mirror of https://github.com/arendst/Tasmota.git
834 lines
30 KiB
C++
834 lines
30 KiB
C++
/*
|
|
xsns_02_analog.ino - ADC support for Tasmota
|
|
|
|
Copyright (C) 2021 Theo Arends
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_ADC
|
|
/*********************************************************************************************\
|
|
* ADC support for ESP8266 GPIO17 (=PIN_A0) and ESP32 up to 8 channels on GPIO32 to GPIO39
|
|
\*********************************************************************************************/
|
|
|
|
#define XSNS_02 2
|
|
|
|
#ifdef ESP8266
|
|
#define ANALOG_RESOLUTION 10 // 12 = 4095, 11 = 2047, 10 = 1023
|
|
#define ANALOG_RANGE 1023 // 4095 = 12, 2047 = 11, 1023 = 10
|
|
#define ANALOG_PERCENT 10 // backward compatible div10 range
|
|
#define ANALOG_BOARD "ESP8266"
|
|
#endif // ESP8266
|
|
#ifdef ESP32
|
|
#undef ANALOG_RESOLUTION
|
|
#define ANALOG_RESOLUTION 12 // 12 = 4095, 11 = 2047, 10 = 1023
|
|
#undef ANALOG_RANGE
|
|
#define ANALOG_RANGE 4095 // 4095 = 12, 2047 = 11, 1023 = 10
|
|
#undef ANALOG_PERCENT
|
|
#define ANALOG_PERCENT ((ANALOG_RANGE + 50) / 100) // approximation to 1% ADC range
|
|
#undef ANALOG_BOARD
|
|
#define ANALOG_BOARD "ESP-32"
|
|
#endif // ESP32
|
|
|
|
#define TO_CELSIUS(x) ((x) - 273.15)
|
|
#define TO_KELVIN(x) ((x) + 273.15)
|
|
|
|
// Parameters for equation
|
|
#define ANALOG_V33 3.3 // ESP8266 / ESP32 Analog voltage
|
|
#define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celsius in Kelvin (= 298.15)
|
|
|
|
// Shelly 2.5 NTC Thermistor
|
|
// 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd
|
|
// |
|
|
// ADC0
|
|
#define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor
|
|
#define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance
|
|
#define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient
|
|
|
|
// LDR parameters
|
|
// 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd
|
|
// |
|
|
// ADC0
|
|
#define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor
|
|
#define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental
|
|
#define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental
|
|
|
|
// CT Based Apparrent Power Measurement Parameters
|
|
// 3V3 --- R1 ----v--- R1 --- Gnd
|
|
// |
|
|
// CT+ CT-
|
|
// |
|
|
// ADC0
|
|
// Default settings for a 20A/1V Current Transformer.
|
|
// Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER
|
|
#define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use
|
|
#define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..ANALOG_RANGE to RMS current in Amps. Value of 100000 corresponds to 1
|
|
#define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V
|
|
|
|
#define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total
|
|
|
|
// Buttons
|
|
// ---- Inverted
|
|
// 3V3 ---| |----|
|
|
// |
|
|
// 3V3 --- R1 ----|--- R1 --- Gnd
|
|
// |
|
|
// |---| |--- Gnd
|
|
// | ----
|
|
// ADC
|
|
#define ANALOG_BUTTON 128 // Add resistor tolerance
|
|
|
|
// Odroid joysticks
|
|
// ---- Up
|
|
// 3V3 ---| |------------
|
|
// |
|
|
// ---- Dn |--- R10k --- Gnd
|
|
// 3V3 ---| |--- R10k ---|
|
|
// |
|
|
// ADC
|
|
// Press "Up" will raise ADC to ANALOG_RANGE, Press "Dn" will raise ADC to ANALOG_RANGE/2
|
|
#define ANALOG_JOYSTICK (ANALOG_RANGE / 3) +100 // Add resistor tolerance
|
|
|
|
// pH scale minimum and maximum values
|
|
#define ANALOG_PH_MAX 14.0
|
|
#define ANALOG_PH_MIN 0.0
|
|
|
|
// Default values for calibration solution with lower PH
|
|
#define ANALOG_PH_CALSOLUTION_LOW_PH 4.0
|
|
#define ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE 282
|
|
// Default values for calibration solution with higher PH
|
|
#define ANALOG_PH_CALSOLUTION_HIGH_PH 9.18
|
|
#define ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE 435
|
|
|
|
// Multiplier used to store pH with 2 decimal places in a non decimal datatype
|
|
#define ANALOG_PH_DECIMAL_MULTIPLIER 100.0
