mirror of https://github.com/arendst/Tasmota.git
1639 lines
44 KiB
C++
1639 lines
44 KiB
C++
/*
|
|
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include "nRF24L01.h"
|
|
#include "RF24_config.h"
|
|
#include "RF24.h"
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::csn(bool mode)
|
|
{
|
|
|
|
#if defined (RF24_TINY)
|
|
if (ce_pin != csn_pin) {
|
|
digitalWrite(csn_pin,mode);
|
|
}
|
|
else {
|
|
if (mode == HIGH) {
|
|
PORTB |= (1<<PINB2); // SCK->CSN HIGH
|
|
delayMicroseconds(100); // allow csn to settle.
|
|
}
|
|
else {
|
|
PORTB &= ~(1<<PINB2); // SCK->CSN LOW
|
|
delayMicroseconds(11); // allow csn to settle
|
|
}
|
|
}
|
|
// Return, CSN toggle complete
|
|
return;
|
|
|
|
#elif defined(ARDUINO) && !defined (RF24_SPI_TRANSACTIONS)
|
|
// Minimum ideal SPI bus speed is 2x data rate
|
|
// If we assume 2Mbs data rate and 16Mhz clock, a
|
|
// divider of 4 is the minimum we want.
|
|
// CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
|
|
|
|
#if !defined (SOFTSPI)
|
|
_SPI.setBitOrder(MSBFIRST);
|
|
_SPI.setDataMode(SPI_MODE0);
|
|
#if !defined(F_CPU) || F_CPU < 20000000
|
|
_SPI.setClockDivider(SPI_CLOCK_DIV2);
|
|
#elif F_CPU < 40000000
|
|
_SPI.setClockDivider(SPI_CLOCK_DIV4);
|
|
#elif F_CPU < 80000000
|
|
_SPI.setClockDivider(SPI_CLOCK_DIV8);
|
|
#elif F_CPU < 160000000
|
|
_SPI.setClockDivider(SPI_CLOCK_DIV16);
|
|
#elif F_CPU < 320000000
|
|
_SPI.setClockDivider(SPI_CLOCK_DIV32);
|
|
#elif F_CPU < 640000000
|
|
_SPI.setClockDivider(SPI_CLOCK_DIV64);
|
|
#elif F_CPU < 1280000000
|
|
_SPI.setClockDivider(SPI_CLOCK_DIV128);
|
|
#else
|
|
#error "Unsupported CPU frequency. Please set correct SPI divider."
|
|
#endif
|
|
|
|
#endif
|
|
#elif defined (RF24_RPi)
|
|
if(!mode)
|
|
_SPI.chipSelect(csn_pin);
|
|
#endif
|
|
|
|
#if !defined (RF24_LINUX)
|
|
digitalWrite(csn_pin,mode);
|
|
delayMicroseconds(csDelay);
|
|
#endif
|
|
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::ce(bool level)
|
|
{
|
|
//Allow for 3-pin use on ATTiny
|
|
if (ce_pin != csn_pin) digitalWrite(ce_pin,level);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
inline void RF24::beginTransaction() {
|
|
#if defined (RF24_SPI_TRANSACTIONS)
|
|
_SPI.beginTransaction(SPISettings(RF24_SPI_SPEED, MSBFIRST, SPI_MODE0));
|
|
#endif
|
|
csn(LOW);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
inline void RF24::endTransaction() {
|
|
csn(HIGH);
|
|
#if defined (RF24_SPI_TRANSACTIONS)
|
|
_SPI.endTransaction();
|
|
#endif
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
|
|
{
|
|
uint8_t status;
|
|
|
|
#if defined (RF24_LINUX)
|
|
beginTransaction(); //configures the spi settings for RPi, locks mutex and setting csn low
|
|
uint8_t * prx = spi_rxbuff;
|
|
uint8_t * ptx = spi_txbuff;
|
|
uint8_t size = len + 1; // Add register value to transmit buffer
|
|
|
|
*ptx++ = ( R_REGISTER | ( REGISTER_MASK & reg ) );
|
|
|
|
while (len--){ *ptx++ = RF24_NOP; } // Dummy operation, just for reading
|
|
|
|
_SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size);
|
|
|
|
status = *prx++; // status is 1st byte of receive buffer
|
|
|
|
// decrement before to skip status byte
|
|
while ( --size ){ *buf++ = *prx++; }
|
|
endTransaction(); //unlocks mutex and setting csn high
|
|
|
|
#else
|
|
|
|
beginTransaction();
|
|
status = _SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) );
|
|
while ( len-- ){
|
|
*buf++ = _SPI.transfer(0xff);
|
|
}
|
|
endTransaction();
|
|
|
|
#endif
|
|
|
|
return status;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::read_register(uint8_t reg)
|
|
{
|
|
uint8_t result;
|
|
|
|
#if defined (RF24_LINUX)
|
|
|
|
beginTransaction();
|
|
|
|
uint8_t * prx = spi_rxbuff;
|
|
uint8_t * ptx = spi_txbuff;
|
|
*ptx++ = ( R_REGISTER | ( REGISTER_MASK & reg ) );
|
|
*ptx++ = RF24_NOP ; // Dummy operation, just for reading
|
|
|
|
_SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, 2);
|
|
result = *++prx; // result is 2nd byte of receive buffer
|
|
|
|
endTransaction();
|
|
#else
|
|
|
|
beginTransaction();
|
|
_SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) );
|
|
result = _SPI.transfer(0xff);
|
|
endTransaction();
|
|
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
|
|
{
|
|
uint8_t status;
|
|
|
|
#if defined (RF24_LINUX)
|
|
beginTransaction();
|
|
uint8_t * prx = spi_rxbuff;
|
|
uint8_t * ptx = spi_txbuff;
|
|
uint8_t size = len + 1; // Add register value to transmit buffer
|
|
|
|
*ptx++ = ( W_REGISTER | ( REGISTER_MASK & reg ) );
|
|
while ( len-- )
|
|
*ptx++ = *buf++;
|
|
|
|
_SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size);
|
|
status = *prx; // status is 1st byte of receive buffer
|
|
endTransaction();
|
|
#else
|
|
|
|
beginTransaction();
|
|
status = _SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) );
|
|
while ( len-- )
|
|
_SPI.transfer(*buf++);
|
|
endTransaction();
|
|
