave. That is less than the overhead of 'digitalWrite' at this clock rate,
* so no additional delays are needed yet. */
digitalWrite(sm16716_pin_dat, (v != 0) ? HIGH : LOW);
//delayMicroseconds(1);
digitalWrite(sm16716_pin_clk, HIGH);
//delayMicroseconds(1);
digitalWrite(sm16716_pin_clk, LOW);
}
void SM16716_SendByte(uint8_t v)
{
uint8_t mask;
for (mask = 0x80; mask; mask >>= 1) {
SM16716_SendBit(v & mask);
}
}
void SM16716_Update(uint8_t duty_r, uint8_t duty_g, uint8_t duty_b)
{
if (sm16716_pin_sel < 99) {
uint8_t sm16716_should_enable = (duty_r | duty_g | duty_b);
if (!sm16716_enabled && sm16716_should_enable) {
#ifdef D_LOG_SM16716
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_SM16716 "turning color on"));
AddLog(LOG_LEVEL_DEBUG);
#endif // D_LOG_SM16716
sm16716_enabled = 1;
digitalWrite(sm16716_pin_sel, HIGH);
// in testing I found it takes a minimum of ~380us to wake up the chip
// tested on a Merkury RGBW with an SM726EB
delayMicroseconds(1000);
SM16716_Init();
}
else if (sm16716_enabled && !sm16716_should_enable) {
#ifdef D_LOG_SM16716
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_SM16716 "turning color off"));
AddLog(LOG_LEVEL_DEBUG);
#endif // D_LOG_SM16716
sm16716_enabled = 0;
digitalWrite(sm16716_pin_sel, LOW);
}
}
#ifdef D_LOG_SM16716
snprintf_P(log_data, sizeof(log_data),
PSTR(D_LOG_SM16716 "Update; rgb=%02x%02x%02x"),
duty_r, duty_g, duty_b);
AddLog(LOG_LEVEL_DEBUG);
#endif // D_LOG_SM16716
// send start bit
SM16716_SendBit(1);
SM16716_SendByte(duty_r);
SM16716_SendByte(duty_g);
SM16716_SendByte(duty_b);
// send a 'do it' pulse
// (if multiple chips are chained, each one processes the 1st '1rgb' 25-bit block and
// passes on the rest, right until the one starting with 0)
//SM16716_Init();
SM16716_SendBit(0);
SM16716_SendByte(0);
SM16716_SendByte(0);
SM16716_SendByte(0);
}
bool SM16716_ModuleSelected(void)
{
sm16716_pin_clk = pin[GPIO_SM16716_CLK];
sm16716_pin_dat = pin[GPIO_SM16716_DAT];
sm16716_pin_sel = pin[GPIO_SM16716_SEL];
#ifdef D_LOG_SM16716
snprintf_P(log_data, sizeof(log_data),
PSTR(D_LOG_SM16716 "ModuleSelected; clk_pin=%d, dat_pin=%d)"),
sm16716_pin_clk, sm16716_pin_dat);
AddLog(LOG_LEVEL_DEBUG);
#endif // D_LOG_SM16716
return (sm16716_pin_clk < 99) && (sm16716_pin_dat < 99);
}
void SM16716_Init(void)
{
for (uint8_t t_init = 0; t_init < 50; ++t_init) {
SM16716_SendBit(0);
}
}
#endif // ifdef USE_SM16716
/********************************************************************************************/
void LightInit(void)
{
uint8_t max_scheme = LS_MAX -1;
light_device = devices_present;
light_subtype = light_type &7; // Always 0 - 7
if (LST_SINGLE == light_subtype) {
Settings.light_color[0] = 255; // One channel only supports Dimmer but needs max color
}
if (light_type < LT_PWM6) { // PWM
for (uint8_t i = 0; i < light_type; i++) {
Settings.pwm_value[i] = 0; // Disable direct PWM control
if (pin[GPIO_PWM1 +i] < 99) {
pinMode(pin[GPIO_PWM1 +i], OUTPUT);
}
}
if (SONOFF_LED == my_module_type) { // Fix Sonoff Led instabilities
if (!my_module.io[4]) {
pinMode(4, OUTPUT); // Stop floating outputs
digitalWrite(4, LOW);
}
if (!my_module.io[5]) {
pinMode(5, OUTPUT); // Stop floating outputs
digitalWrite(5, LOW);
}
if (!my_module.io[14]) {
pinMode(14, OUTPUT); // Stop floating outputs
digitalWrite(14, LOW);
}
}
if (pin[GPIO_ARIRFRCV] < 99) {
if (pin[GPIO_LED4] < 99) {
digitalWrite(pin[GPIO_LED4], bitRead(led_inverted, 3)); // Turn off RF
}
}
}
#ifdef USE_WS2812 // ************************************************************************
else if (LT_WS2812 == light_type) {
#if (USE_WS2812_CTYPE > NEO_3LED)
light_subtype++; // from RGB to RGBW
#endif
Ws2812Init();
max_scheme = LS_MAX + WS2812_SCHEMES;
}
#endif // USE_WS2812 ************************************************************************
#ifdef USE_SM16716
else if (LT_SM16716 == light_type - light_subtype) {
// init PWM
for (uint8_t i = 0; i < light_subtype; i++) {
Settings.pwm_value[i] = 0; // Disable direct PWM control
if (pin[GPIO_PWM1 +i] < 99) {
pinMode(pin[GPIO_PWM1 +i], OUTPUT);
}
}
// init sm16716
pinMode(sm16716_pin_clk, OUTPUT);
digitalWrite(sm16716_pin_clk, LOW);
pinMode(sm16716_pin_dat, OUTPUT);
digitalWrite(sm16716_pin_dat, LOW);
if (sm16716_pin_sel < 99) {
pinMode(sm16716_pin_sel, OUTPUT);
digitalWrite(sm16716_pin_sel, LOW);
// no need to call SM16716_Init here, it will be called after sel goes HIGH
} else {
// no sel pin means you have an 'always on' chip, so init right away