|
|
|
|
//means mq type (ex for mq-02 use 2, mq-131 use 131)
|
|
#define ANALOG_MQ_TYPE 2
|
|
//exponential regression a params
|
|
#define ANALOG_MQ_A 574.25
|
|
//exponential regression b params
|
|
#define ANALOG_MQ_B -2.222
|
|
/*
|
|
Exponential regression:
|
|
Gas | a | b
|
|
LPG | 44771 | -3.245
|
|
CH4 | 2*10^31| 19.01
|
|
CO | 521853 | -3.821
|
|
Alcohol| 0.3934 | -1.504
|
|
Benzene| 4.8387 | -2.68
|
|
Hexane | 7585.3 | -2.849
|
|
NOx | -462.43 | -2.204
|
|
CL2 | 47.209 | -1.186
|
|
O3 | 23.943 | -1.11
|
|
*/
|
|
//ratio for alarm, NOT USED yet (RS / R0 = 15 ppm)
|
|
#define ANALOG_MQ_RatioMQCleanAir 15.0
|
|
// Multiplier used to store pH with 2 decimal places in a non decimal datatype
|
|
#define ANALOG_MQ_DECIMAL_MULTIPLIER 100.0
|
|
|
|
struct {
|
|
uint8_t present = 0;
|
|
uint8_t type = 0;
|
|
} Adcs;
|
|
|
|
struct {
|
|
float temperature = 0;
|
|
float current = 0;
|
|
float energy = 0;
|
|
uint32_t param1 = 0;
|
|
uint32_t param2 = 0;
|
|
int param3 = 0;
|
|
int param4 = 0;
|
|
uint32_t previous_millis = 0;
|
|
uint16_t last_value = 0;
|
|
uint8_t type = 0;
|
|
uint8_t pin = 0;
|
|
} Adc[MAX_ADCS];
|
|
|
|
#ifdef ESP8266
|
|
bool adcAttachPin(uint8_t pin) {
|
|
return (ADC0_PIN == pin);
|
|
}
|
|
#endif
|
|
|
|
void AdcSaveSettings(uint32_t idx) {
|
|
char parameters[32];
|
|
snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"),
|
|
Adc[idx].type, Adc[idx].param1, Adc[idx].param2, Adc[idx].param3, Adc[idx].param4);
|
|
SettingsUpdateText(SET_ADC_PARAM1 + idx, parameters);
|
|
}
|
|
|
|
void AdcGetSettings(uint32_t idx) {
|
|
char parameters[32];
|
|
Adcs.type = 0;
|
|
Adc[idx].param1 = 0;
|
|
Adc[idx].param2 = 0;
|
|
Adc[idx].param3 = 0;
|
|
Adc[idx].param4 = 0;
|
|
if (strchr(SettingsText(SET_ADC_PARAM1 + idx), ',') != nullptr) {
|
|
Adcs.type = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 1));
|
|
Adc[idx].param1 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 2));
|
|
Adc[idx].param2 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 3));
|
|
Adc[idx].param3 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 4));
|
|
Adc[idx].param4 = atoi(subStr(parameters, SettingsText(SET_ADC_PARAM1 + idx), ",", 5));
|
|
}
|
|
}
|
|
|
|
void AdcInitParams(uint8_t idx) {
|
|
if ((Adcs.type != Adc[idx].type) || (Adc[idx].param1 > 1000000)) {
|
|
if (ADC_TEMP == Adc[idx].type) {
|
|
// Default Shelly 2.5 and 1PM parameters
|
|
Adc[idx].param1 = ANALOG_NTC_BRIDGE_RESISTANCE;
|
|
Adc[idx].param2 = ANALOG_NTC_RESISTANCE;
|
|
Adc[idx].param3 = ANALOG_NTC_B_COEFFICIENT * 10000;
|
|
}
|
|
else if (ADC_LIGHT == Adc[idx].type) {
|
|
Adc[idx].param1 = ANALOG_LDR_BRIDGE_RESISTANCE;
|
|
Adc[idx].param2 = ANALOG_LDR_LUX_CALC_SCALAR;
|
|
Adc[idx].param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000;
|
|
}
|
|
else if (ADC_RANGE == Adc[idx].type) {
|
|
Adc[idx].param1 = 0;
|
|
Adc[idx].param2 = ANALOG_RANGE;
|
|
Adc[idx].param3 = 0;
|
|
Adc[idx].param4 = 100;
|
|
}
|
|
else if (ADC_CT_POWER == Adc[idx].type) {
|
|
Adc[idx].param1 = ANALOG_CT_FLAGS; // (uint32_t) 0
|
|
Adc[idx].param2 = ANALOG_CT_MULTIPLIER; // (uint32_t) 100000
|
|
Adc[idx].param3 = ANALOG_CT_VOLTAGE; // (int) 10
|
|
}
|
|
else if (ADC_PH == Adc[idx].type) {
|
|
Adc[idx].param1 = ANALOG_PH_CALSOLUTION_LOW_PH * ANALOG_PH_DECIMAL_MULTIPLIER; // PH of the calibration solution 1, which is the one with the lower PH
|
|
Adc[idx].param2 = ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE; // Reading of AnalogInput while probe is in solution 1
|
|
Adc[idx].param3 = ANALOG_PH_CALSOLUTION_HIGH_PH * ANALOG_PH_DECIMAL_MULTIPLIER; // PH of the calibration solution 2, which is the one with the higher PH
|
|
Adc[idx].param4 = ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE; // Reading of AnalogInput while probe is in solution 2
|
|
}
|
|
else if (ADC_MQ == Adc[idx].type) {
|
|
Adc[idx].param1 = ANALOG_MQ_TYPE; // Could be MQ-002, MQ-004, MQ-131 ....
