Tasmota/sonoff/xdrv_05_irremote_full.ino

683 lines
26 KiB
C++

/*
xdrv_05_irremote_full.ino - complete intefration of IRremoteESP8266
Copyright (C) 2019 Heiko Krupp, Lazar Obradovic, Theo Arends, Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_IR_REMOTE_FULL
/*********************************************************************************************\
* IR Remote send and receive using IRremoteESP8266 library
\*********************************************************************************************/
#define XDRV_05 5
#include <IRremoteESP8266.h>
#include <IRsend.h>
#include <IRrecv.h>
#include <IRutils.h>
#include <IRac.h>
enum IrErrors { IE_RESPONSE_PROVIDED, IE_NO_ERROR, IE_INVALID_RAWDATA, IE_INVALID_JSON, IE_SYNTAX_IRSEND, IE_SYNTAX_IRHVAC,
IE_UNSUPPORTED_HVAC, IE_UNSUPPORTED_PROTOCOL };
const char kIrRemoteCommands[] PROGMEM = "|" D_CMND_IRHVAC "|" D_CMND_IRSEND ; // No prefix
void (* const IrRemoteCommand[])(void) PROGMEM = { &CmndIrHvac, &CmndIrSend };
/*********************************************************************************************\
* IR Send
\*********************************************************************************************/
IRsend *irsend = nullptr;
bool irsend_active = false;
void IrSendInit(void)
{
irsend = new IRsend(pin[GPIO_IRSEND]); // an IR led is at GPIO_IRSEND
irsend->begin();
}
// from https://stackoverflow.com/questions/2602823/in-c-c-whats-the-simplest-way-to-reverse-the-order-of-bits-in-a-byte
// First the left four bits are swapped with the right four bits. Then all adjacent pairs are swapped and then all adjacent single bits. This results in a reversed order.
uint8_t reverseBitsInByte(uint8_t b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
}
// reverse bits in each byte
uint64_t reverseBitsInBytes64(uint64_t b) {
union {
uint8_t b[8];
uint64_t i;
} a;
a.i = b;
for (uint32_t i=0; i<8; i++) {
a.b[i] = reverseBitsInByte(a.b[i]);
}
return a.i;
}
char* IrUint64toHex(uint64_t value, char *str, uint16_t bits)
{
ulltoa(value, str, 16); // Get 64bit value
int fill = 8;
if ((bits > 3) && (bits < 65)) {
fill = bits / 4; // Max 16
if (bits % 4) { fill++; }
}
int len = strlen(str);
fill -= len;
if (fill > 0) {
memmove(str + fill, str, len +1);
memset(str, '0', fill);
}
memmove(str + 2, str, strlen(str) +1);
str[0] = '0';
str[1] = 'x';
return str;
}
/*********************************************************************************************\
* IR Receive
\*********************************************************************************************/
const bool IR_FULL_RCV_SAVE_BUFFER = false; // false = do not use buffer, true = use buffer for decoding
const uint32_t IR_TIME_AVOID_DUPLICATE = 500; // Milliseconds
// Below is from IRrecvDumpV2.ino
// As this program is a special purpose capture/decoder, let us use a larger
// than normal buffer so we can handle Air Conditioner remote codes.
const uint16_t IR_FULL_BUFFER_SIZE = 1024;
// Some A/C units have gaps in their protocols of ~40ms. e.g. Kelvinator
// A value this large may swallow repeats of some protocols
const uint8_t IR__FULL_RCV_TIMEOUT = 50;
IRrecv *irrecv = nullptr;
unsigned long ir_lasttime = 0;
void IrReceiveUpdateThreshold()
{
if (irrecv != nullptr) {
if (Settings.param[P_IR_UNKNOW_THRESHOLD] < 6) { Settings.param[P_IR_UNKNOW_THRESHOLD] = 6; }
irrecv->setUnknownThreshold(Settings.param[P_IR_UNKNOW_THRESHOLD]);
}
}
void IrReceiveInit(void)
{
// an IR led is at GPIO_IRRECV
irrecv = new IRrecv(pin[GPIO_IRRECV], IR_FULL_BUFFER_SIZE, IR__FULL_RCV_TIMEOUT, IR_FULL_RCV_SAVE_BUFFER);
irrecv->setUnknownThreshold(Settings.param[P_IR_UNKNOW_THRESHOLD]);
irrecv->enableIRIn(); // Start the receiver
}
String sendACJsonState(const stdAc::state_t &state) {
DynamicJsonBuffer jsonBuffer;
JsonObject& json = jsonBuffer.createObject();
json[D_JSON_IRHVAC_VENDOR] = typeToString(state.protocol);
json[D_JSON_IRHVAC_MODEL] = state.model;
json[D_JSON_IRHVAC_POWER] = IRac::boolToString(state.power);
json[D_JSON_IRHVAC_MODE] = IRac::opmodeToString(state.mode);
// Home Assistant wants mode to be off if power is also off & vice-versa.