SM16716_Init();
}
}
#endif // ifdef USE_SM16716
else {
light_pdi_pin = pin[GPIO_DI];
light_pdcki_pin = pin[GPIO_DCKI];
pinMode(light_pdi_pin, OUTPUT);
pinMode(light_pdcki_pin, OUTPUT);
digitalWrite(light_pdi_pin, LOW);
digitalWrite(light_pdcki_pin, LOW);
LightMy92x1Init();
}
if (light_subtype < LST_RGB) {
max_scheme = LS_POWER;
}
if ((LS_WAKEUP == Settings.light_scheme) || (Settings.light_scheme > max_scheme)) {
Settings.light_scheme = LS_POWER;
}
light_power = 0;
light_update = 1;
light_wakeup_active = 0;
LightUpdateColorMapping();
}
void LightUpdateColorMapping(void)
{
uint8_t param = Settings.param[P_RGB_REMAP] & 127;
if(param > 119){
param = 0;
}
uint8_t tmp[] = {0,1,2,3,4};
light_color_remap[0] = tmp[param / 24];
for (uint8_t i = param / 24; i<4; ++i){
tmp[i] = tmp[i+1];
}
param = param % 24;
light_color_remap[1] = tmp[(param / 6)];
for (uint8_t i = param / 6; i<3; ++i){
tmp[i] = tmp[i+1];
}
param = param % 6;
light_color_remap[2] = tmp[(param / 2)];
for (uint8_t i = param / 2; i<2; ++i){
tmp[i] = tmp[i+1];
}
param = param % 2;
light_color_remap[3] = tmp[param];
light_color_remap[4] = tmp[1-param];
light_ct_rgb_linked = !(Settings.param[P_RGB_REMAP] & 128);
light_update = 1;
//snprintf_P(log_data, sizeof(log_data), "%d colors: %d %d %d %d %d",Settings.param[P_RGB_REMAP], light_color_remap[0],light_color_remap[1],light_color_remap[2],light_color_remap[3],light_color_remap[4]);
//AddLog(LOG_LEVEL_DEBUG);
}
void LightSetColorTemp(uint16_t ct)
{
/* Color Temperature (https://developers.meethue.com/documentation/core-concepts)
*
* ct = 153 = 2000K = Warm = CCWW = 00FF
* ct = 500 = 6500K = Cold = CCWW = FF00
*/
uint16_t my_ct = ct - 153;
if (my_ct > 347) {
my_ct = 347;
}
uint16_t icold = (100 * (347 - my_ct)) / 136;
uint16_t iwarm = (100 * my_ct) / 136;
if (PHILIPS == my_module_type) {
// Xiaomi Philips bulbs follow a different scheme:
// channel 0=intensity, channel2=temperature
Settings.light_color[1] = (uint8_t)icold;
} else
if (LST_RGBWC == light_subtype) {
if(light_ct_rgb_linked){
Settings.light_color[0] = 0;
Settings.light_color[1] = 0;
Settings.light_color[2] = 0;
}
Settings.light_color[3] = (uint8_t)icold;
Settings.light_color[4] = (uint8_t)iwarm;
} else {
Settings.light_color[0] = (uint8_t)icold;
Settings.light_color[1] = (uint8_t)iwarm;
}
}
uint16_t LightGetColorTemp(void)
{
uint8_t ct_idx = 0;
if (LST_RGBWC == light_subtype) {
ct_idx = 3;
}
uint16_t my_ct = Settings.light_color[ct_idx +1];
if (my_ct > 0) {
return ((my_ct * 136) / 100) + 154;
} else {
my_ct = Settings.light_color[ct_idx];
return 499 - ((my_ct * 136) / 100);
}
}
void LightSetDimmer(uint8_t myDimmer)
{
float temp;
if (PHILIPS == my_module_type) {
// Xiaomi Philips bulbs use two PWM channels with a different scheme:
float dimmer = 100 / (float)myDimmer;
temp = (float)Settings.light_color[0] / dimmer; // channel 1 is intensity
light_current_color[0] = (uint8_t)temp;
temp = (float)Settings.light_color[1]; // channel 2 is temperature
light_current_color[1] = (uint8_t)temp;
return;
}
if (LT_PWM1 == light_type) {
Settings.light_color[0] = 255; // One PWM channel only supports Dimmer but needs max color
}
float dimmer = 100 / (float)myDimmer;
for (uint8_t i = 0; i < light_subtype; i++) {
if (Settings.flag.light_signal) {
temp = (float)light_signal_color[i] / dimmer;
} else {
temp = (float)Settings.light_color[i] / dimmer;
}
light_current_color[i] = (uint8_t)temp;
}
}
void LightSetColor(void)
{
uint8_t highest = 0;
for (uint8_t i = 0; i < light_subtype; i++) {
if (highest < light_current_color[i]) {
highest = light_current_color[i];
}
}
float mDim = (float)highest / 2.55;
Settings.light_dimmer = (uint8_t)mDim;
float dimmer = 100 / mDim;
for (uint8_t i = 0; i < light_subtype; i++) {
float temp = (float)light_current_color[i] * dimmer;
Settings.light_color[i] = (uint8_t)temp;
}
}
void LightSetSignal(uint16_t lo, uint16_t hi, uint16_t value)
{
/* lo - below lo is green
hi - above hi is red
*/
if (Settings.flag.light_signal) {
uint16_t signal = 0;
if (value > lo) {
signal = (value - lo) * 10 / ((hi - lo) * 10 / 256);
if (signal > 255) {
signal = 255;
}
}
// snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "Light signal %d"), signal);
// AddLog(LOG_LEVEL_DEBUG);
light_signal_color[0] = signal;
light_signal_color[1] = 255 - signal;
light_signal_color[2] = 0;
light_signal_color[3] = 0;
light_signal_color[4] = 0;
Settings.light_scheme = 0;
if (!Settings.light_dimmer) {
