Tasmota/tasmota/tasmota_support/support_pwm.ino

323 lines
13 KiB
C++

/*
support_pwm.ino - command support for Tasmota
Copyright (C) 2021 Theo Arends & Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/***********************************************************************\
* PWM Control for ESP32
\***********************************************************************/
#ifdef ESP32
// All changes in PWM have been applied, rearm all change indicators
void PwmRearmChanges(void) {
for (uint32_t i = 0; i < MAX_PWMS; i++) {
// Init expected changes
TasmotaGlobal.pwm_value[i] = -1; // no change wanted
TasmotaGlobal.pwm_phase[i] = -1; // no change wanted
}
}
// Load PWM values from settings and intiliaze values
// void PwmLoadFromSettings(void) {
// for (uint32_t i = 0; i < MAX_PWMS; i++) {
// if (i < MAX_PWMS_LEGACY) {
// TasmotaGlobal.pwm_cur_value[i] = Settings->pwm_value[i]; // retrieve in Legacy pool for 0..4
// } else {
// TasmotaGlobal.pwm_cur_value[i] = Settings->pwm_value_ext[i - MAX_PWMS_LEGACY]; // retrieve in Legacy pool for 5..15
// }
// TasmotaGlobal.pwm_cur_phase[i] = 0; // no phase shift for now, will be recomputed at first push to GPIOs
// }
// PwmRearmChanges(); // reset expected changes
// }
// Copy current values to Settings
void PwmSaveToSettings(void) {
for (uint32_t i = 0; i < MAX_PWMS; i++) {
if (i < MAX_PWMS_LEGACY) {
Settings->pwm_value[i] = TasmotaGlobal.pwm_cur_value[i]; // store in Legacy pool for 0..4
} else {
Settings->pwm_value_ext[i - MAX_PWMS_LEGACY] = TasmotaGlobal.pwm_cur_value[i]; // retrieve in Legacy pool for 5..15
}
}
}
/***********************************************************************\
* PWM Control for ESP32
\***********************************************************************/
// Apply PWM expected values to actual GPIO PWM
// As input, `TasmotaGlobal.pwm_value[]` and `TasmotaGlobal.pwm_phase[]` contain the new expected values
// or `-1` if no change.
// Auto-phasing is recomputed, and changes are applied to GPIO if there is a physical GPIO configured and an actual change needed
//
// force_update_all: force applying the PWM values even if the value didn't change (necessary at initialization)
void PwmApplyGPIO(bool force_update_all) {
uint32_t pwm_phase_accumulator = 0; // dephase each PWM channel with the value of the previous
uint8_t timer0_resolution = analogGetTimerResolution(0);
uint32_t timer0_freq = analogGetTimerFrequency(0);
// AddLog(LOG_LEVEL_INFO, "PWM: resol0=%i freq0=%i", timer0_resolution, timer0_freq);
for (uint32_t i = 0; i < MAX_PWMS; i++) {
// compute `pwm_val`, the virtual value of PWM (not taking into account inverted)
uint32_t pwm_val = TasmotaGlobal.pwm_cur_value[i]; // logical value of PWM, 0..1023
uint32_t pwm_phase = TasmotaGlobal.pwm_cur_phase[i]; // pwm_phase is the logical phase of the active pulse, ignoring inverted
// apply new values to GPIO if GPIO is set
if (PinUsed(GPIO_PWM1, i)) {
int32_t pin = Pin(GPIO_PWM1, i);
int32_t chan = analogGetChannel2(pin);
uint32_t res = ledcReadResolution(chan);
uint32_t range = (1 << res) - 1;
uint32_t freq = ledcReadFreq2(chan);
// AddLog(LOG_LEVEL_INFO, "PWM: res0=%i freq0=%i pin=%i chan=%i res=%i timer=%i range=%i freq=%i", timer0_resolution, timer0_freq, pin, chan, res, analogGetTimerForChannel(chan), range, freq);
if (TasmotaGlobal.pwm_value[i] >= 0) { pwm_val = TasmotaGlobal.pwm_value[i]; } // new value explicitly specified
if (pwm_val > range) { pwm_val = range; } // prevent overflow
// compute phase
if (TasmotaGlobal.pwm_phase[i] >= 0) {
pwm_phase = TasmotaGlobal.pwm_phase[i]; // if explicit set explicitly,
} else if (Settings->flag5.pwm_force_same_phase) {
pwm_phase = 0; // if auto-phase is off
} else {
if (freq == timer0_freq && res == timer0_resolution) { // only apply if the frequency is equl to global one