|
|
Adc[idx].param2 = (int)(ANALOG_MQ_A * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression
|
|
Adc[idx].param3 = (int)(ANALOG_MQ_B * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression
|
|
Adc[idx].param4 = (int)(ANALOG_MQ_RatioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression
|
|
}
|
|
}
|
|
if ((Adcs.type != Adc[idx].type) || (0 == Adc[idx].param1) || (Adc[idx].param1 > ANALOG_RANGE)) {
|
|
if ((ADC_BUTTON == Adc[idx].type) || (ADC_BUTTON_INV == Adc[idx].type)) {
|
|
Adc[idx].param1 = ANALOG_BUTTON;
|
|
}
|
|
else if (ADC_JOY == Adc[idx].type) {
|
|
Adc[idx].param1 = ANALOG_JOYSTICK;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AdcAttach(uint8_t pin, uint8_t type) {
|
|
if (Adcs.present == MAX_ADCS) { return; }
|
|
Adc[Adcs.present].pin = pin;
|
|
if (adcAttachPin(Adc[Adcs.present].pin)) {
|
|
Adc[Adcs.present].type = type;
|
|
// analogSetPinAttenuation(Adc[Adcs.present].pin, ADC_11db); // Default
|
|
Adcs.present++;
|
|
}
|
|
}
|
|
|
|
void AdcInit(void) {
|
|
Adcs.present = 0;
|
|
for (uint32_t i = 0; i < MAX_ADCS; i++) {
|
|
if (PinUsed(GPIO_ADC_INPUT, i)) {
|
|
AdcAttach(Pin(GPIO_ADC_INPUT, i), ADC_INPUT);
|
|
}
|
|
if (PinUsed(GPIO_ADC_TEMP, i)) {
|
|
AdcAttach(Pin(GPIO_ADC_TEMP, i), ADC_TEMP);
|
|
}
|
|
if (PinUsed(GPIO_ADC_LIGHT, i)) {
|
|
AdcAttach(Pin(GPIO_ADC_LIGHT, i), ADC_LIGHT);
|
|
}
|
|
if (PinUsed(GPIO_ADC_RANGE, i)) {
|
|
AdcAttach(Pin(GPIO_ADC_RANGE, i), ADC_RANGE);
|
|
}
|
|
if (PinUsed(GPIO_ADC_CT_POWER, i)) {
|
|
AdcAttach(Pin(GPIO_ADC_CT_POWER, i), ADC_CT_POWER);
|
|
}
|
|
if (PinUsed(GPIO_ADC_JOY, i)) {
|
|
AdcAttach(Pin(GPIO_ADC_JOY, i), ADC_JOY);
|
|
}
|
|
if (PinUsed(GPIO_ADC_PH, i)) {
|
|
AdcAttach(Pin(GPIO_ADC_PH, i), ADC_PH);
|
|
}
|
|
if (PinUsed(GPIO_ADC_MQ, i)) {
|
|
AdcAttach(Pin(GPIO_ADC_MQ, i), ADC_MQ);
|
|
}
|
|
}
|
|
for (uint32_t i = 0; i < MAX_KEYS; i++) {
|
|
if (PinUsed(GPIO_ADC_BUTTON, i)) {
|
|
AdcAttach(Pin(GPIO_ADC_BUTTON, i), ADC_BUTTON);
|
|
}
|
|
else if (PinUsed(GPIO_ADC_BUTTON_INV, i)) {
|
|
AdcAttach(Pin(GPIO_ADC_BUTTON_INV, i), ADC_BUTTON_INV);
|
|
}
|
|
}
|
|
|
|
if (Adcs.present) {
|
|
#ifdef ESP32
|
|
analogSetClockDiv(1); // Default 1
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
analogSetWidth(ANALOG_RESOLUTION); // Default 12 bits (0 - 4095)
|
|
#endif // CONFIG_IDF_TARGET_ESP32
|
|
analogSetAttenuation(ADC_11db); // Default 11db
|
|
#endif
|
|
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
|
|
AdcGetSettings(idx);
|
|
AdcInitParams(idx);
|
|
AdcSaveSettings(idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint16_t AdcRead(uint32_t pin, uint32_t factor) {
|
|
// factor 1 = 2 samples
|
|
// factor 2 = 4 samples
|
|
// factor 3 = 8 samples
|
|
// factor 4 = 16 samples
|
|
// factor 5 = 32 samples
|
|
uint32_t samples = 1 << factor;
|
|
uint32_t analog = 0;
|
|
for (uint32_t i = 0; i < samples; i++) {
|
|
analog += analogRead(pin);
|
|
delay(1);
|
|
}
|
|
analog >>= factor;
|
|
return analog;
|
|
}
|
|
|
|
#ifdef USE_RULES