Settings.light_dimmer = 20;
}
}
}
char* LightGetColor(uint8_t type, char* scolor)
{
LightSetDimmer(Settings.light_dimmer);
scolor[0] = '\0';
for (uint8_t i = 0; i < light_subtype; i++) {
if (!type && Settings.flag.decimal_text) {
snprintf_P(scolor, 25, PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", light_current_color[i]);
} else {
snprintf_P(scolor, 25, PSTR("%s%02X"), scolor, light_current_color[i]);
}
}
return scolor;
}
void LightPowerOn(void)
{
if (Settings.light_dimmer && !(light_power)) {
ExecuteCommandPower(light_device, POWER_ON, SRC_LIGHT);
}
}
void LightState(uint8_t append)
{
char scolor[25];
char scommand[33];
float hsb[3];
int16_t h,s,b;
if (append) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,"), mqtt_data);
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{"));
}
GetPowerDevice(scommand, light_device, sizeof(scommand), Settings.flag.device_index_enable);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s\"%s\":\"%s\",\"" D_CMND_DIMMER "\":%d"),
mqtt_data, scommand, GetStateText(light_power), Settings.light_dimmer);
if (light_subtype > LST_SINGLE) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_CMND_COLOR "\":\"%s\""), mqtt_data, LightGetColor(0, scolor));
// Add status for HSB
LightGetHsb(&hsb[0],&hsb[1],&hsb[2], false);
// Scale these percentages up to the numbers expected by the client
h = round(hsb[0] * 360);
s = round(hsb[1] * 100);
b = round(hsb[2] * 100);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_CMND_HSBCOLOR "\":\"%d,%d,%d\""), mqtt_data, h,s,b);
// Add status for each channel
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_CMND_CHANNEL "\":[" ), mqtt_data);
for (uint8_t i = 0; i < light_subtype; i++) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s%s%d" ), mqtt_data, (i > 0 ? "," : ""), light_current_color[i] * 100 / 255);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s]" ), mqtt_data);
}
if ((LST_COLDWARM == light_subtype) || (LST_RGBWC == light_subtype)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_CMND_COLORTEMPERATURE "\":%d"), mqtt_data, LightGetColorTemp());
}
if (append) {
if (light_subtype >= LST_RGB) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_CMND_SCHEME "\":%d"), mqtt_data, Settings.light_scheme);
}
if (LT_WS2812 == light_type) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_CMND_WIDTH "\":%d"), mqtt_data, Settings.light_width);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_CMND_FADE "\":\"%s\",\"" D_CMND_SPEED "\":%d,\"" D_CMND_LEDTABLE "\":\"%s\""),
mqtt_data, GetStateText(Settings.light_fade), Settings.light_speed, GetStateText(Settings.light_correction));
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data);
}
}
void LightPreparePower(void)
{
if (Settings.light_dimmer && !(light_power)) {
if (!Settings.flag.not_power_linked) {
ExecuteCommandPower(light_device, POWER_ON_NO_STATE, SRC_LIGHT);
}
}
else if (!Settings.light_dimmer && light_power) {
ExecuteCommandPower(light_device, POWER_OFF_NO_STATE, SRC_LIGHT);
}
#ifdef USE_DOMOTICZ
DomoticzUpdatePowerState(light_device);
#endif // USE_DOMOTICZ
if (Settings.flag3.hass_tele_on_power) {
mqtt_data[0] = '\0';
MqttShowState();
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), MQTT_TELE_RETAIN);
}
LightState(0);
}
void LightFade(void)
{
if (0 == Settings.light_fade) {
for (uint8_t i = 0; i < light_subtype; i++) {
light_new_color[i] = light_current_color[i];
}
} else {
uint8_t shift = Settings.light_speed;
if (Settings.light_speed > 6) {
shift = (strip_timer_counter % (Settings.light_speed -6)) ? 0 : 8;
}
if (shift) {
for (uint8_t i = 0; i < light_subtype; i++) {
if (light_new_color[i] != light_current_color[i]) {
if (light_new_color[i] < light_current_color[i]) {
light_new_color[i] += ((light_current_color[i] - light_new_color[i]) >> shift) +1;
}
if (light_new_color[i] > light_current_color[i]) {
light_new_color[i] -= ((light_new_color[i] - light_current_color[i]) >> shift) +1;
}
}
}
}
}
}
void LightWheel(uint8_t wheel_pos)
{
wheel_pos = 255 - wheel_pos;
if (wheel_pos < 85) {
light_entry_color[0] = 255 - wheel_pos * 3;
light_entry_color[1] = 0;
light_entry_color[2] = wheel_pos * 3;
} else if (wheel_pos < 170) {
wheel_pos -= 85;
light_entry_color[0] = 0;
light_entry_color[1] = wheel_pos * 3;
light_entry_color[2] = 255 - wheel_pos * 3;
} else {
wheel_pos -= 170;
light_entry_color[0] = wheel_pos * 3;
light_entry_color[1] = 255 - wheel_pos * 3;
light_entry_color[2] = 0;
}
light_entry_color[3] = 0;