if (state.mode == stdAc::opmode_t::kOff || !state.power) {
json[D_JSON_IRHVAC_MODE] = IRac::opmodeToString(stdAc::opmode_t::kOff);
json[D_JSON_IRHVAC_POWER] = IRac::boolToString(false);
}
json[D_JSON_IRHVAC_CELSIUS] = IRac::boolToString(state.celsius);
if (floorf(state.degrees) == state.degrees) {
json[D_JSON_IRHVAC_TEMP] = floorf(state.degrees); // integer
} else {
json[D_JSON_IRHVAC_TEMP] = RawJson(String(state.degrees, 1)); // non-integer, limit to only 1 sub-digit
}
json[D_JSON_IRHVAC_FANSPEED] = IRac::fanspeedToString(state.fanspeed);
json[D_JSON_IRHVAC_SWINGV] = IRac::swingvToString(state.swingv);
json[D_JSON_IRHVAC_SWINGH] = IRac::swinghToString(state.swingh);
json[D_JSON_IRHVAC_QUIET] = IRac::boolToString(state.quiet);
json[D_JSON_IRHVAC_TURBO] = IRac::boolToString(state.turbo);
json[D_JSON_IRHVAC_ECONO] = IRac::boolToString(state.econo);
json[D_JSON_IRHVAC_LIGHT] = IRac::boolToString(state.light);
json[D_JSON_IRHVAC_FILTER] = IRac::boolToString(state.filter);
json[D_JSON_IRHVAC_CLEAN] = IRac::boolToString(state.clean);
json[D_JSON_IRHVAC_BEEP] = IRac::boolToString(state.beep);
json[D_JSON_IRHVAC_SLEEP] = state.sleep;
String payload = "";
payload.reserve(200);
json.printTo(payload);
return payload;
}
String sendIRJsonState(const struct decode_results &results) {
String json("{");
json += "\"" D_JSON_IR_PROTOCOL "\":\"";
json += typeToString(results.decode_type);
json += "\",\"" D_JSON_IR_BITS "\":";
json += results.bits;
if (hasACState(results.decode_type)) {
json += ",\"" D_JSON_IR_DATA "\":\"0x";
json += resultToHexidecimal(&results);
json += "\"";
} else {
json += ",\"" D_JSON_IR_DATA "\":";
if (Settings.flag.ir_receive_decimal) {
char svalue[32];
ulltoa(results.value, svalue, 10);
json += svalue;
} else {
char hvalue[64];
IrUint64toHex(results.value, hvalue, results.bits); // Get 64bit value as hex 0x00123456
json += "\"";
json += hvalue;
json += "\",\"" D_JSON_IR_DATALSB "\":\"";
IrUint64toHex(reverseBitsInBytes64(results.value), hvalue, results.bits); // Get 64bit value as hex 0x00123456, LSB
json += hvalue;
json += "\"";
}
}
json += ",\"" D_JSON_IR_REPEAT "\":";
json += results.repeat;
stdAc::state_t ac_result;
if (IRAcUtils::decodeToState(&results, &ac_result, nullptr)) {
// we have a decoded state
json += ",\"" D_CMND_IRHVAC "\":";
json += sendACJsonState(ac_result);
}
return json;
}
void IrReceiveCheck(void)
{
char sirtype[14]; // Max is AIWA_RC_T501
int8_t iridx = 0;
decode_results results;
if (irrecv->decode(&results)) {
uint32_t now = millis();
// if ((now - ir_lasttime > IR_TIME_AVOID_DUPLICATE) && (UNKNOWN != results.decode_type) && (results.bits > 0)) {
if (!irsend_active && (now - ir_lasttime > IR_TIME_AVOID_DUPLICATE)) {
ir_lasttime = now;
Response_P(PSTR("{\"" D_JSON_IRRECEIVED "\":%s"), sendIRJsonState(results).c_str());
if (Settings.flag3.receive_raw) {