|
|
void AdcEvery250ms(void) {
|
|
char adc_idx[3] = { 0 };
|
|
uint32_t offset = 0;
|
|
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
|
|
#ifdef ESP32
|
|
snprintf_P(adc_idx, sizeof(adc_idx), PSTR("%d"), idx +1);
|
|
offset = 1;
|
|
#endif
|
|
if (ADC_INPUT == Adc[idx].type) {
|
|
uint16_t new_value = AdcRead(Adc[idx].pin, 5);
|
|
if ((new_value < Adc[idx].last_value -ANALOG_PERCENT) || (new_value > Adc[idx].last_value +ANALOG_PERCENT)) {
|
|
Adc[idx].last_value = new_value;
|
|
uint16_t value = Adc[idx].last_value / ANALOG_PERCENT;
|
|
Response_P(PSTR("{\"ANALOG\":{\"A%ddiv10\":%d}}"), idx + offset, (value > 99) ? 100 : value);
|
|
XdrvRulesProcess(0);
|
|
}
|
|
}
|
|
else if (ADC_JOY == Adc[idx].type) {
|
|
uint16_t new_value = AdcRead(Adc[idx].pin, 1);
|
|
if (new_value && (new_value != Adc[idx].last_value)) {
|
|
Adc[idx].last_value = new_value;
|
|
uint16_t value = new_value / Adc[idx].param1;
|
|
Response_P(PSTR("{\"ANALOG\":{\"Joy%s\":%d}}"), adc_idx, value);
|
|
XdrvRulesProcess(0);
|
|
} else {
|
|
Adc[idx].last_value = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // USE_RULES
|
|
|
|
uint8_t AdcGetButton(uint32_t pin) {
|
|
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
|
|
if (Adc[idx].pin == pin) {
|
|
if (ADC_BUTTON_INV == Adc[idx].type) {
|
|
return (AdcRead(Adc[idx].pin, 1) < Adc[idx].param1);
|
|
}
|
|
else if (ADC_BUTTON == Adc[idx].type) {
|
|
return (AdcRead(Adc[idx].pin, 1) > Adc[idx].param1);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint16_t AdcGetLux(uint32_t idx) {
|
|
int adc = AdcRead(Adc[idx].pin, 2);
|
|
// Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
|
|
double resistorVoltage = ((double)adc / ANALOG_RANGE) * ANALOG_V33;
|
|
double ldrVoltage = ANALOG_V33 - resistorVoltage;
|
|
double ldrResistance = ldrVoltage / resistorVoltage * (double)Adc[idx].param1;
|
|
double ldrLux = (double)Adc[idx].param2 * FastPrecisePow(ldrResistance, (double)Adc[idx].param3 / 10000);
|
|
|
|
return (uint16_t)ldrLux;
|
|
}
|
|
|
|
float AdcGetMq(uint32_t idx) {
|
|
float avg = 0.0;
|
|
int retries = 5;
|
|
int retries_delay = 20;
|
|
float _RL = 10; //Value in KiloOhms
|
|
float _R0 = 10;
|
|
int _adc = AdcRead(Adc[idx].pin, 2);
|
|
avg += _adc;
|
|
for (int i = 0; i < retries-1; i ++) {
|
|
delay(retries_delay);
|
|
_adc = AdcRead(Adc[idx].pin, 2);
|
|
avg += _adc;
|
|
}
|
|
float voltage = (avg/ retries) * ANALOG_V33 / ((pow(2, ANALOG_RESOLUTION)) - 1);
|
|
|
|
float _RS_Calc = ((ANALOG_V33 * _RL) / voltage) -_RL; //Get value of RS in a gas
|
|
if (_RS_Calc < 0) _RS_Calc = 0; //No negative values accepted.
|
|
float _ratio = _RS_Calc / _R0; // Get ratio RS_gas/RS_air
|
|
float ppm= Adc[idx].param2/ANALOG_MQ_DECIMAL_MULTIPLIER*pow(_ratio, Adc[idx].param3/ANALOG_MQ_DECIMAL_MULTIPLIER); // <- Source excel analisis https://github.com/miguel5612/MQSensorsLib_Docs/tree/master/Internal_design_documents
|
|
if(ppm < 0) ppm = 0; //No negative values accepted or upper datasheet recomendation.