light_entry_color[4] = 0;
float dimmer = 100 / (float)Settings.light_dimmer;
for (uint8_t i = 0; i < LST_RGB; i++) {
float temp = (float)light_entry_color[i] / dimmer;
light_entry_color[i] = (uint8_t)temp;
}
}
void LightCycleColor(int8_t direction)
{
if (strip_timer_counter % (Settings.light_speed * 2)) {
return;
}
light_wheel += direction;
LightWheel(light_wheel);
memcpy(light_new_color, light_entry_color, sizeof(light_new_color));
}
void LightRandomColor(void)
{
uint8_t light_update = 0;
for (uint8_t i = 0; i < LST_RGB; i++) {
if (light_new_color[i] != light_current_color[i]) {
light_update = 1;
}
}
if (!light_update) {
light_wheel = random(255);
LightWheel(light_wheel);
memcpy(light_current_color, light_entry_color, sizeof(light_current_color));
}
LightFade();
}
void LightSetPower(void)
{
// light_power = XdrvMailbox.index;
light_old_power = light_power;
light_power = bitRead(XdrvMailbox.index, light_device -1);
if (light_wakeup_active) {
light_wakeup_active--;
}
if (light_power && !light_old_power) {
light_update = 1;
}
LightAnimate();
}
void LightAnimate(void)
{
uint8_t cur_col[5];
uint16_t light_still_on = 0;
strip_timer_counter++;
if (!light_power) { // Power Off
sleep = Settings.sleep;
strip_timer_counter = 0;
for (uint8_t i = 0; i < light_subtype; i++) {
light_still_on += light_new_color[i];
}
if (light_still_on && Settings.light_fade && (Settings.light_scheme < LS_MAX)) {
uint8_t speed = Settings.light_speed;
if (speed > 6) {
speed = 6;
}
for (uint8_t i = 0; i < light_subtype; i++) {
if (light_new_color[i] > 0) {
light_new_color[i] -= (light_new_color[i] >> speed) +1;
}
}
} else {
for (uint8_t i = 0; i < light_subtype; i++) {
light_new_color[i] = 0;
}
}
}
else {
#ifdef PWM_LIGHTSCHEME0_IGNORE_SLEEP
sleep = (LS_POWER == Settings.light_scheme) ? Settings.sleep : 0; // If no animation then use sleep as is
#else
sleep = 0;
#endif // PWM_LIGHTSCHEME0_IGNORE_SLEEP
switch (Settings.light_scheme) {
case LS_POWER:
LightSetDimmer(Settings.light_dimmer);
LightFade();
break;
case LS_WAKEUP:
if (2 == light_wakeup_active) {
light_wakeup_active = 1;
for (uint8_t i = 0; i < light_subtype; i++) {
light_new_color[i] = 0;
}
light_wakeup_counter = 0;
light_wakeup_dimmer = 0;
}
light_wakeup_counter++;
if (light_wakeup_counter > ((Settings.light_wakeup * STATES) / Settings.light_dimmer)) {
light_wakeup_counter = 0;
light_wakeup_dimmer++;
if (light_wakeup_dimmer <= Settings.light_dimmer) {
LightSetDimmer(light_wakeup_dimmer);
for (uint8_t i = 0; i < light_subtype; i++) {
light_new_color[i] = light_current_color[i];
}
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_WAKEUP "\":\"" D_JSON_DONE "\"}"));
MqttPublishPrefixTopic_P(TELE, PSTR(D_CMND_WAKEUP));
light_wakeup_active = 0;
Settings.light_scheme = LS_POWER;
}
}
break;
case LS_CYCLEUP:
LightCycleColor(1);
break;
case LS_CYCLEDN:
LightCycleColor(-1);
break;
case LS_RANDOM:
LightRandomColor();
break;
#ifdef USE_WS2812 // ************************************************************************
default:
if (LT_WS2812 == light_type) {
Ws2812ShowScheme(Settings.light_scheme -LS_MAX);
}
#endif // USE_WS2812 ************************************************************************
}
}
if ((Settings.light_scheme < LS_MAX) || !light_power) {
if (memcmp(light_last_color, light_new_color, light_subtype)) {
light_update = 1;
}
if (light_update) {
light_update = 0;
for (uint8_t i = 0; i < light_subtype; i++) {
light_last_color[i] = light_new_color[i];
cur_col[i] = light_last_color[i]*Settings.rgbwwTable[i]/255;
cur_col[i] = (Settings.light_correction) ? ledTable[cur_col[i]] : cur_col[i];
}
// color remapping
uint8_t orig_col[5];
memcpy(orig_col, cur_col, sizeof(orig_col));
for (uint8_t i = 0; i < 5; i++) {
cur_col[i] = orig_col[light_color_remap[i]];
}
for (uint8_t i = 0; i < light_subtype; i++) {
if (light_type < LT_PWM6) {
if (pin[GPIO_PWM1 +i] < 99) {
if (cur_col[i] > 0xFC) {
cur_col[i] = 0xFC; // Fix unwanted blinking and PWM watchdog errors for values close to pwm_range (H801, Arilux and BN-SZ01)
}
uint16_t curcol = cur_col[i] * (Settings.pwm_range / 255);
// snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION "Cur_Col%d %d, CurCol %d"), i, cur_col[i], curcol);
// AddLog(LOG_LEVEL_DEBUG);
analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - curcol : curcol);
}
}
}
char *tmp_data = XdrvMailbox.data;
uint16_t tmp_data_len = XdrvMailbox.data_len;
XdrvMailbox.data = (char*)cur_col;
XdrvMailbox.data_len = sizeof(cur_col);