ResponseAppend_P(PSTR(",\"" D_JSON_IR_RAWDATA "\":["));
uint16_t i;
for (i = 1; i < results.rawlen; i++) {
if (i > 1) { ResponseAppend_P(PSTR(",")); }
uint32_t usecs;
for (usecs = results.rawbuf[i] * kRawTick; usecs > UINT16_MAX; usecs -= UINT16_MAX) {
ResponseAppend_P(PSTR("%d,0,"), UINT16_MAX);
}
ResponseAppend_P(PSTR("%d"), usecs);
if (strlen(mqtt_data) > sizeof(mqtt_data) - 40) { break; } // Quit if char string becomes too long
}
uint16_t extended_length = results.rawlen - 1;
for (uint32_t j = 0; j < results.rawlen - 1; j++) {
uint32_t usecs = results.rawbuf[j] * kRawTick;
// Add two extra entries for multiple larger than UINT16_MAX it is.
extended_length += (usecs / (UINT16_MAX + 1)) * 2;
}
ResponseAppend_P(PSTR("],\"" D_JSON_IR_RAWDATA "Info\":[%d,%d,%d]"), extended_length, i -1, results.overflow);
}
ResponseAppend_P(PSTR("}}"));
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_IRRECEIVED));
if (iridx) {
XdrvRulesProcess();
#ifdef USE_DOMOTICZ
unsigned long value = results.value | (iridx << 28); // [Protocol:4, Data:28]
DomoticzSensor(DZ_COUNT, value); // Send data as Domoticz Counter value
#endif // USE_DOMOTICZ
}
}
irrecv->resume();
}
}
/*********************************************************************************************\
* IR Heating, Ventilation and Air Conditioning
\*********************************************************************************************/
// list all supported protocols, either for IRSend or for IRHVAC, separated by '|'
String listSupportedProtocols(bool hvac) {
String l("");
bool first = true;
for (uint32_t i = UNUSED + 1; i <= kLastDecodeType; i++) {
bool found = false;
if (hvac) {
found = IRac::isProtocolSupported((decode_type_t)i);
} else {
found = (IRsend::defaultBits((decode_type_t)i) > 0) && (!IRac::isProtocolSupported((decode_type_t)i));
}
if (found) {
if (first) {
first = false;
} else {
l += "|";
}
l += typeToString((decode_type_t)i);
}
}
return l;
}
// used to convert values 0-5 to fanspeed_t
const stdAc::fanspeed_t IrHvacFanSpeed[] PROGMEM = { stdAc::fanspeed_t::kAuto,
stdAc::fanspeed_t::kMin, stdAc::fanspeed_t::kLow,stdAc::fanspeed_t::kMedium,
stdAc::fanspeed_t::kHigh, stdAc::fanspeed_t::kMax };
uint32_t IrRemoteCmndIrHvacJson(void)
{
stdAc::state_t state, prev;
char parm_uc[12];
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRHVAC: Received %s"), XdrvMailbox.data);
char dataBufUc[XdrvMailbox.data_len];
UpperCase(dataBufUc, XdrvMailbox.data);
RemoveSpace(dataBufUc);
if (strlen(dataBufUc) < 8) { return IE_INVALID_JSON; }
DynamicJsonBuffer jsonBuf;
JsonObject &json = jsonBuf.parseObject(dataBufUc);
if (!json.success()) { return IE_INVALID_JSON; }
// from: https://github.com/crankyoldgit/IRremoteESP8266/blob/master/examples/CommonAcControl/CommonAcControl.ino
state.protocol = decode_type_t::UNKNOWN;
state.model = 1; // Some A/C's have different models. Let's try using just 1.