|
|
#endif
|
|
|
|
return status;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::write_register(uint8_t reg, uint8_t value)
|
|
{
|
|
uint8_t status;
|
|
|
|
IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\r\n"),reg,value));
|
|
|
|
#if defined (RF24_LINUX)
|
|
beginTransaction();
|
|
uint8_t * prx = spi_rxbuff;
|
|
uint8_t * ptx = spi_txbuff;
|
|
*ptx++ = ( W_REGISTER | ( REGISTER_MASK & reg ) );
|
|
*ptx = value ;
|
|
|
|
_SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, 2);
|
|
status = *prx++; // status is 1st byte of receive buffer
|
|
endTransaction();
|
|
#else
|
|
|
|
beginTransaction();
|
|
status = _SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) );
|
|
_SPI.transfer(value);
|
|
endTransaction();
|
|
|
|
#endif
|
|
|
|
return status;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::write_payload(const void* buf, uint8_t data_len, const uint8_t writeType)
|
|
{
|
|
uint8_t status;
|
|
const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
|
|
|
|
data_len = rf24_min(data_len, payload_size);
|
|
uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
|
|
|
|
//printf("[Writing %u bytes %u blanks]",data_len,blank_len);
|
|
IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); );
|
|
|
|
#if defined (RF24_LINUX)
|
|
beginTransaction();
|
|
uint8_t * prx = spi_rxbuff;
|
|
uint8_t * ptx = spi_txbuff;
|
|
uint8_t size;
|
|
size = data_len + blank_len + 1 ; // Add register value to transmit buffer
|
|
|
|
*ptx++ = writeType;
|
|
while ( data_len-- )
|
|
*ptx++ = *current++;
|
|
while ( blank_len-- )
|
|
*ptx++ = 0;
|
|
|
|
_SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size);
|
|
status = *prx; // status is 1st byte of receive buffer
|
|
endTransaction();
|
|
|
|
#else
|
|
|
|
beginTransaction();
|
|
status = _SPI.transfer( writeType );
|
|
while ( data_len-- ) {
|
|
_SPI.transfer(*current++);
|
|
}
|
|
while ( blank_len-- ) {
|
|
_SPI.transfer(0);
|
|
}
|
|
endTransaction();
|
|
|
|
#endif
|
|
|
|
return status;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::read_payload(void* buf, uint8_t data_len)
|
|
{
|
|
uint8_t status;
|
|
uint8_t* current = reinterpret_cast<uint8_t*>(buf);
|
|
|
|
if(data_len > payload_size) data_len = payload_size;
|
|
uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
|
|
|
|
//printf("[Reading %u bytes %u blanks]",data_len,blank_len);
|
|
|
|
IF_SERIAL_DEBUG( printf("[Reading %u bytes %u blanks]\n",data_len,blank_len); );
|
|
|
|
#if defined (RF24_LINUX)
|
|
beginTransaction();
|
|
uint8_t * prx = spi_rxbuff;
|
|
uint8_t * ptx = spi_txbuff;
|
|
uint8_t size;
|
|
size = data_len + blank_len + 1; // Add register value to transmit buffer
|
|
|
|
*ptx++ = R_RX_PAYLOAD;
|
|
while(--size)
|
|
*ptx++ = RF24_NOP;
|
|
|
|
size = data_len + blank_len + 1; // Size has been lost during while, re affect
|
|
|
|
_SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, size);
|
|
|
|
status = *prx++; // 1st byte is status
|
|
|
|
if (data_len > 0) {
|
|
while ( --data_len ) // Decrement before to skip 1st status byte
|
|
*current++ = *prx++;
|
|
|
|
*current = *prx;
|
|
}
|
|
endTransaction();
|
|
#else
|
|
|
|
beginTransaction();
|
|
status = _SPI.transfer( R_RX_PAYLOAD );
|
|
while ( data_len-- ) {
|
|
*current++ = _SPI.transfer(0xFF);
|
|
}
|
|
while ( blank_len-- ) {
|
|
_SPI.transfer(0xff);
|
|
}
|
|
endTransaction();
|
|
|
|
#endif
|
|
|
|
return status;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::flush_rx(void)
|
|
{
|
|
return spiTrans( FLUSH_RX );
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::flush_tx(void)
|
|
{
|
|
return spiTrans( FLUSH_TX );
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::spiTrans(uint8_t cmd){
|
|
|
|
uint8_t status;
|
|
|
|
beginTransaction();
|
|
status = _SPI.transfer( cmd );
|
|
endTransaction();
|
|
|
|
return status;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::get_status(void)
|
|
{
|
|
return spiTrans(RF24_NOP);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
#if !defined (MINIMAL)
|
|
void RF24::print_status(uint8_t status)
|
|
{
|
|
printf_P(PSTR("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"),
|
|
status,
|
|
(status & _BV(RX_DR))?1:0,
|
|
(status & _BV(TX_DS))?1:0,
|
|
(status & _BV(MAX_RT))?1:0,
|
|
((status >> RX_P_NO) & 0x07),
|
|
(status & _BV(TX_FULL))?1:0
|
|
);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::print_observe_tx(uint8_t value)
|
|
{
|
|
printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"),
|
|
value,
|
|
(value >> PLOS_CNT) & 0x0F,
|
|
(value >> ARC_CNT) & 0x0F
|
|
);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
|
|
{
|
|
//char extra_tab = strlen_P(name) < 8 ? '\t' : 0;
|
|
//printf_P(PSTR(PRIPSTR"\t%c ="),name,extra_tab);
|
|
#if defined (RF24_LINUX)
|
|
printf("%s\t =", name);
|
|
#else
|
|
printf_P(PSTR(PRIPSTR"\t ="),name);
|
|
#endif
|
|
