Tasmota/tasmota/tasmota_xnrg_energy/xnrg_02_cse7766.ino

317 lines
11 KiB
C++

/*
xnrg_02_cse7766.ino - CSE7766 and HLW8032 energy sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_CSE7766
/*********************************************************************************************\
* CSE7759 and CSE7766 - Energy (Sonoff S31 and Sonoff Pow R2/R3)
* HLW8032 - Energy (Blitzwolf SHP5)
*
* Needs GPIO_CSE7766_RX only
*
* Based on datasheet from http://www.chipsea.com/UploadFiles/2017/08/11144342F01B5662.pdf
\*********************************************************************************************/
#define XNRG_02 2
#define CSE_MAX_INVALID_POWER 128 // Number of invalid power receipts before deciding active power is zero
#define CSE_NOT_CALIBRATED 0xAA
#define CSE_PULSES_NOT_INITIALIZED -1
#define CSE_PREF 1000
#define CSE_UREF 100
#define CSE_BUFFER_SIZE 25
#include <TasmotaSerial.h>
TasmotaSerial *CseSerial = nullptr;
struct CSE {
long voltage_cycle = 0;
long current_cycle = 0;
long power_cycle = 0;
long power_cycle_first = 0;
long cf_pulses = 0;
long cf_pulses_last_time = CSE_PULSES_NOT_INITIALIZED;
int byte_counter = 0;
uint8_t *rx_buffer = nullptr;
uint8_t power_invalid = 0;
bool received = false;
} Cse;
void CseReceived(void) {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// F2 5A 02 F7 60 00 03 61 00 40 10 05 72 40 51 A6 58 63 10 1B E1 7F 4D 4E - F2 = Power cycle exceeds range - takes too long - No load
// 55 5A 02 F7 60 00 03 5A 00 40 10 04 8B 9F 51 A6 58 18 72 75 61 AC A1 30 - 55 = Ok, 61 = Power not valid (load below 5W)
// 55 5A 02 F7 60 00 03 AB 00 40 10 02 60 5D 51 A6 58 03 E9 EF 71 0B 7A 36 - 55 = Ok, 71 = Ok, F1 = CF overflow, no problem
// 55 5A 02 F1 E8 00 07 9D 00 3F 3E 00 35 F8 50 DB 38 00 B2 A2 F1 D6 97 3E - CF overflow
// 55 5A 02 DB 40 00 03 25 00 3D 18 03 8E CD 4F 0A 60 2A 56 85 61 01 02 1A - OK voltage
// 55 5A 02 DB 40 07 17 1D 00 3D 18 03 8E CD 4F 0A 60 2B EF EA 61 01 02 2C - Wrong voltage
// Hd Id VCal---- Voltage- ICal---- Current- PCal---- Power--- Ad CF--- Ck
uint8_t header = Cse.rx_buffer[0];
if ((header & 0xFC) == 0xFC) {
AddLog(LOG_LEVEL_DEBUG, PSTR("CSE: Abnormal hardware"));
return;
}
// Get chip calibration data (coefficients) and use as initial defaults
if (HLW_UREF_PULSE == EnergyGetCalibration(ENERGY_VOLTAGE_CALIBRATION)) {
long voltage_coefficient = 191200; // uSec
if (CSE_NOT_CALIBRATED != header) {
voltage_coefficient = Cse.rx_buffer[2] << 16 | Cse.rx_buffer[3] << 8 | Cse.rx_buffer[4];
}
EnergySetCalibration(ENERGY_VOLTAGE_CALIBRATION, voltage_coefficient / CSE_UREF);
}
if (HLW_IREF_PULSE == EnergyGetCalibration(ENERGY_CURRENT_CALIBRATION)) {
long current_coefficient = 16140; // uSec
if (CSE_NOT_CALIBRATED != header) {
current_coefficient = Cse.rx_buffer[8] << 16 | Cse.rx_buffer[9] << 8 | Cse.rx_buffer[10];
}
EnergySetCalibration(ENERGY_CURRENT_CALIBRATION, current_coefficient);
}
if (HLW_PREF_PULSE == EnergyGetCalibration(ENERGY_POWER_CALIBRATION)) {
long power_coefficient = 5364000; // uSec
if (CSE_NOT_CALIBRATED != header) {
power_coefficient = Cse.rx_buffer[14] << 16 | Cse.rx_buffer[15] << 8 | Cse.rx_buffer[16];
}
EnergySetCalibration(ENERGY_POWER_CALIBRATION, power_coefficient / CSE_PREF);
}
uint8_t adjustement = Cse.rx_buffer[20];
Cse.voltage_cycle = Cse.rx_buffer[5] << 16 | Cse.rx_buffer[6] << 8 | Cse.rx_buffer[7];
Cse.current_cycle = Cse.rx_buffer[11] << 16 | Cse.rx_buffer[12] << 8 | Cse.rx_buffer[13];
Cse.power_cycle = Cse.rx_buffer[17] << 16 | Cse.rx_buffer[18] << 8 | Cse.rx_buffer[19];
Cse.cf_pulses = Cse.rx_buffer[21] << 8 | Cse.rx_buffer[22];
if (Energy->power_on) { // Powered on
if (adjustement & 0x40) { // Voltage valid