state.mode = stdAc::opmode_t::kAuto; // Run in cool mode initially.
state.power = false; // Initially start with the unit off.
state.celsius = true; // Use Celsius for units of temp. False = Fahrenheit
state.degrees = 21.0f; // 21 degrees.
state.fanspeed = stdAc::fanspeed_t::kMedium; // Start with the fan at medium.
state.swingv = stdAc::swingv_t::kOff; // Don't swing the fan up or down.
state.swingh = stdAc::swingh_t::kOff; // Don't swing the fan left or right.
state.light = false; // Turn off any LED/Lights/Display that we can.
state.beep = false; // Turn off any beep from the A/C if we can.
state.econo = false; // Turn off any economy modes if we can.
state.filter = false; // Turn off any Ion/Mold/Health filters if we can.
state.turbo = false; // Don't use any turbo/powerful/etc modes.
state.quiet = false; // Don't use any quiet/silent/etc modes.
state.sleep = -1; // Don't set any sleep time or modes.
state.clean = false; // Turn off any Cleaning options if we can.
state.clock = -1; // Don't set any current time if we can avoid it.
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_VENDOR));
if (json.containsKey(parm_uc)) { state.protocol = strToDecodeType(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_PROTOCOL));
if (json.containsKey(parm_uc)) { state.protocol = strToDecodeType(json[parm_uc]); } // also support 'protocol'
if (decode_type_t::UNKNOWN == state.protocol) { return IE_UNSUPPORTED_HVAC; }
if (!IRac::isProtocolSupported(state.protocol)) { return IE_UNSUPPORTED_HVAC; }
// for fan speed, we also support 1-5 values
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_FANSPEED));
if (json.containsKey(parm_uc)) {
uint32_t fan_speed = json[parm_uc];
if ((fan_speed >= 1) && (fan_speed <= 5)) {
state.fanspeed = (stdAc::fanspeed_t) pgm_read_byte(&IrHvacFanSpeed[fan_speed]);
} else {
state.fanspeed = IRac::strToFanspeed(json[parm_uc]);
}
}
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_MODEL));
if (json.containsKey(parm_uc)) { state.model = IRac::strToModel(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_MODE));
if (json.containsKey(parm_uc)) { state.mode = IRac::strToOpmode(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_SWINGV));
if (json.containsKey(parm_uc)) { state.swingv = IRac::strToSwingV(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_SWINGH));
if (json.containsKey(parm_uc)) { state.swingh = IRac::strToSwingH(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_TEMP));
if (json.containsKey(parm_uc)) { state.degrees = json[parm_uc]; }
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("model %d, mode %d, fanspeed %d, swingv %d, swingh %d"),
// state.model, state.mode, state.fanspeed, state.swingv, state.swingh);
// decode booleans
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_POWER));
if (json.containsKey(parm_uc)) { state.power = IRac::strToBool(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_CELSIUS));
if (json.containsKey(parm_uc)) { state.celsius = IRac::strToBool(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_LIGHT));
if (json.containsKey(parm_uc)) { state.light = IRac::strToBool(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_BEEP));
if (json.containsKey(parm_uc)) { state.beep = IRac::strToBool(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_ECONO));
if (json.containsKey(parm_uc)) { state.econo = IRac::strToBool(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_FILTER));
if (json.containsKey(parm_uc)) { state.filter = IRac::strToBool(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_TURBO));