// compute auto-phase only if default frequency
pwm_phase = pwm_phase_accumulator;
// accumulate phase for next GPIO
pwm_phase_accumulator = (pwm_phase + pwm_val) & range;
}
}
// AddLog(LOG_LEVEL_INFO, "PWM: i=%i used=%i pwm_val=%03X vs %03X pwm_phase=%03X vs %03X", i, PinUsed(GPIO_PWM1, i), pwm_val, TasmotaGlobal.pwm_cur_value[i], pwm_phase, TasmotaGlobal.pwm_cur_phase[i]);
if (force_update_all || (pwm_val != TasmotaGlobal.pwm_cur_value[i]) || (pwm_phase != TasmotaGlobal.pwm_cur_phase[i])) {
// GPIO has PWM and there is a chnage to apply, apply it
analogWritePhase(pin, pwm_val, pwm_phase);
// AddLog(LOG_LEVEL_INFO, "PWM: analogWritePhase i=%i val=%03X phase=%03X", i, pwm_val, pwm_phase);
}
}
// set new current values
TasmotaGlobal.pwm_cur_value[i] = pwm_val;
TasmotaGlobal.pwm_cur_phase[i] = pwm_phase;
}
// AddLog(LOG_LEVEL_INFO, "PWM: Val=%03X-%03X-%03X-%03X-%03X Phase=%03X-%03X-%03X-%03X-%03X Range=%03X",
// TasmotaGlobal.pwm_cur_value[0], TasmotaGlobal.pwm_cur_value[1], TasmotaGlobal.pwm_cur_value[2], TasmotaGlobal.pwm_cur_value[3],
// TasmotaGlobal.pwm_cur_value[4],
// TasmotaGlobal.pwm_cur_phase[0], TasmotaGlobal.pwm_cur_phase[1], TasmotaGlobal.pwm_cur_phase[2], TasmotaGlobal.pwm_cur_phase[3],
// TasmotaGlobal.pwm_cur_phase[4],
// Settings->pwm_range
// );
PwmSaveToSettings(); // copy to Settings
PwmRearmChanges(); // reset expected changes
}
void CmndPwm(void)
{
if (TasmotaGlobal.pwm_present && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_PWMS)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= Settings->pwm_range) && PinUsed(GPIO_PWM1, XdrvMailbox.index -1)) {
TasmotaGlobal.pwm_value[XdrvMailbox.index - 1] = XdrvMailbox.payload;
PwmApplyGPIO(false);
}
Response_P(PSTR("{"));
MqttShowPWMState(); // Render the PWM status to MQTT
ResponseJsonEnd();
}
}
void GpioInitPwm(void) {
PwmRearmChanges();
for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only
if (PinUsed(GPIO_PWM1, i)) {
analogAttach(Pin(GPIO_PWM1, i), bitRead(TasmotaGlobal.pwm_inverted, i));
if (i < TasmotaGlobal.light_type) {
// force PWM GPIOs to black
TasmotaGlobal.pwm_value[i] = 0;
} else {
TasmotaGlobal.pwm_present = true;
if (i < MAX_PWMS_LEGACY) {
TasmotaGlobal.pwm_value[i] = Settings->pwm_value[i];
} else {
TasmotaGlobal.pwm_value[i] = Settings->pwm_value_ext[i - MAX_PWMS_LEGACY];
}
}
}
}
PwmApplyGPIO(true); // apply all changes
}
/********************************************************************************************/
void ResetPwm(void)
{
for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only
TasmotaGlobal.pwm_value[i] = 0;
}
PwmApplyGPIO(true);
}
void CmndPwmfrequency(void)
{
int32_t pwm_frequency = Settings->pwm_frequency;
int32_t pwm = -1; // PWM being targeted, or -1 for global value applied to Timer 0
// check if index if above 100, meaning we target only a specific PWM channel
uint32_t parm[2] = { 0, 0 };
ParseParameters(2, parm);
if (parm[1]) { // we have a second parameter
pwm = parm[1] - 1;
if (pwm < 0 || pwm >= MAX_PWMS) { pwm = -1; } // if invalid, revert to global value
}
// AddLog(LOG_LEVEL_INFO, "PWM: payload=%i index=%i pwm=%i pwm_freqency=%i", XdrvMailbox.payload, XdrvMailbox.index , pwm, pwm_frequency);
if ((1 == XdrvMailbox.payload) || ((XdrvMailbox.payload >= PWM_MIN) && (XdrvMailbox.payload <= PWM_MAX))) {
pwm_frequency = (1 == XdrvMailbox.payload) ? PWM_FREQ : XdrvMailbox.payload;
if (pwm >= 0 && PinUsed(GPIO_PWM1, pwm)) {
analogWriteFreq(pwm_frequency, Pin(GPIO_PWM1, pwm));
} else {
// apply to all default PWM
// AddLog(LOG_LEVEL_INFO, "PWM: apply global freq=%i", pwm_frequency);
Settings->pwm_frequency = pwm_frequency;
analogWriteFreq(pwm_frequency); // Default is 977
}
#ifdef USE_LIGHT
LightReapplyColor();
LightAnimate();
#endif // USE_LIGHT
}
ResponseCmndNumber(pwm_frequency);
}
#else // now for ESP8266
void PwmRearmChanges(void) {}
void CmndPwm(void)
{