if (XdrvCall(FUNC_SET_CHANNELS)) {
// Serviced
}
#ifdef USE_WS2812 // ************************************************************************
else if (LT_WS2812 == light_type) {
Ws2812SetColor(0, cur_col[0], cur_col[1], cur_col[2], cur_col[3]);
}
#endif // USE_ES2812 ************************************************************************
#ifdef USE_SM16716
else if (LT_SM16716 == light_type - light_subtype) {
// handle any PWM pins, skipping the first 3 values for sm16716
for (uint8_t i = 3; i < light_subtype; i++) {
if (pin[GPIO_PWM1 +i-3] < 99) {
if (cur_col[i] > 0xFC) {
cur_col[i] = 0xFC; // Fix unwanted blinking and PWM watchdog errors for values close to pwm_range (H801, Arilux and BN-SZ01)
}
uint16_t curcol = cur_col[i] * (Settings.pwm_range / 255);
// snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION "Cur_Col%d %d, CurCol %d"), i, cur_col[i], curcol);
// AddLog(LOG_LEVEL_DEBUG);
analogWrite(pin[GPIO_PWM1 +i-3], bitRead(pwm_inverted, i-3) ? Settings.pwm_range - curcol : curcol);
}
}
// handle sm16716 update
SM16716_Update(cur_col[0], cur_col[1], cur_col[2]);
}
#endif // ifdef USE_SM16716
else if (light_type > LT_WS2812) {
LightMy92x1Duty(cur_col[0], cur_col[1], cur_col[2], cur_col[3], cur_col[4]);
}
XdrvMailbox.data = tmp_data;
XdrvMailbox.data_len = tmp_data_len;
}
}
}
/*********************************************************************************************\
* Hue support
\*********************************************************************************************/
float light_hue = 0.0;
float light_saturation = 0.0;
float light_brightness = 0.0;
void LightRgbToHsb(void)
{
LightSetDimmer(Settings.light_dimmer);
// convert colors to float between (0.0 - 1.0)
float r = light_current_color[0] / 255.0f;
float g = light_current_color[1] / 255.0f;
float b = light_current_color[2] / 255.0f;
float max = (r > g && r > b) ? r : (g > b) ? g : b;
float min = (r < g && r < b) ? r : (g < b) ? g : b;
float d = max - min;
light_hue = 0.0;
light_brightness = max;
light_saturation = (0.0f == light_brightness) ? 0 : (d / light_brightness);
if (d != 0.0f)
{
if (r == max) {
light_hue = (g - b) / d + (g < b ? 6.0f : 0.0f);
} else if (g == max) {
light_hue = (b - r) / d + 2.0f;
} else {
light_hue = (r - g) / d + 4.0f;
}
light_hue /= 6.0f;
}
}
void LightHsbToRgb(void)
{
float r;
float g;
float b;
float h = light_hue;
float s = light_saturation;
float v = light_brightness;
if (0.0f == light_saturation) {
r = g = b = v; // Achromatic or black
} else {
if (h < 0.0f) {
h += 1.0f;
}
else if (h >= 1.0f) {
h -= 1.0f;
}
h *= 6.0f;
int i = (int)h;
float f = h - i;
float q = v * (1.0f - s * f);
float p = v * (1.0f - s);
float t = v * (1.0f - s * (1.0f - f));
switch (i) {
case 0:
r = v;
g = t;
b = p;
break;
case 1:
r = q;
g = v;
b = p;
break;
case 2:
r = p;
g = v;
b = t;
break;
case 3:
r = p;
g = q;
b = v;
break;
case 4:
r = t;
g = p;
b = v;
break;
default:
r = v;
g = p;
b = q;
break;
}
}
light_current_color[0] = (uint8_t)(r * 255.0f);
light_current_color[1] = (uint8_t)(g * 255.0f);
light_current_color[2] = (uint8_t)(b * 255.0f);
if(light_ct_rgb_linked){
light_current_color[3] = 0;
light_current_color[4] = 0;
}
}
/********************************************************************************************/
void LightGetHsb(float *hue, float *sat, float *bri, bool gotct)
{
if (light_subtype > LST_COLDWARM && !gotct) {
LightRgbToHsb();
*hue = light_hue;
*sat = light_saturation;
*bri = light_brightness;
} else {
*hue = 0;
*sat = 0;
*bri = (0.01f * (float)Settings.light_dimmer);
}
}
void LightSetHsb(float hue, float sat, float bri, uint16_t ct, bool gotct)
{
if (light_subtype > LST_COLDWARM) {
if ((LST_RGBWC == light_subtype) && (gotct)) {
uint8_t tmp = (uint8_t)(bri * 100);
Settings.light_dimmer = tmp;
if (ct > 0) {
LightSetColorTemp(ct);
}
} else {
light_hue = hue;
light_saturation = sat;
light_brightness = bri;
LightHsbToRgb();
LightSetColor();
}
LightPreparePower();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_CMND_COLOR));
} else {
uint8_t tmp = (uint8_t)(bri * 100);
Settings.light_dimmer = tmp;
if (LST_COLDWARM == light_subtype) {
if (ct > 0) {
LightSetColorTemp(ct);
}
LightPreparePower();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_CMND_COLOR));
} else {
LightPreparePower();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_CMND_DIMMER));
}
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
bool LightColorEntry(char *buffer, uint8_t buffer_length)