while (qty--)
|
|
printf_P(PSTR(" 0x%02x"),read_register(reg++));
|
|
printf_P(PSTR("\r\n"));
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
|
|
{
|
|
|
|
#if defined (RF24_LINUX)
|
|
printf("%s\t =",name);
|
|
#else
|
|
printf_P(PSTR(PRIPSTR"\t ="),name);
|
|
#endif
|
|
while (qty--)
|
|
{
|
|
uint8_t buffer[addr_width];
|
|
read_register(reg++,buffer,sizeof buffer);
|
|
|
|
printf_P(PSTR(" 0x"));
|
|
uint8_t* bufptr = buffer + sizeof buffer;
|
|
while( --bufptr >= buffer )
|
|
printf_P(PSTR("%02x"),*bufptr);
|
|
}
|
|
|
|
printf_P(PSTR("\r\n"));
|
|
}
|
|
#endif
|
|
/****************************************************************************/
|
|
|
|
RF24::RF24():
|
|
p_variant(false),
|
|
payload_size(32), dynamic_payloads_enabled(false), addr_width(5),csDelay(5)//,pipe0_reading_address(0)
|
|
{
|
|
pipe0_reading_address[0]=0;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
#if defined (RF24_LINUX) && !defined (MRAA)//RPi constructor
|
|
|
|
RF24::RF24(uint16_t _cepin, uint16_t _cspin, uint32_t _spi_speed):
|
|
ce_pin(_cepin),csn_pin(_cspin),spi_speed(_spi_speed),p_variant(false), payload_size(32), dynamic_payloads_enabled(false),addr_width(5)//,pipe0_reading_address(0)
|
|
{
|
|
pipe0_reading_address[0]=0;
|
|
}
|
|
#endif
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::setChannel(uint8_t channel)
|
|
{
|
|
const uint8_t max_channel = 125;
|
|
write_register(RF_CH,rf24_min(channel,max_channel));
|
|
}
|
|
|
|
uint8_t RF24::getChannel()
|
|
{
|
|
|
|
return read_register(RF_CH);
|
|
}
|
|
/****************************************************************************/
|
|
|
|
void RF24::setPayloadSize(uint8_t size)
|
|
{
|
|
payload_size = rf24_min(size,32);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::getPayloadSize(void)
|
|
{
|
|
return payload_size;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
#if !defined (MINIMAL)
|
|
|
|
static const char rf24_datarate_e_str_0[] PROGMEM = "1MBPS";
|
|
static const char rf24_datarate_e_str_1[] PROGMEM = "2MBPS";
|
|
static const char rf24_datarate_e_str_2[] PROGMEM = "250KBPS";
|
|
static const char * const rf24_datarate_e_str_P[] PROGMEM = {
|
|
rf24_datarate_e_str_0,
|
|
rf24_datarate_e_str_1,
|
|
rf24_datarate_e_str_2,
|
|
};
|
|
static const char rf24_model_e_str_0[] PROGMEM = "nRF24L01";
|
|
static const char rf24_model_e_str_1[] PROGMEM = "nRF24L01+";
|
|
static const char * const rf24_model_e_str_P[] PROGMEM = {
|
|
rf24_model_e_str_0,
|
|
rf24_model_e_str_1,
|
|
};
|
|
static const char rf24_crclength_e_str_0[] PROGMEM = "Disabled";
|
|
static const char rf24_crclength_e_str_1[] PROGMEM = "8 bits";
|
|
static const char rf24_crclength_e_str_2[] PROGMEM = "16 bits" ;
|
|
static const char * const rf24_crclength_e_str_P[] PROGMEM = {
|
|
rf24_crclength_e_str_0,
|
|
rf24_crclength_e_str_1,
|
|
rf24_crclength_e_str_2,
|
|
};
|
|
static const char rf24_pa_dbm_e_str_0[] PROGMEM = "PA_MIN";
|
|
static const char rf24_pa_dbm_e_str_1[] PROGMEM = "PA_LOW";
|
|
static const char rf24_pa_dbm_e_str_2[] PROGMEM = "PA_HIGH";
|
|
static const char rf24_pa_dbm_e_str_3[] PROGMEM = "PA_MAX";
|
|
static const char * const rf24_pa_dbm_e_str_P[] PROGMEM = {
|
|
rf24_pa_dbm_e_str_0,
|
|
rf24_pa_dbm_e_str_1,
|
|
rf24_pa_dbm_e_str_2,
|
|
rf24_pa_dbm_e_str_3,
|
|
};
|
|
|
|
#if defined (RF24_LINUX)
|
|
static const char rf24_csn_e_str_0[] = "CE0 (PI Hardware Driven)";
|
|
static const char rf24_csn_e_str_1[] = "CE1 (PI Hardware Driven)";
|
|
static const char rf24_csn_e_str_2[] = "CE2 (PI Hardware Driven)";
|
|
static const char rf24_csn_e_str_3[] = "Custom GPIO Software Driven";
|
|
static const char * const rf24_csn_e_str_P[] = {
|
|
rf24_csn_e_str_0,
|
|
rf24_csn_e_str_1,
|
|
rf24_csn_e_str_2,
|
|
rf24_csn_e_str_3,
|
|
};
|
|
#endif
|
|
|
|
void RF24::printDetails(void)
|
|
{
|
|
|
|
#if defined (RF24_RPi)
|
|
printf("================ SPI Configuration ================\n" );
|
|
if (csn_pin < BCM2835_SPI_CS_NONE ){
|
|
printf("CSN Pin \t = %s\n",rf24_csn_e_str_P[csn_pin]);
|
|
}else{
|
|
printf("CSN Pin \t = Custom GPIO%d%s\n", csn_pin,
|
|
csn_pin==RPI_V2_GPIO_P1_26 ? " (CE1) Software Driven" : "" );
|
|
}
|
|
printf("CE Pin \t = Custom GPIO%d\n", ce_pin );
|
|
printf("Clock Speed\t = " );
|
|
switch (spi_speed)
|
|
{
|
|
case BCM2835_SPI_SPEED_64MHZ : printf("64 Mhz"); break ;
|
|
case BCM2835_SPI_SPEED_32MHZ : printf("32 Mhz"); break ;
|
|
case BCM2835_SPI_SPEED_16MHZ : printf("16 Mhz"); break ;
|
|
case BCM2835_SPI_SPEED_8MHZ : printf("8 Mhz"); break ;
|
|
case BCM2835_SPI_SPEED_4MHZ : printf("4 Mhz"); break ;
|
|
case BCM2835_SPI_SPEED_2MHZ : printf("2 Mhz"); break ;
|
|
case BCM2835_SPI_SPEED_1MHZ : printf("1 Mhz"); break ;
|
|
case BCM2835_SPI_SPEED_512KHZ: printf("512 KHz"); break ;
|
|
case BCM2835_SPI_SPEED_256KHZ: printf("256 KHz"); break ;
|
|
case BCM2835_SPI_SPEED_128KHZ: printf("128 KHz"); break ;