|
|
char ppm_chr[6];
|
|
dtostrfd(ppm, 2, ppm_chr);
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION "ppm read. ADC-RAW: %d, ppm: %d,"), voltage, ppm_chr);
|
|
return ppm;
|
|
}
|
|
|
|
float AdcGetPh(uint32_t idx) {
|
|
int adc = AdcRead(Adc[idx].pin, 2);
|
|
|
|
|
|
float y1 = (float)Adc[idx].param1 / ANALOG_PH_DECIMAL_MULTIPLIER;
|
|
int32_t x1 = Adc[idx].param2;
|
|
float y2 = (float)Adc[idx].param3 / ANALOG_PH_DECIMAL_MULTIPLIER;
|
|
int32_t x2 = Adc[idx].param4;
|
|
|
|
float m = (y2 - y1) / (float)(x2 - x1);
|
|
float ph = m * (float)(adc - x1) + y1;
|
|
|
|
|
|
char phLow_chr[6];
|
|
char phHigh_chr[6];
|
|
dtostrfd(y1, 2, phLow_chr);
|
|
dtostrfd(y2, 2, phHigh_chr);
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION "Analog pH read. ADC-RAW: %d, cal-low(pH=ADC): %s=%d, cal-high(pH=ADC): %s=%d"), adc, phLow_chr, x1, phHigh_chr,x2);
|
|
|
|
return ph;
|
|
}
|
|
|
|
float AdcGetRange(uint32_t idx) {
|
|
// formula for calibration: value, fromLow, fromHigh, toLow, toHigh
|
|
// Example: 514, 632, 236, 0, 100
|
|
// int( ((<param2> - <analog-value>) / (<param2> - <param1>) ) * (<param3> - <param4>) ) + <param4> )
|
|
int adc = AdcRead(Adc[idx].pin, 2);
|
|
double adcrange = ( ((double)Adc[idx].param2 - (double)adc) / ( ((double)Adc[idx].param2 - (double)Adc[idx].param1)) * ((double)Adc[idx].param3 - (double)Adc[idx].param4) + (double)Adc[idx].param4 );
|
|
return (float)adcrange;
|
|
}
|
|
|
|
void AdcGetCurrentPower(uint8_t idx, uint8_t factor) {
|
|
// factor 1 = 2 samples
|
|
// factor 2 = 4 samples
|
|
// factor 3 = 8 samples
|
|
// factor 4 = 16 samples
|
|
// factor 5 = 32 samples
|
|
uint8_t samples = 1 << factor;
|
|
uint16_t analog = 0;
|
|
uint16_t analog_min = ANALOG_RANGE;
|
|
uint16_t analog_max = 0;
|
|
|
|
if (0 == Adc[idx].param1) {
|
|
for (uint32_t i = 0; i < samples; i++) {
|
|
analog = analogRead(Adc[idx].pin);
|
|
if (analog < analog_min) {
|
|
analog_min = analog;
|
|
}
|
|
if (analog > analog_max) {
|
|
analog_max = analog;
|
|
}
|
|
delay(1);
|
|
}
|
|
Adc[idx].current = (float)(analog_max-analog_min) * ((float)(Adc[idx].param2) / 100000);
|
|
}
|
|
else {
|
|
analog = AdcRead(Adc[idx].pin, 5);
|
|
if (analog > Adc[idx].param1) {
|
|
Adc[idx].current = ((float)(analog) - (float)Adc[idx].param1) * ((float)(Adc[idx].param2) / 100000);
|
|
}
|
|
else {
|
|
Adc[idx].current = 0;
|
|
}
|
|
}
|
|
|
|
float power = Adc[idx].current * (float)(Adc[idx].param3) / 10;
|
|
uint32_t current_millis = millis();
|
|
Adc[idx].energy = Adc[idx].energy + ((power * (current_millis - Adc[idx].previous_millis)) / 3600000000);
|
|
Adc[idx].previous_millis = current_millis;
|
|
}
|
|
|
|
void AdcEverySecond(void) {
|
|
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
|
|
if (ADC_TEMP == Adc[idx].type) {
|
|
int adc = AdcRead(Adc[idx].pin, 2);
|
|
// Steinhart-Hart equation for thermistor as temperature sensor:
|
|
// double Rt = (adc * Adc[idx].param1 * MAX_ADC_V) / (ANALOG_RANGE * ANALOG_V33 - (double)adc * MAX_ADC_V);
|
|
// MAX_ADC_V in ESP8266 is 1
|
|
// MAX_ADC_V in ESP32 is 3.3
|
|
#ifdef ESP8266
|
|
double Rt = (adc * Adc[idx].param1) / (ANALOG_RANGE * ANALOG_V33 - (double)adc); // Shelly param1 = 32000 (ANALOG_NTC_BRIDGE_RESISTANCE)
|
|
#else
|
|
double Rt = (adc * Adc[idx].param1) / (ANALOG_RANGE - (double)adc);
|
|
#endif
|
|
double BC = (double)Adc[idx].param3 / 10000; // Shelly param3 = 3350 (ANALOG_NTC_B_COEFFICIENT)
|
|
double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Adc[idx].param2)); // Shelly param2 = 10000 (ANALOG_NTC_RESISTANCE)