{
char scolor[10];
char *p;
char *str;
uint8_t entry_type = 0; // Invalid
uint8_t value = light_fixed_color_index;
if (buffer[0] == '#') { // Optional hexadecimal entry
buffer++;
buffer_length--;
}
if (light_subtype >= LST_RGB) {
char option = (1 == buffer_length) ? buffer[0] : '\0';
if (('+' == option) && (light_fixed_color_index < MAX_FIXED_COLOR)) {
value++;
}
else if (('-' == option) && (light_fixed_color_index > 1)) {
value--;
} else {
value = atoi(buffer);
}
}
memset(&light_entry_color, 0x00, sizeof(light_entry_color));
if (strstr(buffer, ",")) { // Decimal entry
int8_t i = 0;
for (str = strtok_r(buffer, ",", &p); str && i < 6; str = strtok_r(NULL, ",", &p)) {
if (i < 5) {
light_entry_color[i++] = atoi(str);
}
}
entry_type = 2; // Decimal
}
else if (((2 * light_subtype) == buffer_length) || (buffer_length > 3)) { // Hexadecimal entry
for (uint8_t i = 0; i < tmin((uint)(buffer_length / 2), sizeof(light_entry_color)); i++) {
strlcpy(scolor, buffer + (i *2), 3);
light_entry_color[i] = (uint8_t)strtol(scolor, &p, 16);
}
entry_type = 1; // Hexadecimal
}
else if ((light_subtype >= LST_RGB) && (value > 0) && (value <= MAX_FIXED_COLOR)) {
light_fixed_color_index = value;
memcpy_P(&light_entry_color, &kFixedColor[value -1], 3);
entry_type = 1; // Hexadecimal
}
else if ((value > 199) && (value <= 199 + MAX_FIXED_COLD_WARM)) {
if (LST_RGBW == light_subtype) {
memcpy_P(&light_entry_color[3], &kFixedWhite[value -200], 1);
entry_type = 1; // Hexadecimal
}
else if (LST_COLDWARM == light_subtype) {
memcpy_P(&light_entry_color, &kFixedColdWarm[value -200], 2);
entry_type = 1; // Hexadecimal
}
else if (LST_RGBWC == light_subtype) {
memcpy_P(&light_entry_color[3], &kFixedColdWarm[value -200], 2);
entry_type = 1; // Hexadecimal
}
}
if (entry_type) {
Settings.flag.decimal_text = entry_type -1;
}
return (entry_type);
}
/********************************************************************************************/
bool LightCommand(void)
{
char command [CMDSZ];
bool serviced = true;
bool coldim = false;
bool valid_entry = false;
char scolor[25];
char option = (1 == XdrvMailbox.data_len) ? XdrvMailbox.data[0] : '\0';
int command_code = GetCommandCode(command, sizeof(command), XdrvMailbox.topic, kLightCommands);
if (-1 == command_code) {
serviced = false; // Unknown command
}
else if (((CMND_COLOR == command_code) && (light_subtype > LST_SINGLE) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= 6)) ||
((CMND_WHITE == command_code) && (light_subtype == LST_RGBW) && (XdrvMailbox.index == 1))) {
if (CMND_WHITE == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
snprintf_P(scolor, sizeof(scolor), PSTR("0,0,0,%d"), XdrvMailbox.payload * 255 / 100);
XdrvMailbox.data = scolor;
XdrvMailbox.data_len = strlen(scolor);
} else {
XdrvMailbox.data_len = 0;
}
}
if (XdrvMailbox.data_len > 0) {
valid_entry = LightColorEntry(XdrvMailbox.data, XdrvMailbox.data_len);
if (valid_entry) {
if (XdrvMailbox.index <= 2) { // Color(1), 2
memcpy(light_current_color, light_entry_color, sizeof(light_current_color));
uint8_t dimmer = Settings.light_dimmer;
LightSetColor();
if (2 == XdrvMailbox.index) {
Settings.light_dimmer = dimmer;
}
Settings.light_scheme = 0;
coldim = true;
} else { // Color3, 4, 5 and 6
for (uint8_t i = 0; i < LST_RGB; i++) {
Settings.ws_color[XdrvMailbox.index -3][i] = light_entry_color[i];
}
}
}
}
if (!valid_entry && (XdrvMailbox.index <= 2)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, LightGetColor(0, scolor));
}
if (XdrvMailbox.index >= 3) {
scolor[0] = '\0';
for (uint8_t i = 0; i < LST_RGB; i++) {
if (Settings.flag.decimal_text) {
snprintf_P(scolor, 25, PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Settings.ws_color[XdrvMailbox.index -3][i]);
} else {
snprintf_P(scolor, 25, PSTR("%s%02X"), scolor, Settings.ws_color[XdrvMailbox.index -3][i]);
}
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_SVALUE, command, XdrvMailbox.index, scolor);
}
}
else if ((CMND_CHANNEL == command_code) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= light_subtype ) ) {
// Set "Channel" directly - this allows Color and Direct PWM control to coexist
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
light_current_color[XdrvMailbox.index-1] = XdrvMailbox.payload * 255 / 100;
LightSetColor();
coldim = true;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_NVALUE, command, XdrvMailbox.index, light_current_color[XdrvMailbox.index -1] * 100 / 255);