|
|
case BCM2835_SPI_SPEED_64KHZ : printf("64 KHz"); break ;
|
|
case BCM2835_SPI_SPEED_32KHZ : printf("32 KHz"); break ;
|
|
case BCM2835_SPI_SPEED_16KHZ : printf("16 KHz"); break ;
|
|
case BCM2835_SPI_SPEED_8KHZ : printf("8 KHz"); break ;
|
|
default : printf("8 Mhz"); break ;
|
|
}
|
|
printf("\n================ NRF Configuration ================\n");
|
|
|
|
#endif //Linux
|
|
|
|
print_status(get_status());
|
|
|
|
print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2);
|
|
print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4);
|
|
print_address_register(PSTR("TX_ADDR\t"),TX_ADDR);
|
|
|
|
print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6);
|
|
print_byte_register(PSTR("EN_AA\t"),EN_AA);
|
|
print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR);
|
|
print_byte_register(PSTR("RF_CH\t"),RF_CH);
|
|
print_byte_register(PSTR("RF_SETUP"),RF_SETUP);
|
|
print_byte_register(PSTR("CONFIG\t"),NRF_CONFIG);
|
|
print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2);
|
|
|
|
printf_P(PSTR("Data Rate\t = " PRIPSTR "\r\n"),pgm_read_ptr(&rf24_datarate_e_str_P[getDataRate()]));
|
|
printf_P(PSTR("Model\t\t = " PRIPSTR "\r\n"),pgm_read_ptr(&rf24_model_e_str_P[isPVariant()]));
|
|
printf_P(PSTR("CRC Length\t = " PRIPSTR "\r\n"),pgm_read_ptr(&rf24_crclength_e_str_P[getCRCLength()]));
|
|
printf_P(PSTR("PA Power\t = " PRIPSTR "\r\n"), pgm_read_ptr(&rf24_pa_dbm_e_str_P[getPALevel()]));
|
|
|
|
}
|
|
|
|
#endif
|
|
/****************************************************************************/
|
|
|
|
bool RF24::begin(uint16_t _cepin, uint16_t _cspin)
|
|
{
|
|
// Initizalize the ce_pin and ce_pin values
|
|
this->ce_pin = _cepin;
|
|
this->csn_pin = _cspin;
|
|
|
|
uint8_t setup=0;
|
|
|
|
#if defined (RF24_LINUX)
|
|
|
|
#if defined (MRAA)
|
|
GPIO();
|
|
gpio.begin(ce_pin,csn_pin);
|
|
#endif
|
|
|
|
#ifdef RF24_RPi
|
|
switch(csn_pin){ //Ensure valid hardware CS pin
|
|
case 0: break;
|
|
case 1: break;
|
|
// Allow BCM2835 enums for RPi
|
|
case 8: csn_pin = 0; break;
|
|
case 7: csn_pin = 1; break;
|
|
case 18: csn_pin = 10; break; //to make it work on SPI1
|
|
case 17: csn_pin = 11; break;
|
|
case 16: csn_pin = 12; break;
|
|
default: csn_pin = 0; break;
|
|
}
|
|
#endif
|
|
|
|
_SPI.begin(csn_pin);
|
|
|
|
pinMode(ce_pin,OUTPUT);
|
|
ce(LOW);
|
|
|
|
delay(100);
|
|
|
|
#elif defined(LITTLEWIRE)
|
|
pinMode(csn_pin,OUTPUT);
|
|
_SPI.begin();
|
|
csn(HIGH);
|
|
#elif defined(XMEGA_D3)
|
|
if (ce_pin != csn_pin) pinMode(ce_pin,OUTPUT);
|
|
_SPI.begin(csn_pin);
|
|
ce(LOW);
|
|
csn(HIGH);
|
|
delay(200);
|
|
#else
|
|
// Initialize pins
|
|
if (ce_pin != csn_pin) pinMode(ce_pin,OUTPUT);
|
|
|
|
#if ! defined(LITTLEWIRE)
|
|
if (ce_pin != csn_pin)
|
|
#endif
|
|
pinMode(csn_pin,OUTPUT);
|
|
|
|
_SPI.begin();
|
|
ce(LOW);
|
|
csn(HIGH);
|
|
#if defined (__ARDUINO_X86__)
|
|
delay(100);
|
|
#endif
|
|
#endif //Linux
|
|
|
|
// Must allow the radio time to settle else configuration bits will not necessarily stick.
|
|
// This is actually only required following power up but some settling time also appears to
|
|
// be required after resets too. For full coverage, we'll always assume the worst.
|
|
// Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
|
|
// Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
|
|
// WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
|
|
delay( 5 ) ;
|
|
|
|
// Reset NRF_CONFIG and enable 16-bit CRC.
|
|
write_register( NRF_CONFIG, 0x0C ) ;
|
|
|
|
// Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
|
|
// WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
|
|
// sizes must never be used. See documentation for a more complete explanation.
|
|
setRetries(5,15);
|
|
|
|
// Reset value is MAX
|
|
//setPALevel( RF24_PA_MAX ) ;
|
|
|
|
// check for connected module and if this is a p nRF24l01 variant
|
|
//
|
|
if( setDataRate( RF24_250KBPS ) )
|
|
{
|
|
p_variant = true ;
|
|
}
|
|
setup = read_register(RF_SETUP);
|
|
/*if( setup == 0b00001110 ) // register default for nRF24L01P
|
|
{
|
|
p_variant = true ;
|
|
}*/
|
|
|
|
// Then set the data rate to the slowest (and most reliable) speed supported by all
|
|
// hardware.
|
|
setDataRate( RF24_1MBPS ) ;
|
|
|
|
// Initialize CRC and request 2-byte (16bit) CRC
|
|
//setCRCLength( RF24_CRC_16 ) ;
|
|
|
|
// Disable dynamic payloads, to match dynamic_payloads_enabled setting - Reset value is 0
|
|
toggle_features();
|
|
write_register(FEATURE,0 );
|
|
write_register(DYNPD,0);
|
|
dynamic_payloads_enabled = false;
|
|
|
|
// Reset current status
|
|
// Notice reset and flush is the last thing we do
|
|
write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
|
|
|
|
// Set up default configuration. Callers can always change it later.
|
|
// This channel should be universally safe and not bleed over into adjacent
|
|
// spectrum.