if (json.containsKey(parm_uc)) { state.turbo = IRac::strToBool(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_QUIET));
if (json.containsKey(parm_uc)) { state.quiet = IRac::strToBool(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_CLEAN));
if (json.containsKey(parm_uc)) { state.clean = IRac::strToBool(json[parm_uc]); }
// optional timer and clock
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_SLEEP));
if (json[parm_uc]) { state.sleep = json[parm_uc]; }
//if (json[D_JSON_IRHVAC_CLOCK]) { state.clock = json[D_JSON_IRHVAC_CLOCK]; } // not sure it's useful to support 'clock'
IRac ac(pin[GPIO_IRSEND]);
bool success = ac.sendAc(state, &prev);
if (!success) { return IE_SYNTAX_IRHVAC; }
Response_P(PSTR("{\"" D_CMND_IRHVAC "\":%s}"), sendACJsonState(state).c_str());
return IE_RESPONSE_PROVIDED;
}
void CmndIrHvac(void)
{
uint8_t error = IE_SYNTAX_IRHVAC;
if (XdrvMailbox.data_len) {
error = IrRemoteCmndIrHvacJson();
}
if (error != IE_RESPONSE_PROVIDED) { IrRemoteCmndResponse(error); } // otherwise response was already provided
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
uint32_t IrRemoteCmndIrSendJson(void)
{
char parm_uc[12]; // used to convert JSON keys to uppercase
// ArduinoJSON entry used to calculate jsonBuf: JSON_OBJECT_SIZE(3) + 40 = 96
// IRsend { "protocol": "RC5", "bits": 12, "data":"0xC86" }
// IRsend { "protocol": "SAMSUNG", "bits": 32, "data": 551502015 }
char dataBufUc[XdrvMailbox.data_len];
UpperCase(dataBufUc, XdrvMailbox.data);
RemoveSpace(dataBufUc);
if (strlen(dataBufUc) < 8) { return IE_INVALID_JSON; }
DynamicJsonBuffer jsonBuf;
JsonObject &json = jsonBuf.parseObject(dataBufUc);
if (!json.success()) { return IE_INVALID_JSON; }
// IRsend { "protocol": "SAMSUNG", "bits": 32, "data": 551502015 }
// IRsend { "protocol": "NEC", "bits": 32, "data":"0x02FDFE80", "repeat": 2 }
decode_type_t protocol = decode_type_t::UNKNOWN;
uint16_t bits = 0;
uint64_t data;
uint8_t repeat = 0;
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_VENDOR));
if (json.containsKey(parm_uc)) { protocol = strToDecodeType(json[parm_uc]); }
UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_PROTOCOL));
if (json.containsKey(parm_uc)) { protocol = strToDecodeType(json[parm_uc]); } // also support 'protocol'
if (decode_type_t::UNKNOWN == protocol) { return IE_UNSUPPORTED_PROTOCOL; }
UpperCase_P(parm_uc, PSTR(D_JSON_IR_BITS));
if (json.containsKey(parm_uc)) { bits = json[parm_uc]; }
UpperCase_P(parm_uc, PSTR(D_JSON_IR_REPEAT));
if (json.containsKey(parm_uc)) { repeat = json[parm_uc]; }
UpperCase_P(parm_uc, PSTR(D_JSON_IR_DATALSB)); // accept LSB values
if (json.containsKey(parm_uc)) { data = reverseBitsInBytes64(strtoull(json[parm_uc], nullptr, 0)); }
UpperCase_P(parm_uc, PSTR(D_JSON_IR_DATA)); // or classical MSB (takes priority)
if (json.containsKey(parm_uc)) { data = strtoull(json[parm_uc], nullptr, 0); }
if (0 == bits) { return IE_SYNTAX_IRSEND; }
// check if the IRSend<x> is greater than repeat, but can be overriden with JSON
if (XdrvMailbox.index > repeat + 1) { repeat = XdrvMailbox.index - 1; }
char dvalue[32];
char hvalue[32];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRS: protocol %d, bits %d, data %s (%s), repeat %d"),
protocol, bits, ulltoa(data, dvalue, 10), IrUint64toHex(data, hvalue, bits), repeat);
irsend_active = true; // deactivate receive
bool success = irsend->send(protocol, data, bits, repeat);
if (!success) {
irsend_active = false;
ResponseCmndChar(D_JSON_PROTOCOL_NOT_SUPPORTED);
}
return IE_NO_ERROR;
}
uint32_t IrRemoteCmndIrSendRaw(void)
{
// IRsend <freq>,<rawdata>,<rawdata> ...