}
else if ((CMND_HSBCOLOR == command_code) && ( light_subtype >= LST_RGB)) {
bool validHSB = (XdrvMailbox.data_len > 0);
if (validHSB) {
uint16_t HSB[3];
if (strstr(XdrvMailbox.data, ",")) { // Command with 3 comma separated parameters, Hue (0<H<360), Saturation (0<S<100) AND Brightness (0<B<100)
for (int i = 0; i < 3; i++) {
char *substr;
if (0 == i) {
substr = strtok(XdrvMailbox.data, ",");
} else {
substr = strtok(NULL, ",");
}
if (substr != NULL) {
HSB[i] = atoi(substr);
} else {
validHSB = false;
}
}
} else { // Command with only 1 parameter, Hue (0<H<360), Saturation (0<S<100) OR Brightness (0<B<100)
float hsb[3];
LightGetHsb(&hsb[0],&hsb[1],&hsb[2], false);
HSB[0] = round(hsb[0] * 360);
HSB[1] = round(hsb[1] * 100);
HSB[2] = round(hsb[2] * 100);
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index < 4)) {
HSB[XdrvMailbox.index -1] = XdrvMailbox.payload;
} else {
validHSB = false;
}
}
if (validHSB) {
// Translate to fractional elements as required by LightHsbToRgb
// Keep the results <=1 in the event someone passes something out of range.
LightSetHsb(( (HSB[0]>360) ? (HSB[0] % 360) : HSB[0] ) /360.0,
( (HSB[1]>100) ? (HSB[1] % 100) : HSB[1] ) /100.0,
( (HSB[2]>100) ? (HSB[2] % 100) : HSB[2] ) /100.0,
0,
false);
}
} else {
LightState(0);
}
}
#ifdef USE_WS2812 // ***********************************************************************
else if ((CMND_LED == command_code) && (LT_WS2812 == light_type) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= Settings.light_pixels)) {
if (XdrvMailbox.data_len > 0) {
char *p;
uint16_t idx = XdrvMailbox.index;
Ws2812ForceSuspend();
for (char *color = strtok_r(XdrvMailbox.data, " ", &p); color; color = strtok_r(NULL, " ", &p)) {
if (LightColorEntry(color, strlen(color))) {
Ws2812SetColor(idx, light_entry_color[0], light_entry_color[1], light_entry_color[2], light_entry_color[3]);
idx++;
if (idx > Settings.light_pixels) break;
} else {
break;
}
}
Ws2812ForceUpdate();
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_SVALUE, command, XdrvMailbox.index, Ws2812GetColor(XdrvMailbox.index, scolor));
}
else if ((CMND_PIXELS == command_code) && (LT_WS2812 == light_type)) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= WS2812_MAX_LEDS)) {
Settings.light_pixels = XdrvMailbox.payload;
Settings.light_rotation = 0;
Ws2812Clear();
light_update = 1;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.light_pixels);
}
else if ((CMND_ROTATION == command_code) && (LT_WS2812 == light_type)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < Settings.light_pixels)) {
Settings.light_rotation = XdrvMailbox.payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.light_rotation);
}
else if ((CMND_WIDTH == command_code) && (LT_WS2812 == light_type) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= 4)) {
if (1 == XdrvMailbox.index) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 4)) {
Settings.light_width = XdrvMailbox.payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.light_width);
} else {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 32)) {
Settings.ws_width[XdrvMailbox.index -2] = XdrvMailbox.payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_NVALUE, command, XdrvMailbox.index, Settings.ws_width[XdrvMailbox.index -2]);
}
}
#endif // USE_WS2812 ************************************************************************
else if ((CMND_SCHEME == command_code) && (light_subtype >= LST_RGB)) {
uint8_t max_scheme = (LT_WS2812 == light_type) ? LS_MAX + WS2812_SCHEMES : LS_MAX -1;
if (('+' == option) && (Settings.light_scheme < max_scheme)) {
XdrvMailbox.payload = Settings.light_scheme + ((0 == Settings.light_scheme) ? 2 : 1); // Skip wakeup
}
else if (('-' == option) && (Settings.light_scheme > 0)) {
XdrvMailbox.payload = Settings.light_scheme - ((2 == Settings.light_scheme) ? 2 : 1); // Skip wakeup
}
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= max_scheme)) {
Settings.light_scheme = XdrvMailbox.payload;
if (LS_WAKEUP == Settings.light_scheme) {
light_wakeup_active = 3;
}
LightPowerOn();
strip_timer_counter = 0;
// Publish state message for Hass
if (Settings.flag3.hass_tele_on_power) {
mqtt_data[0] = '\0';
MqttShowState();
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), MQTT_TELE_RETAIN);
}
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.light_scheme);
}
else if (CMND_WAKEUP == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
Settings.light_dimmer = XdrvMailbox.payload;