|
|
setChannel(76);
|
|
|
|
// Flush buffers
|
|
flush_rx();
|
|
flush_tx();
|
|
|
|
powerUp(); //Power up by default when begin() is called
|
|
|
|
// Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp )
|
|
// PTX should use only 22uA of power
|
|
write_register(NRF_CONFIG, ( read_register(NRF_CONFIG) ) & ~_BV(PRIM_RX) );
|
|
|
|
// if setup is 0 or ff then there was no response from module
|
|
return ( setup != 0 && setup != 0xff );
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
bool RF24::isChipConnected()
|
|
{
|
|
uint8_t setup = read_register(SETUP_AW);
|
|
if(setup >= 1 && setup <= 3)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::startListening(void)
|
|
{
|
|
#if !defined (RF24_TINY) && ! defined(LITTLEWIRE)
|
|
powerUp();
|
|
#endif
|
|
write_register(NRF_CONFIG, read_register(NRF_CONFIG) | _BV(PRIM_RX));
|
|
write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
|
|
ce(HIGH);
|
|
// Restore the pipe0 adddress, if exists
|
|
if (pipe0_reading_address[0] > 0){
|
|
write_register(RX_ADDR_P0, pipe0_reading_address, addr_width);
|
|
}else{
|
|
closeReadingPipe(0);
|
|
}
|
|
|
|
// Flush buffers
|
|
//flush_rx();
|
|
if(read_register(FEATURE) & _BV(EN_ACK_PAY)){
|
|
flush_tx();
|
|
}
|
|
|
|
// Go!
|
|
//delayMicroseconds(100);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
static const uint8_t child_pipe_enable[] PROGMEM =
|
|
{
|
|
ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
|
|
};
|
|
|
|
void RF24::stopListening(void)
|
|
{
|
|
ce(LOW);
|
|
|
|
delayMicroseconds(txDelay);
|
|
|
|
if(read_register(FEATURE) & _BV(EN_ACK_PAY)){
|
|
delayMicroseconds(txDelay); //200
|
|
flush_tx();
|
|
}
|
|
//flush_rx();
|
|
write_register(NRF_CONFIG, ( read_register(NRF_CONFIG) ) & ~_BV(PRIM_RX) );
|
|
|
|
#if defined (RF24_TINY) || defined (LITTLEWIRE)
|
|
// for 3 pins solution TX mode is only left with additonal powerDown/powerUp cycle
|
|
if (ce_pin == csn_pin) {
|
|
powerDown();
|
|
powerUp();
|
|
}
|
|
#endif
|
|
write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0
|
|
|
|
//delayMicroseconds(100);
|
|
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::powerDown(void)
|
|
{
|
|
ce(LOW); // Guarantee CE is low on powerDown
|
|
write_register(NRF_CONFIG,read_register(NRF_CONFIG) & ~_BV(PWR_UP));
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
//Power up now. Radio will not power down unless instructed by MCU for config changes etc.
|
|
void RF24::powerUp(void)
|
|
{
|
|
uint8_t cfg = read_register(NRF_CONFIG);
|
|
|
|
// if not powered up then power up and wait for the radio to initialize
|
|
if (!(cfg & _BV(PWR_UP))){
|
|
write_register(NRF_CONFIG, cfg | _BV(PWR_UP));
|
|
|
|
// For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
|
|
// There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
|
|
// the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
|
|
delay(5);
|
|
}
|
|
}
|
|
|
|
/******************************************************************/
|
|
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
|
|
void RF24::errNotify(){
|
|
#if defined (SERIAL_DEBUG) || defined (RF24_LINUX)
|
|
printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n"));
|
|
#endif
|
|
#if defined (FAILURE_HANDLING)
|
|
failureDetected = 1;
|
|
#else
|
|
delay(5000);
|
|
#endif
|
|
}
|
|
#endif
|
|
/******************************************************************/
|
|
|
|
//Similar to the previous write, clears the interrupt flags
|
|
bool RF24::write( const void* buf, uint8_t len, const bool multicast )
|
|
{
|
|
//Start Writing
|
|
startFastWrite(buf,len,multicast);
|
|
|
|
//Wait until complete or failed
|
|
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
|
|
uint32_t timer = millis();
|
|
#endif
|
|
|
|
while( ! ( get_status() & ( _BV(TX_DS) | _BV(MAX_RT) ))) {
|
|
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
|
|
if(millis() - timer > 95){
|
|
errNotify();
|
|
#if defined (FAILURE_HANDLING)
|
|
return 0;
|
|
#else
|
|
delay(100);
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ce(LOW);
|
|
|
|
uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
|
|
|
|
//Max retries exceeded
|
|
if( status & _BV(MAX_RT)){
|
|
flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush
|
|
return 0;
|
|
}
|
|
//TX OK 1 or 0
|
|
return 1;
|
|
}
|
|
|
|
bool RF24::write( const void* buf, uint8_t len ){
|
|
return write(buf,len,0);
|
|
}
|
|
/****************************************************************************/
|
|
|
|
//For general use, the interrupt flags are not important to clear
|
|
bool RF24::writeBlocking( const void* buf, uint8_t len, uint32_t timeout )
|
|
{
|
|
//Block until the FIFO is NOT full.
|
|
//Keep track of the MAX retries and set auto-retry if seeing failures
|
|
//This way the FIFO will fill up and allow blocking until packets go through
|
|
//The radio will auto-clear everything in the FIFO as long as CE remains high
|
|
|
|
uint32_t timer = millis(); //Get the time that the payload transmission started
|
|
|
|
while( ( get_status() & ( _BV(TX_FULL) ))) { //Blocking only if FIFO is full. This will loop and block until TX is successful or timeout
|
|
|
|
if( get_status() & _BV(MAX_RT)){ //If MAX Retries have been reached
|
|
reUseTX(); //Set re-transmit and clear the MAX_RT interrupt flag
|
|
if(millis() - timer > timeout){ return 0; } //If this payload has exceeded the user-defined timeout, exit and return 0
|
|
}
|
|
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
|
|
if(millis() - timer > (timeout+95) ){
|
|
errNotify();
|
|
#if defined (FAILURE_HANDLING)
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
//Start Writing
|
|
startFastWrite(buf,len,0); //Write the payload if a buffer is clear
|
|
|
|
return 1; //Return 1 to indicate successful transmission
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::reUseTX(){
|
|
write_register(NRF_STATUS,_BV(MAX_RT) ); //Clear max retry flag
|
|
spiTrans( REUSE_TX_PL );
|
|
ce(LOW); //Re-Transfer packet
|
|
ce(HIGH);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
bool RF24::writeFast( const void* buf, uint8_t len, const bool multicast )
|
|
{
|
|
//Block until the FIFO is NOT full.