|
|
Adc[idx].temperature = ConvertTemp(TO_CELSIUS(T));
|
|
}
|
|
else if (ADC_CT_POWER == Adc[idx].type) {
|
|
AdcGetCurrentPower(idx, 5);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AdcShowContinuation(bool *jsonflg) {
|
|
if (*jsonflg) {
|
|
ResponseAppend_P(PSTR(","));
|
|
} else {
|
|
ResponseAppend_P(PSTR(",\"ANALOG\":{"));
|
|
*jsonflg = true;
|
|
}
|
|
}
|
|
|
|
void AdcShow(bool json) {
|
|
bool domo_flag[ADC_END] = { false };
|
|
char adc_name[10] = { 0 }; // ANALOG8
|
|
char adc_idx[3] = { 0 };
|
|
uint32_t offset = 0;
|
|
|
|
bool jsonflg = false;
|
|
for (uint32_t idx = 0; idx < Adcs.present; idx++) {
|
|
#ifdef ESP32
|
|
snprintf_P(adc_name, sizeof(adc_name), PSTR("Analog%d"), idx +1);
|
|
snprintf_P(adc_idx, sizeof(adc_idx), PSTR("%d"), idx +1);
|
|
offset = 1;
|
|
#endif
|
|
|
|
switch (Adc[idx].type) {
|
|
case ADC_INPUT: {
|
|
uint16_t analog = AdcRead(Adc[idx].pin, 5);
|
|
|
|
if (json) {
|
|
AdcShowContinuation(&jsonflg);
|
|
ResponseAppend_P(PSTR("\"A%d\":%d"), idx + offset, analog);
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_ANALOG, "", idx + offset, analog);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
break;
|
|
}
|
|
case ADC_TEMP: {
|
|
if (json) {
|
|
AdcShowContinuation(&jsonflg);
|
|
ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "%s\":%*_f"), adc_idx, Settings->flag2.temperature_resolution, &Adc[idx].temperature);
|
|
if ((0 == TasmotaGlobal.tele_period) && (!domo_flag[ADC_TEMP])) {
|
|
#ifdef USE_DOMOTICZ
|
|
DomoticzFloatSensor(DZ_TEMP, Adc[idx].temperature);
|
|
domo_flag[ADC_TEMP] = true;
|
|
#endif // USE_DOMOTICZ
|
|
#ifdef USE_KNX
|
|
KnxSensor(KNX_TEMPERATURE, Adc[idx].temperature);
|
|
#endif // USE_KNX
|
|
}
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_Temp(adc_name, Adc[idx].temperature);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
break;
|
|
}
|
|
case ADC_LIGHT: {
|
|
uint16_t adc_light = AdcGetLux(idx);
|
|
|
|
if (json) {
|
|
AdcShowContinuation(&jsonflg);
|
|
ResponseAppend_P(PSTR("\"" D_JSON_ILLUMINANCE "%s\":%d"), adc_idx, adc_light);
|
|
#ifdef USE_DOMOTICZ
|
|
if ((0 == TasmotaGlobal.tele_period) && (!domo_flag[ADC_LIGHT])) {
|
|
DomoticzSensor(DZ_ILLUMINANCE, adc_light);
|
|
domo_flag[ADC_LIGHT] = true;
|
|
}
|
|
#endif // USE_DOMOTICZ
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, adc_name, adc_light);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
break;
|
|
}
|
|
case ADC_RANGE: {
|
|
float adc_range = AdcGetRange(idx);
|
|
char range_chr[FLOATSZ];
|
|
dtostrfd(adc_range, Settings->flag2.frequency_resolution, range_chr);
|
|
|
|
if (json) {
|
|
AdcShowContinuation(&jsonflg);
|
|
ResponseAppend_P(PSTR("\"" D_JSON_RANGE "%s\":%s"), adc_idx, range_chr);
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_RANGE_CHR, adc_name, range_chr);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
break;
|
|
}
|
|
case ADC_CT_POWER: {
|
|
AdcGetCurrentPower(idx, 5);
|
|
|
|
float voltage = (float)(Adc[idx].param3) / 10;
|
|
char voltage_chr[FLOATSZ];
|
|
dtostrfd(voltage, Settings->flag2.voltage_resolution, voltage_chr);
|
|
char current_chr[FLOATSZ];
|
|
dtostrfd(Adc[idx].current, Settings->flag2.current_resolution, current_chr);
|
|
char power_chr[FLOATSZ];
|
|
dtostrfd(voltage * Adc[idx].current, Settings->flag2.wattage_resolution, power_chr);
|
|
char energy_chr[FLOATSZ];
|
|
dtostrfd(Adc[idx].energy, Settings->flag2.energy_resolution, energy_chr);
|
|
|
|
if (json) {
|
|