}
light_wakeup_active = 3;
Settings.light_scheme = LS_WAKEUP;
LightPowerOn();
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, D_JSON_STARTED);
}
else if ((CMND_COLORTEMPERATURE == command_code) && ((LST_COLDWARM == light_subtype) || (LST_RGBWC == light_subtype))) { // ColorTemp
if (option != '\0') {
uint16_t value = LightGetColorTemp();
if ('+' == option) {
XdrvMailbox.payload = (value > 466) ? 500 : value + 34;
}
else if ('-' == option) {
XdrvMailbox.payload = (value < 187) ? 153 : value - 34;
}
}
if ((XdrvMailbox.payload >= 153) && (XdrvMailbox.payload <= 500)) { // https://developers.meethue.com/documentation/core-concepts
LightSetColorTemp(XdrvMailbox.payload);
coldim = true;
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, LightGetColorTemp());
}
}
else if (CMND_DIMMER == command_code) {
if ('+' == option) {
XdrvMailbox.payload = (Settings.light_dimmer > 89) ? 100 : Settings.light_dimmer + 10;
}
else if ('-' == option) {
XdrvMailbox.payload = (Settings.light_dimmer < 11) ? 1 : Settings.light_dimmer - 10;
}
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
Settings.light_dimmer = XdrvMailbox.payload;
light_update = 1;
coldim = true;
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.light_dimmer);
}
}
else if (CMND_LEDTABLE == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 2)) {
switch (XdrvMailbox.payload) {
case 0: // Off
case 1: // On
Settings.light_correction = XdrvMailbox.payload;
break;
case 2: // Toggle
Settings.light_correction ^= 1;
break;
}
light_update = 1;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, GetStateText(Settings.light_correction));
}
else if (CMND_RGBWWTABLE == command_code) {
bool validtable = (XdrvMailbox.data_len > 0);
char scolor[25];
if (validtable) {
if (strstr(XdrvMailbox.data, ",")) { // Command with up to 5 comma separated parameters
for (int i = 0; i < LST_RGBWC; i++) {
char *substr;
if (0 == i) {
substr = strtok(XdrvMailbox.data, ",");
} else {
substr = strtok(NULL, ",");
}
if (substr != NULL) {
Settings.rgbwwTable[i] = atoi(substr);
}
}
}
light_update = 1;
}
scolor[0] = '\0';
for (uint8_t i = 0; i < LST_RGBWC; i++) {
snprintf_P(scolor, 25, PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Settings.rgbwwTable[i]);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_INDEX_SVALUE, command, XdrvMailbox.index, scolor);
}
else if (CMND_FADE == command_code) {
switch (XdrvMailbox.payload) {
case 0: // Off
case 1: // On
Settings.light_fade = XdrvMailbox.payload;
break;
case 2: // Toggle
Settings.light_fade ^= 1;
break;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_SVALUE, command, GetStateText(Settings.light_fade));
}
else if (CMND_SPEED == command_code) { // 1 - fast, 20 - very slow
if (('+' == option) && (Settings.light_speed > 1)) {
XdrvMailbox.payload = Settings.light_speed -1;
}
else if (('-' == option) && (Settings.light_speed < STATES)) {
XdrvMailbox.payload = Settings.light_speed +1;
}
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= STATES)) {
Settings.light_speed = XdrvMailbox.payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.light_speed);
}
else if (CMND_WAKEUPDURATION == command_code) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 3001)) {
Settings.light_wakeup = XdrvMailbox.payload;
light_wakeup_active = 0;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_NVALUE, command, Settings.light_wakeup);
}
else if (CMND_UNDOCA == command_code) { // Theos legacy status
LightGetColor(1, scolor);
scolor[6] = '\0'; // RGB only
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,%d,%d,%d,%d,%d"),
scolor, Settings.light_fade, Settings.light_correction, Settings.light_scheme, Settings.light_speed, Settings.light_width);
MqttPublishPrefixTopic_P(STAT, XdrvMailbox.topic);
mqtt_data[0] = '\0';
}
else {
serviced = false; // Unknown command
}
if (coldim) {
LightPreparePower();
}
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv04(uint8_t function)
{
bool result = false;
if (light_type) {
switch (function) {
case FUNC_PRE_INIT:
LightInit();
break;
case FUNC_EVERY_50_MSECOND:
LightAnimate();
#ifdef USE_ARILUX_RF
if (pin[GPIO_ARIRFRCV] < 99) AriluxRfHandler();
#endif // USE_ARILUX_RF
break;
#ifdef USE_ARILUX_RF
case FUNC_EVERY_SECOND:
if (10 == uptime) AriluxRfInit(); // Needs rest before enabling RF interrupts
break;
#endif // USE_ARILUX_RF
case FUNC_COMMAND:
result = LightCommand();
break;
case FUNC_SET_POWER:
LightSetPower();
break;
}
}
return result;
}