|
|
//Keep track of the MAX retries and set auto-retry if seeing failures
|
|
//Return 0 so the user can control the retrys and set a timer or failure counter if required
|
|
//The radio will auto-clear everything in the FIFO as long as CE remains high
|
|
|
|
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
|
|
uint32_t timer = millis();
|
|
#endif
|
|
|
|
while( ( get_status() & ( _BV(TX_FULL) ))) { //Blocking only if FIFO is full. This will loop and block until TX is successful or fail
|
|
|
|
if( get_status() & _BV(MAX_RT)){
|
|
//reUseTX(); //Set re-transmit
|
|
write_register(NRF_STATUS,_BV(MAX_RT) ); //Clear max retry flag
|
|
return 0; //Return 0. The previous payload has been retransmitted
|
|
//From the user perspective, if you get a 0, just keep trying to send the same payload
|
|
}
|
|
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
|
|
if(millis() - timer > 95 ){
|
|
errNotify();
|
|
#if defined (FAILURE_HANDLING)
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
//Start Writing
|
|
startFastWrite(buf,len,multicast);
|
|
|
|
return 1;
|
|
}
|
|
|
|
bool RF24::writeFast( const void* buf, uint8_t len ){
|
|
return writeFast(buf,len,0);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
//Per the documentation, we want to set PTX Mode when not listening. Then all we do is write data and set CE high
|
|
//In this mode, if we can keep the FIFO buffers loaded, packets will transmit immediately (no 130us delay)
|
|
//Otherwise we enter Standby-II mode, which is still faster than standby mode
|
|
//Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data
|
|
|
|
void RF24::startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx){ //TMRh20
|
|
|
|
//write_payload( buf,len);
|
|
write_payload( buf, len,multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
|
|
if(startTx){
|
|
ce(HIGH);
|
|
}
|
|
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
//Added the original startWrite back in so users can still use interrupts, ack payloads, etc
|
|
//Allows the library to pass all tests
|
|
void RF24::startWrite( const void* buf, uint8_t len, const bool multicast ){
|
|
|
|
// Send the payload
|
|
|
|
//write_payload( buf, len );
|
|
write_payload( buf, len,multicast? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
|
|
ce(HIGH);
|
|
#if !defined(F_CPU) || F_CPU > 20000000
|
|
delayMicroseconds(10);
|
|
#endif
|
|
ce(LOW);
|
|
|
|
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
bool RF24::rxFifoFull(){
|
|
return read_register(FIFO_STATUS) & _BV(RX_FULL);
|
|
}
|
|
/****************************************************************************/
|
|
|
|
bool RF24::txStandBy(){
|
|
|
|
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
|
|
uint32_t timeout = millis();
|
|
#endif
|
|
while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){
|
|
if( get_status() & _BV(MAX_RT)){
|
|
write_register(NRF_STATUS,_BV(MAX_RT) );
|
|
ce(LOW);
|
|
flush_tx(); //Non blocking, flush the data
|
|
return 0;
|
|
}
|
|
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
|
|
if( millis() - timeout > 95){
|
|
errNotify();
|
|
#if defined (FAILURE_HANDLING)
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ce(LOW); //Set STANDBY-I mode
|
|
return 1;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
bool RF24::txStandBy(uint32_t timeout, bool startTx){
|
|
|
|
if(startTx){
|
|
stopListening();
|
|
ce(HIGH);
|
|
}
|
|
uint32_t start = millis();
|
|
|
|
while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){
|
|
if( get_status() & _BV(MAX_RT)){
|
|
write_register(NRF_STATUS,_BV(MAX_RT) );
|
|
ce(LOW); //Set re-transmit
|
|
ce(HIGH);
|
|
if(millis() - start >= timeout){
|
|
ce(LOW); flush_tx(); return 0;
|
|
}
|
|
}
|
|
#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
|
|
if( millis() - start > (timeout+95)){
|
|
errNotify();
|
|
#if defined (FAILURE_HANDLING)
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
ce(LOW); //Set STANDBY-I mode
|
|
return 1;
|
|
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::maskIRQ(bool tx, bool fail, bool rx){
|
|
|
|
uint8_t config = read_register(NRF_CONFIG);
|
|
/* clear the interrupt flags */
|
|
config &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR);
|
|
/* set the specified interrupt flags */
|
|
config |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR;
|
|
write_register(NRF_CONFIG, config);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::getDynamicPayloadSize(void)
|
|
{
|
|
uint8_t result = 0;
|
|
|
|
#if defined (RF24_LINUX)
|
|
spi_txbuff[0] = R_RX_PL_WID;
|
|
spi_txbuff[1] = 0xff;
|
|
beginTransaction();
|
|
_SPI.transfernb( (char *) spi_txbuff, (char *) spi_rxbuff, 2);
|
|
result = spi_rxbuff[1];
|
|
endTransaction();
|
|
#else
|
|
beginTransaction();
|
|
_SPI.transfer( R_RX_PL_WID );
|
|
result = _SPI.transfer(0xff);
|
|
endTransaction();
|
|
#endif
|
|
|
|
if(result > 32) { flush_rx(); delay(2); return 0; }
|
|
return result;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
bool RF24::available(void)
|
|
{
|
|
return available(NULL);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
bool RF24::available(uint8_t* pipe_num)
|
|
{
|
|
if (!( read_register(FIFO_STATUS) & _BV(RX_EMPTY) )){
|
|
|
|
// If the caller wants the pipe number, include that
|
|
if ( pipe_num ){
|
|
uint8_t status = get_status();
|
|
*pipe_num = ( status >> RX_P_NO ) & 0x07;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::read( void* buf, uint8_t len ){
|
|
|
|
// Fetch the payload
|
|
read_payload( buf, len );
|
|
|
|
//Clear the two possible interrupt flags with one command
|
|
write_register(NRF_STATUS,_BV(RX_DR) | _BV(MAX_RT) | _BV(TX_DS) );
|
|
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready)
|
|
{
|
|
// Read the status & reset the status in one easy call
|
|
// Or is that such a good idea?
|
|
uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
|
|
|
|
// Report to the user what happened
|
|
tx_ok = status & _BV(TX_DS);
|
|
tx_fail = status & _BV(MAX_RT);
|
|
rx_ready = status & _BV(RX_DR);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::openWritingPipe(uint64_t value)
|
|
{
|
|
// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
|
|
// expects it LSB first too, so we're good.
|
|
|
|
write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), addr_width);
|
|
write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), addr_width);
|
|
|
|
|
|
//const uint8_t max_payload_size = 32;
|
|
//write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
|
|
write_register(RX_PW_P0,payload_size);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
void RF24::openWritingPipe(const uint8_t *address)
|
|
{
|
|
// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
|
|
// expects it LSB first too, so we're good.