AdcShowContinuation(&jsonflg);
|
|
ResponseAppend_P(PSTR("\"CTEnergy%s\":{\"" D_JSON_ENERGY "\":%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"),
|
|
adc_idx, energy_chr, power_chr, voltage_chr, current_chr);
|
|
#ifdef USE_DOMOTICZ
|
|
if ((0 == TasmotaGlobal.tele_period) && (!domo_flag[ADC_CT_POWER])) {
|
|
DomoticzSensor(DZ_POWER_ENERGY, power_chr);
|
|
DomoticzSensor(DZ_VOLTAGE, voltage_chr);
|
|
DomoticzSensor(DZ_CURRENT, current_chr);
|
|
domo_flag[ADC_CT_POWER] = true;
|
|
}
|
|
#endif // USE_DOMOTICZ
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_VOLTAGE, voltage_chr);
|
|
WSContentSend_PD(HTTP_SNS_CURRENT, current_chr);
|
|
WSContentSend_PD(HTTP_SNS_POWER, power_chr);
|
|
WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, energy_chr);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
break;
|
|
}
|
|
case ADC_JOY: {
|
|
uint16_t new_value = AdcRead(Adc[idx].pin, 1);
|
|
uint16_t value = new_value / Adc[idx].param1;
|
|
if (json) {
|
|
AdcShowContinuation(&jsonflg);
|
|
ResponseAppend_P(PSTR("\"Joy%s\":%d"), adc_idx, value);
|
|
}
|
|
break;
|
|
}
|
|
case ADC_PH: {
|
|
float ph = AdcGetPh(idx);
|
|
char ph_chr[6];
|
|
dtostrfd(ph, 2, ph_chr);
|
|
|
|
|
|
if (json) {
|
|
AdcShowContinuation(&jsonflg);
|
|
ResponseAppend_P(PSTR("\"pH%d\":%s"), idx + offset, ph_chr);
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_PH, "", ph_chr);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
break;
|
|
}
|
|
case ADC_MQ: {
|
|
float mq = AdcGetMq(idx);
|
|
char mq_chr[6];
|
|
dtostrfd(mq, 2, mq_chr);
|
|
|
|
float mqnumber =Adc[idx].param1;
|
|
char mqnumber_chr[6];
|
|
dtostrfd(mqnumber, 0, mqnumber_chr);
|
|
|
|
if (json) {
|
|
AdcShowContinuation(&jsonflg);
|
|
ResponseAppend_P(PSTR("\"MQ%d_%d\":%s"), Adc[idx].param1, idx + offset, mq_chr);
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_MQ, mqnumber_chr, mq_chr);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (jsonflg) {
|
|
ResponseJsonEnd();
|
|
}
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Commands
|
|
\*********************************************************************************************/
|
|
|
|
const char kAdcCommands[] PROGMEM = "|" // No prefix
|
|
D_CMND_ADCPARAM;
|
|
|
|
void (* const AdcCommand[])(void) PROGMEM = {
|
|
&CmndAdcParam };
|
|
|
|
void CmndAdcParam(void) {
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_ADCS)) {
|
|
uint8_t idx = XdrvMailbox.index -1;
|
|
if (XdrvMailbox.data_len) {
|
|
if (XdrvMailbox.payload > ADC_INPUT) {
|
|
AdcGetSettings(idx);
|
|
if (ArgC() > 3) { // Process parameter entry
|
|
char argument[XdrvMailbox.data_len];
|
|
// AdcParam 2, 32000, 10000, 3350
|
|
// AdcParam 3, 10000, 12518931, -1.405
|
|
// AdcParam 4, 128, 0, 0
|
|
// AdcParam 5, 128, 0, 0
|
|
// AdcParam 6, 0, ANALOG_RANGE, 0, 100
|
|
// AdcParam 7, 0, 2146, 0.23
|
|
// AdcParam 8, 1000, 0, 0
|
|
Adc[idx].type = XdrvMailbox.payload;
|
|
Adc[idx].param1 = strtol(ArgV(argument, 2), nullptr, 10);
|
|
Adc[idx].param2 = strtol(ArgV(argument, 3), nullptr, 10);
|
|
if (ADC_RANGE == XdrvMailbox.payload) {
|
|
Adc[idx].param3 = abs(strtol(ArgV(argument, 4), nullptr, 10));
|
|
Adc[idx].param4 = abs(strtol(ArgV(argument, 5), nullptr, 10));
|
|
} else {
|
|
Adc[idx].param3 = (int)(CharToFloat(ArgV(argument, 4)) * 10000);
|
|
}
|
|
if (ADC_PH == XdrvMailbox.payload) {
|
|
float phLow = CharToFloat(ArgV(argument, 2));
|
|
float phHigh = CharToFloat(ArgV(argument, 4));
|
|
Adc[idx].param1 = phLow * ANALOG_PH_DECIMAL_MULTIPLIER;
|
|