// or
// IRsend raw,<freq>,<zero space>,<bit stream> (one space = zero space *2)
// IRsend raw,<freq>,<zero space>,<zero space multiplier becoming one space>,<bit stream>
// IRsend raw,<freq>,<zero space>,<one space>,<bit stream>
// IRsend raw,<freq>,<header mark>,<header space>,<bit mark>,<zero space>,<one space>,<bit stream>
char *p;
char *str = strtok_r(XdrvMailbox.data, ", ", &p);
if (p == nullptr) {
return IE_INVALID_RAWDATA;
}
// repeat
uint16_t repeat = XdrvMailbox.index > 0 ? XdrvMailbox.index - 1 : 0;
uint16_t freq = atoi(str);
if (!freq && (*str != '0')) { // First parameter is any string
uint16_t count = 0;
char *q = p;
for (; *q; count += (*q++ == ','));
if (count < 2) {
return IE_INVALID_RAWDATA;
} // Parameters must be at least 3
uint16_t parm[count];
for (uint32_t i = 0; i < count; i++) {
parm[i] = strtol(strtok_r(nullptr, ", ", &p), nullptr, 0);
if (!parm[i]) {
if (!i) {
parm[0] = 38000; // Frequency default to 38kHz
} else {
return IE_INVALID_RAWDATA; // Other parameters may not be 0
}
}
}
uint16_t i = 0;
if (count < 4) {
// IRsend raw,0,889,000000100110000001001
uint16_t mark = parm[1] *2; // Protocol where 0 = t, 1 = 2t (RC5)
if (3 == count) {
if (parm[2] < parm[1]) {
// IRsend raw,0,889,2,000000100110000001001
mark = parm[1] * parm[2]; // Protocol where 0 = t1, 1 = t1*t2 (Could be RC5)
} else {
// IRsend raw,0,889,1778,000000100110000001001
mark = parm[2]; // Protocol where 0 = t1, 1 = t2 (Could be RC5)
}
}
uint16_t raw_array[strlen(p)]; // Bits
for (; *p; *p++) {
if (*p == '0') {
raw_array[i++] = parm[1]; // Space
}
else if (*p == '1') {
raw_array[i++] = mark; // Mark
}
}
irsend_active = true;
for (uint32_t r = 0; r <= repeat; r++) {
irsend->sendRaw(raw_array, i, parm[0]);
if (r < repeat) { // if it's not the last message
irsend->space(40000); // since we don't know the inter-message gap, place an arbitrary 40ms gap
}
}
}
else if (6 == count) { // NEC Protocol
// IRsend raw,0,8620,4260,544,411,1496,010101101000111011001110000000001100110000000001100000000000000010001100
uint16_t raw_array[strlen(p)*2+3]; // Header + bits + end
raw_array[i++] = parm[1]; // Header mark
raw_array[i++] = parm[2]; // Header space
uint32_t inter_message_32 = (parm[1] + parm[2]) * 3; // compute an inter-message gap (32 bits)
uint16_t inter_message = (inter_message_32 > 65000) ? 65000 : inter_message_32; // avoid 16 bits overflow
for (; *p; *p++) {
if (*p == '0') {
raw_array[i++] = parm[3]; // Bit mark
raw_array[i++] = parm[4]; // Zero space
}
else if (*p == '1') {
raw_array[i++] = parm[3]; // Bit mark
raw_array[i++] = parm[5]; // One space
}
}
raw_array[i++] = parm[3]; // Trailing mark
irsend_active = true;
for (uint32_t r = 0; r <= repeat; r++) {
irsend->sendRaw(raw_array, i, parm[0]);
if (r < repeat) { // if it's not the last message
irsend->space(inter_message); // since we don't know the inter-message gap, place an arbitrary 40ms gap
}
}
}
else {
return IE_INVALID_RAWDATA; // Invalid number of parameters
}
} else {
if (!freq) { freq = 38000; } // Default to 38kHz
uint16_t count = 0;