|
|
|
|
write_register(RX_ADDR_P0,address, addr_width);
|
|
write_register(TX_ADDR, address, addr_width);
|
|
|
|
//const uint8_t max_payload_size = 32;
|
|
//write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
|
|
write_register(RX_PW_P0,payload_size);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
static const uint8_t child_pipe[] PROGMEM =
|
|
{
|
|
RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
|
|
};
|
|
static const uint8_t child_payload_size[] PROGMEM =
|
|
{
|
|
RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
|
|
};
|
|
|
|
|
|
void RF24::openReadingPipe(uint8_t child, uint64_t address)
|
|
{
|
|
// If this is pipe 0, cache the address. This is needed because
|
|
// openWritingPipe() will overwrite the pipe 0 address, so
|
|
// startListening() will have to restore it.
|
|
if (child == 0){
|
|
memcpy(pipe0_reading_address,&address,addr_width);
|
|
}
|
|
|
|
if (child <= 6)
|
|
{
|
|
// For pipes 2-5, only write the LSB
|
|
if ( child < 2 )
|
|
write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), addr_width);
|
|
else
|
|
write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1);
|
|
|
|
write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
|
|
|
|
// Note it would be more efficient to set all of the bits for all open
|
|
// pipes at once. However, I thought it would make the calling code
|
|
// more simple to do it this way.
|
|
write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
|
|
}
|
|
}
|
|
|
|
/****************************************************************************/
|
|
void RF24::setAddressWidth(uint8_t a_width){
|
|
|
|
if(a_width -= 2){
|
|
write_register(SETUP_AW,a_width%4);
|
|
addr_width = (a_width%4) + 2;
|
|
}else{
|
|
write_register(SETUP_AW,0);
|
|
addr_width = 2;
|
|
}
|
|
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::openReadingPipe(uint8_t child, const uint8_t *address)
|
|
{
|
|
// If this is pipe 0, cache the address. This is needed because
|
|
// openWritingPipe() will overwrite the pipe 0 address, so
|
|
// startListening() will have to restore it.
|
|
if (child == 0){
|
|
memcpy(pipe0_reading_address,address,addr_width);
|
|
}
|
|
if (child <= 6)
|
|
{
|
|
// For pipes 2-5, only write the LSB
|
|
if ( child < 2 ){
|
|
write_register(pgm_read_byte(&child_pipe[child]), address, addr_width);
|
|
}else{
|
|
write_register(pgm_read_byte(&child_pipe[child]), address, 1);
|
|
}
|
|
write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
|
|
|
|
// Note it would be more efficient to set all of the bits for all open
|
|
// pipes at once. However, I thought it would make the calling code
|
|
// more simple to do it this way.
|
|
write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
|
|
|
|
}
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::closeReadingPipe( uint8_t pipe )
|
|
{
|
|
write_register(EN_RXADDR,read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe])));
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::toggle_features(void)
|
|
{
|
|
beginTransaction();
|
|
_SPI.transfer( ACTIVATE );
|
|
_SPI.transfer( 0x73 );
|
|
endTransaction();
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::enableDynamicPayloads(void)
|
|
{
|
|
// Enable dynamic payload throughout the system
|
|
|
|
//toggle_features();
|
|
write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) );
|
|
|
|
|
|
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
|
|
|
|
// Enable dynamic payload on all pipes
|
|
//
|
|
// Not sure the use case of only having dynamic payload on certain
|
|
// pipes, so the library does not support it.
|
|
write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0));
|
|
|
|
dynamic_payloads_enabled = true;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
void RF24::disableDynamicPayloads(void)
|
|
{
|
|
// Disables dynamic payload throughout the system. Also disables Ack Payloads
|
|
|
|
//toggle_features();
|
|
write_register(FEATURE, 0);
|
|
|
|
|
|
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
|
|
|
|
// Disable dynamic payload on all pipes
|
|
//
|
|
// Not sure the use case of only having dynamic payload on certain
|
|
// pipes, so the library does not support it.
|
|
write_register(DYNPD, 0);
|
|
|
|
dynamic_payloads_enabled = false;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::enableAckPayload(void)
|
|
{
|
|
//
|
|
// enable ack payload and dynamic payload features
|
|
//
|
|
|
|
//toggle_features();
|
|
write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
|
|
|
|
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
|
|
|
|
//
|
|
// Enable dynamic payload on pipes 0 & 1
|
|
//
|
|
|
|
write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
|
|
dynamic_payloads_enabled = true;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::enableDynamicAck(void){
|
|
//
|
|
// enable dynamic ack features
|
|
//
|
|
//toggle_features();
|
|
write_register(FEATURE,read_register(FEATURE) | _BV(EN_DYN_ACK) );
|
|
|
|
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
|
|
|
|
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
|
|
{
|
|
const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
|
|
|
|
uint8_t data_len = rf24_min(len,32);
|
|
|
|
#if defined (RF24_LINUX)
|
|
beginTransaction();
|
|
uint8_t * ptx = spi_txbuff;
|
|
uint8_t size = data_len + 1 ; // Add register value to transmit buffer
|
|
*ptx++ = W_ACK_PAYLOAD | ( pipe & 0x07 );
|
|
while ( data_len-- ){
|
|
*ptx++ = *current++;
|
|
}
|
|
|
|
_SPI.transfern( (char *) spi_txbuff, size);
|
|
endTransaction();
|
|
#else
|
|
beginTransaction();
|
|
_SPI.transfer(W_ACK_PAYLOAD | ( pipe & 0x07 ) );
|
|
|
|
while ( data_len-- )
|
|
_SPI.transfer(*current++);
|
|
endTransaction();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
bool RF24::isAckPayloadAvailable(void)
|
|
{
|
|
return ! (read_register(FIFO_STATUS) & _BV(RX_EMPTY));
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
bool RF24::isPVariant(void)
|
|
{
|
|
return p_variant ;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::setAutoAck(bool enable)
|
|
{
|
|
if ( enable )
|
|
write_register(EN_AA, 0x3F);
|
|
else
|
|
write_register(EN_AA, 0);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::setAutoAck( uint8_t pipe, bool enable )
|
|
{
|
|
if ( pipe <= 6 )
|
|
{
|
|
uint8_t en_aa = read_register( EN_AA ) ;
|
|
if( enable )
|
|
{
|
|
en_aa |= _BV(pipe) ;
|
|
}
|
|
else
|
|
{
|
|
en_aa &= ~_BV(pipe) ;
|
|
}
|
|
write_register( EN_AA, en_aa ) ;
|
|
}
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
bool RF24::testCarrier(void)
|
|
{
|
|
return ( read_register(CD) & 1 );
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
bool RF24::testRPD(void)
|
|
{
|
|
return ( read_register(RPD) & 1 ) ;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::setPALevel(uint8_t level)
|
|
{
|
|
|
|
uint8_t setup = read_register(RF_SETUP) & 0xF8;
|
|
|
|
if(level > 3){ // If invalid level, go to max PA
|
|
level = (RF24_PA_MAX << 1) + 1; // +1 to support the SI24R1 chip extra bit
|
|
}else{
|
|
level = (level << 1) + 1; // Else set level as requested
|
|
}
|
|
|
|
|
|
write_register( RF_SETUP, setup |= level ) ; // Write it to the chip
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
uint8_t RF24::getPALevel(void)
|
|
{
|
|
|
|
return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1 ;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
bool RF24::setDataRate(rf24_datarate_e speed)
|
|
{
|
|
bool result = false;
|
|
uint8_t setup = read_register(RF_SETUP) ;
|
|
|
|
// HIGH and LOW '00' is 1Mbs - our default
|
|
setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ;
|
|
|
|
#if !defined(F_CPU) || F_CPU > 20000000
|
|
txDelay=250;
|
|
#else //16Mhz Arduino
|
|
txDelay=85;
|
|
#endif
|
|
if( speed == RF24_250KBPS )
|
|
{
|
|
// Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
|
|
// Making it '10'.