Adc[idx].param2 = strtol(ArgV(argument, 3), nullptr, 10);
|
|
Adc[idx].param3 = phHigh * ANALOG_PH_DECIMAL_MULTIPLIER;
|
|
Adc[idx].param4 = strtol(ArgV(argument, 5), nullptr, 10);
|
|
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION "Analog pH probe calibrated. cal-low(pH=ADC) %2_f=%d, cal-high(pH=ADC) %2_f=%d"),
|
|
&phLow, Adc[idx].param2, &phHigh, Adc[idx].param4);
|
|
}
|
|
if (ADC_CT_POWER == XdrvMailbox.payload) {
|
|
if (((1 == Adc[idx].param1) & CT_FLAG_ENERGY_RESET) > 0) {
|
|
for (uint32_t idx = 0; idx < MAX_ADCS; idx++) {
|
|
Adc[idx].energy = 0;
|
|
}
|
|
Adc[idx].param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag
|
|
}
|
|
}
|
|
if (ADC_MQ == XdrvMailbox.payload) {
|
|
float a = CharToFloat(ArgV(argument, 3));
|
|
float b = CharToFloat(ArgV(argument, 4));
|
|
float ratioMQCleanAir = CharToFloat(ArgV(argument, 5));
|
|
if (a==0 && b==0 && ratioMQCleanAir==0)
|
|
{
|
|
if (Adc[idx].param1==2)
|
|
{
|
|
a=574.25;
|
|
b=-2.222
|
|
ratioMQCleanAir=9.83
|
|
}
|
|
if (Adc[idx].param1==4)
|
|
{
|
|
a=1012.7
|
|
b=-2.786
|
|
ratioMQCleanAir=4.4
|
|
}
|
|
if (Adc[idx].param1==7)
|
|
{
|
|
a=99.042
|
|
b=-1.518
|
|
ratioMQCleanAir=27.5
|
|
}
|
|
if (Adc[idx].param1==131)
|
|
{
|
|
a=23.943
|
|
b=-1.11
|
|
ratioMQCleanAir=15
|
|
}
|
|
}
|
|
Adc[idx].param2 = (int)(a * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression
|
|
Adc[idx].param3 = (int)(b * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression
|
|
Adc[idx].param4 = (int)(ratioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER); // Exponential regression
|
|
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION "Analog MQ reset: mq%d, a=%2_f, b=%2_f, ratioMQCleanAir=%2_f"),
|
|
Adc[idx].param1, &a, &b, &ratioMQCleanAir);
|
|
}
|
|
} else { // Set default values based on current adc type
|
|
// AdcParam 2
|
|
// AdcParam 3
|
|
// AdcParam 4
|
|
// AdcParam 5
|
|
// AdcParam 6
|
|
// AdcParam 7
|
|
// AdcParam 8
|
|
Adcs.type = 0;
|
|
AdcInitParams(idx);
|
|
}
|
|
AdcSaveSettings(idx);
|
|
}
|
|
}
|
|
|
|
// AdcParam
|
|
AdcGetSettings(idx);
|
|
Response_P(PSTR("{\"" D_CMND_ADCPARAM "%d\":[%d,%d,%d"), idx +1, Adcs.type, Adc[idx].param1, Adc[idx].param2);
|
|
if ((ADC_RANGE == Adc[idx].type) || (ADC_MQ == Adc[idx].type)){
|
|
ResponseAppend_P(PSTR(",%d,%d"), Adc[idx].param3, Adc[idx].param4);
|
|
} else {
|
|
int value = Adc[idx].param3;
|
|
uint8_t precision;
|
|
for (precision = 4; precision > 0; precision--) {
|
|
if (value % 10) { break; }
|
|
value /= 10;
|
|
}
|
|
char param3[33];
|
|
dtostrfd(((double)Adc[idx].param3)/10000, precision, param3);
|
|
ResponseAppend_P(PSTR(",%s"), param3);
|
|
}
|
|
ResponseAppend_P(PSTR("]}"));
|
|
}
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Interface
|
|
\*********************************************************************************************/
|
|
|
|
bool Xsns02(uint8_t function) {
|
|
bool result = false;
|
|
|
|
switch (function) {
|
|
case FUNC_COMMAND:
|
|
result = DecodeCommand(kAdcCommands, AdcCommand);
|
|
break;
|
|
case FUNC_MODULE_INIT:
|
|
AdcInit();
|
|
break;
|
|
default:
|
|
if (Adcs.present) {
|
|
switch (function) {
|
|
#ifdef USE_RULES
|
|
case FUNC_EVERY_250_MSECOND:
|
|
AdcEvery250ms();
|
|
break;
|
|
#endif // USE_RULES
|
|
case FUNC_EVERY_SECOND:
|
|
AdcEverySecond();
|
|
break;
|
|
case FUNC_JSON_APPEND:
|
|
AdcShow(1);
|
|
break;
|
|
#ifdef USE_WEBSERVER
|
|
case FUNC_WEB_SENSOR:
|
|
AdcShow(0);
|
|
break;
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif // USE_ADC
|