if (TasmotaGlobal.pwm_present && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_PWMS)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= Settings->pwm_range) && PinUsed(GPIO_PWM1, XdrvMailbox.index -1)) {
uint32_t pwm_index = XdrvMailbox.index - 1;
if (pwm_index < MAX_PWMS_LEGACY) { // write in the appropriate settings pool
Settings->pwm_value[pwm_index] = XdrvMailbox.payload;
} else {
Settings->pwm_value_ext[pwm_index - MAX_PWMS_LEGACY] = XdrvMailbox.payload;
}
analogWrite(Pin(GPIO_PWM1, pwm_index), bitRead(TasmotaGlobal.pwm_inverted, pwm_index) ? Settings->pwm_range - XdrvMailbox.payload : XdrvMailbox.payload);
}
Response_P(PSTR("{"));
MqttShowPWMState(); // Render the PWM status to MQTT
ResponseJsonEnd();
}
}
void GpioInitPwm(void) {
for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only
if (PinUsed(GPIO_PWM1, i)) {
pinMode(Pin(GPIO_PWM1, i), OUTPUT);
if (i < TasmotaGlobal.light_type) {
// force PWM GPIOs to low or high mode if belongs to the light (always <5), see #7165
analogWrite(Pin(GPIO_PWM1, i), bitRead(TasmotaGlobal.pwm_inverted, i) ? Settings->pwm_range : 0);
} else {
TasmotaGlobal.pwm_present = true;
if (i < MAX_PWMS_LEGACY) {
analogWrite(Pin(GPIO_PWM1, i), bitRead(TasmotaGlobal.pwm_inverted, i) ? Settings->pwm_range - Settings->pwm_value[i] : Settings->pwm_value[i]);
} else {
analogWrite(Pin(GPIO_PWM1, i), bitRead(TasmotaGlobal.pwm_inverted, i) ? Settings->pwm_range - Settings->pwm_value_ext[i] : Settings->pwm_value_ext[i]);
}
}
}
}
}
/********************************************************************************************/
void ResetPwm(void)
{
for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only
if (PinUsed(GPIO_PWM1, i)) {
analogWrite(Pin(GPIO_PWM1, i), bitRead(TasmotaGlobal.pwm_inverted, i) ? Settings->pwm_range : 0);
// analogWrite(Pin(GPIO_PWM1, i), bitRead(TasmotaGlobal.pwm_inverted, i) ? Settings->pwm_range - Settings->pwm_value[i] : Settings->pwm_value[i]);
}
}
}
void CmndPwmfrequency(void)
{
if ((1 == XdrvMailbox.payload) || ((XdrvMailbox.payload >= PWM_MIN) && (XdrvMailbox.payload <= PWM_MAX))) {
Settings->pwm_frequency = (1 == XdrvMailbox.payload) ? PWM_FREQ : XdrvMailbox.payload;
analogWriteFreq(Settings->pwm_frequency); // Default is 1000 (core_esp8266_wiring_pwm.c)
#ifdef USE_LIGHT
LightReapplyColor();
LightAnimate();
#endif // USE_LIGHT
}
ResponseCmndNumber(Settings->pwm_frequency);
}
#endif // ESP8266
void CmndPwmrange(void) {
// Support only 8 (=255), 9 (=511) and 10 (=1023) bits resolution
if ((1 == XdrvMailbox.payload) || ((XdrvMailbox.payload > 254) && (XdrvMailbox.payload < 1024))) {
uint32_t pwm_range = XdrvMailbox.payload;
uint32_t pwm_resolution = 0;
while (pwm_range) {
pwm_resolution++;
pwm_range >>= 1;
}
pwm_range = (1 << pwm_resolution) - 1;
uint32_t old_pwm_range = Settings->pwm_range;
Settings->pwm_range = (1 == XdrvMailbox.payload) ? PWM_RANGE : pwm_range;
for (uint32_t i = 0; i < MAX_PWMS; i++) {
if (i < MAX_PWMS_LEGACY) {
if (Settings->pwm_value[i] > Settings->pwm_range) {
Settings->pwm_value[i] = Settings->pwm_range;
}
} else {
if (Settings->pwm_value_ext[i - MAX_PWMS_LEGACY] > Settings->pwm_range) {
Settings->pwm_value_ext[i - MAX_PWMS_LEGACY] = Settings->pwm_range;
}
}
}
if (Settings->pwm_range != old_pwm_range) { // On ESP32 this prevents loss of duty state
analogWriteRange(Settings->pwm_range); // Default is 1023 (Arduino.h)
}
}
ResponseCmndNumber(Settings->pwm_range);
}
void MqttShowPWMState(void)
{
ResponseAppend_P(PSTR("\"" D_CMND_PWM "\":{"));
bool first = true;
for (uint32_t i = 0; i < MAX_PWMS; i++) { // TODO
if (PinUsed(GPIO_PWM1, i)) {
uint32_t pwm_val = (i < MAX_PWMS_LEGACY) ? Settings->pwm_value[i] : Settings->pwm_value_ext[i - MAX_PWMS_LEGACY];
ResponseAppend_P(PSTR("%s\"" D_CMND_PWM "%d\":%d"), first ? "" : ",", i+1, pwm_val);
first = false;
}
}
ResponseJsonEnd();
}