|
|
setup |= _BV( RF_DR_LOW ) ;
|
|
#if !defined(F_CPU) || F_CPU > 20000000
|
|
txDelay=450;
|
|
#else //16Mhz Arduino
|
|
txDelay=155;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
// Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
|
|
// Making it '01'
|
|
if ( speed == RF24_2MBPS )
|
|
{
|
|
setup |= _BV(RF_DR_HIGH);
|
|
#if !defined(F_CPU) || F_CPU > 20000000
|
|
txDelay=190;
|
|
#else //16Mhz Arduino
|
|
txDelay=65;
|
|
#endif
|
|
}
|
|
}
|
|
write_register(RF_SETUP,setup);
|
|
|
|
// Verify our result
|
|
if ( read_register(RF_SETUP) == setup )
|
|
{
|
|
result = true;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
rf24_datarate_e RF24::getDataRate( void )
|
|
{
|
|
rf24_datarate_e result ;
|
|
uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));
|
|
|
|
// switch uses RAM (evil!)
|
|
// Order matters in our case below
|
|
if ( dr == _BV(RF_DR_LOW) )
|
|
{
|
|
// '10' = 250KBPS
|
|
result = RF24_250KBPS ;
|
|
}
|
|
else if ( dr == _BV(RF_DR_HIGH) )
|
|
{
|
|
// '01' = 2MBPS
|
|
result = RF24_2MBPS ;
|
|
}
|
|
else
|
|
{
|
|
// '00' = 1MBPS
|
|
result = RF24_1MBPS ;
|
|
}
|
|
return result ;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::setCRCLength(rf24_crclength_e length)
|
|
{
|
|
uint8_t config = read_register(NRF_CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ;
|
|
|
|
// switch uses RAM (evil!)
|
|
if ( length == RF24_CRC_DISABLED )
|
|
{
|
|
// Do nothing, we turned it off above.
|
|
}
|
|
else if ( length == RF24_CRC_8 )
|
|
{
|
|
config |= _BV(EN_CRC);
|
|
}
|
|
else
|
|
{
|
|
config |= _BV(EN_CRC);
|
|
config |= _BV( CRCO );
|
|
}
|
|
write_register( NRF_CONFIG, config ) ;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
rf24_crclength_e RF24::getCRCLength(void)
|
|
{
|
|
rf24_crclength_e result = RF24_CRC_DISABLED;
|
|
|
|
uint8_t config = read_register(NRF_CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ;
|
|
uint8_t AA = read_register(EN_AA);
|
|
|
|
if ( config & _BV(EN_CRC ) || AA)
|
|
{
|
|
if ( config & _BV(CRCO) )
|
|
result = RF24_CRC_16;
|
|
else
|
|
result = RF24_CRC_8;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
void RF24::disableCRC( void )
|
|
{
|
|
uint8_t disable = read_register(NRF_CONFIG) & ~_BV(EN_CRC) ;
|
|
write_register( NRF_CONFIG, disable ) ;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
void RF24::setRetries(uint8_t delay, uint8_t count)
|
|
{
|
|
write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC);
|
|
}
|
|
|
|
|
|
//ATTiny support code pulled in from https://github.com/jscrane/RF24
|
|
#if defined(RF24_TINY)
|
|
|
|
void SPIClass::begin() {
|
|
// set USCK and DO for output
|
|
// set DI for input
|
|
#if defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
|
|
DDRB |= (1 << PB2) | (1 << PB1);
|
|
DDRB &= ~(1 << PB0);
|
|
#elif defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
|
|
DDRA |= (1 << PA4) | (1 << PA5);
|
|
DDRA &= ~(1 << PA6);
|
|
#elif defined(__AVR_ATtiny2313__) || defined(__AVR_ATtiny4313__)
|
|
DDRB |= (1 << PB7) | (1 << PB6);
|
|
DDRB &= ~(1 << PB5);
|
|
#elif defined(__AVR_ATtiny861__)
|
|
DDRB |= (1 << PB2) | (1 << PB1);
|
|
DDRB &= ~(1 << PB0);
|
|
#endif
|
|
USICR = _BV(USIWM0);
|
|
|
|
}
|
|
|
|
byte SPIClass::transfer(byte b) {
|
|
|
|
USIDR = b;
|
|
USISR = _BV(USIOIF);
|
|
do
|
|
USICR = _BV(USIWM0) | _BV(USICS1) | _BV(USICLK) | _BV(USITC);
|
|
while ((USISR & _BV(USIOIF)) == 0);
|
|
return USIDR;
|
|
|
|
}
|
|
|
|
void SPIClass::end() {}
|
|
void SPIClass::setDataMode(uint8_t mode){}
|
|
void SPIClass::setBitOrder(uint8_t bitOrder){}
|
|
void SPIClass::setClockDivider(uint8_t rate){}
|
|
|
|
|
|
#endif
|