char *q = p;
for (; *q; count += (*q++ == ','));
if (0 == count) {
return IE_INVALID_RAWDATA;
}
// IRsend 0,896,876,900,888,894,876,1790,874,872,1810,1736,948,872,880,872,936,872,1792,900,888,1734
count++;
if (count < 200) {
uint16_t raw_array[count]; // It's safe to use stack for up to 200 packets (limited by mqtt_data length)
for (uint32_t i = 0; i < count; i++) {
raw_array[i] = strtol(strtok_r(nullptr, ", ", &p), nullptr, 0); // Allow decimal (20496) and hexadecimal (0x5010) input
}
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("DBG: stack count %d"), count);
irsend_active = true;
for (uint32_t r = 0; r <= repeat; r++) {
irsend->sendRaw(raw_array, count, freq);
}
} else {
uint16_t *raw_array = reinterpret_cast<uint16_t*>(malloc(count * sizeof(uint16_t)));
if (raw_array == nullptr) {
return IE_INVALID_RAWDATA;
}
for (uint32_t i = 0; i < count; i++) {
raw_array[i] = strtol(strtok_r(nullptr, ", ", &p), nullptr, 0); // Allow decimal (20496) and hexadecimal (0x5010) input
}
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("DBG: heap count %d"), count);
irsend_active = true;
for (uint32_t r = 0; r <= repeat; r++) {
irsend->sendRaw(raw_array, count, freq);
}
free(raw_array);
}
}
return IE_NO_ERROR;
}
void CmndIrSend(void)
{
uint8_t error = IE_SYNTAX_IRSEND;
if (XdrvMailbox.data_len) {
if (strstr(XdrvMailbox.data, "{") == nullptr) {
error = IrRemoteCmndIrSendRaw();
} else {
error = IrRemoteCmndIrSendJson();
}
}
IrRemoteCmndResponse(error);
}
void IrRemoteCmndResponse(uint32_t error)
{
switch (error) {
case IE_INVALID_RAWDATA:
ResponseCmndChar(D_JSON_INVALID_RAWDATA);
break;
case IE_INVALID_JSON:
ResponseCmndChar(D_JSON_INVALID_JSON);
break;
case IE_SYNTAX_IRSEND:
Response_P(PSTR("{\"" D_CMND_IRSEND "\":\"" D_JSON_NO " " D_JSON_IR_BITS " " D_JSON_OR " " D_JSON_IR_DATA "\"}"));
break;
case IE_SYNTAX_IRHVAC:
Response_P(PSTR("{\"" D_CMND_IRHVAC "\":\"" D_JSON_WRONG " " D_JSON_IRHVAC_VENDOR ", " D_JSON_IRHVAC_MODE " " D_JSON_OR " " D_JSON_IRHVAC_FANSPEED "\"}"));
break;
case IE_UNSUPPORTED_HVAC:
Response_P(PSTR("{\"" D_CMND_IRHVAC "\":\"" D_JSON_WRONG " " D_JSON_IRHVAC_VENDOR " (%s)\"}"), listSupportedProtocols(true).c_str());
break;
case IE_UNSUPPORTED_PROTOCOL:
Response_P(PSTR("{\"" D_CMND_IRSEND "\":\"" D_JSON_WRONG " " D_JSON_IRHVAC_PROTOCOL " (%s)\"}"), listSupportedProtocols(false).c_str());
break;
default: // IE_NO_ERROR
ResponseCmndDone();
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv05(uint8_t function)
{
bool result = false;
if ((pin[GPIO_IRSEND] < 99) || (pin[GPIO_IRRECV] < 99)) {
switch (function) {
case FUNC_PRE_INIT:
if (pin[GPIO_IRSEND] < 99) {
IrSendInit();
}
if (pin[GPIO_IRRECV] < 99) {
IrReceiveInit();
}
break;
case FUNC_EVERY_50_MSECOND:
if (pin[GPIO_IRRECV] < 99) {
IrReceiveCheck(); // check if there's anything on IR side
}
irsend_active = false; // re-enable IR reception
break;
case FUNC_COMMAND:
if (pin[GPIO_IRSEND] < 99) {
result = DecodeCommand(kIrRemoteCommands, IrRemoteCommand);
}
break;
}
}
return result;
}
#endif // USE_IR_REMOTE_FULL