Energy->voltage[0] = (float)(EnergyGetCalibration(ENERGY_VOLTAGE_CALIBRATION) * CSE_UREF) / (float)Cse.voltage_cycle;
}
if (adjustement & 0x10) { // Power valid
Cse.power_invalid = 0;
if ((header & 0xF2) == 0xF2) { // Power cycle exceeds range
Energy->active_power[0] = 0;
} else {
if (0 == Cse.power_cycle_first) { Cse.power_cycle_first = Cse.power_cycle; } // Skip first incomplete Cse.power_cycle
if (Cse.power_cycle_first != Cse.power_cycle) {
Cse.power_cycle_first = -1;
Energy->active_power[0] = (float)(EnergyGetCalibration(ENERGY_POWER_CALIBRATION) * CSE_PREF) / (float)Cse.power_cycle;
} else {
Energy->active_power[0] = 0;
}
}
} else {
if (Cse.power_invalid < Settings->param[P_CSE7766_INVALID_POWER]) { // Allow measurements down to about 1W
Cse.power_invalid++;
} else {
Cse.power_cycle_first = 0;
Energy->active_power[0] = 0; // Powered on but no load
}
}
if (adjustement & 0x20) { // Current valid
if (0 == Energy->active_power[0]) {
Energy->current[0] = 0;
} else {
Energy->current[0] = (float)EnergyGetCalibration(ENERGY_CURRENT_CALIBRATION) / (float)Cse.current_cycle;
}
}
} else { // Powered off
Cse.power_cycle_first = 0;
Energy->voltage[0] = 0;
Energy->active_power[0] = 0;
Energy->current[0] = 0;
}
}
void CseSerialInput(void) {
while (CseSerial->available()) {
yield();
uint8_t serial_in_byte = CseSerial->read();
if (Cse.received) {
Cse.rx_buffer[Cse.byte_counter++] = serial_in_byte;
if (24 == Cse.byte_counter) {
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, Cse.rx_buffer, 24);
uint8_t checksum = 0;
for (uint32_t i = 2; i < 23; i++) { checksum += Cse.rx_buffer[i]; }
if (checksum == Cse.rx_buffer[23]) {
Energy->data_valid[0] = 0;
CseReceived();
Cse.received = false;
return;
} else {
do { // Sync buffer with data (issue #1907 and #3425)
memmove(Cse.rx_buffer, Cse.rx_buffer +1, 24);
Cse.byte_counter--;
} while ((Cse.byte_counter > 2) && (0x5A != Cse.rx_buffer[1]));
if (0x5A != Cse.rx_buffer[1]) {
AddLog(LOG_LEVEL_DEBUG, PSTR("CSE: " D_CHECKSUM_FAILURE));
Cse.received = false;
Cse.byte_counter = 0;
}
}
}
} else {
if ((0x5A == serial_in_byte) && (1 == Cse.byte_counter)) { // 0x5A - Packet header 2
Cse.received = true;
} else {
Cse.byte_counter = 0;
}
Cse.rx_buffer[Cse.byte_counter++] = serial_in_byte;
}
}
}
/********************************************************************************************/
void CseEverySecond(void) {
if (Energy->data_valid[0] > ENERGY_WATCHDOG) {
Cse.voltage_cycle = 0;
Cse.current_cycle = 0;
Cse.power_cycle = 0;
} else {
if (CSE_PULSES_NOT_INITIALIZED == Cse.cf_pulses_last_time) {
Cse.cf_pulses_last_time = Cse.cf_pulses; // Init after restart
} else {
uint32_t cf_pulses = 0;
if (Cse.cf_pulses < Cse.cf_pulses_last_time) { // Rolled over after 0xFFFF (65535) pulses
cf_pulses = (0x10000 - Cse.cf_pulses_last_time) + Cse.cf_pulses;
} else {
cf_pulses = Cse.cf_pulses - Cse.cf_pulses_last_time;
}
if (cf_pulses && Energy->active_power[0]) {
uint32_t delta = (cf_pulses * EnergyGetCalibration(ENERGY_POWER_CALIBRATION)) / 36;
// prevent invalid load delta steps even checksum is valid (issue #5789):
// prevent invalid load delta steps even checksum is valid but allow up to 4kW (issue #7155):
// if (delta <= (4000 * 1000 / 36)) { // max load for S31/Pow R2: 4.00kW
// prevent invalid load delta steps even checksum is valid but allow up to 5.5kW (issue #14156):
if (delta <= (5500 * 1000 / 36)) { // max load for Pow R3: 5.50kW
Cse.cf_pulses_last_time = Cse.cf_pulses;
Energy->kWhtoday_delta[0] += delta;
}
else {
AddLog(LOG_LEVEL_DEBUG, PSTR("CSE: Overload"));
Cse.cf_pulses_last_time = CSE_PULSES_NOT_INITIALIZED;
}
EnergyUpdateToday();
}
}
}
}
void CseSnsInit(void) {
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
// CseSerial = new TasmotaSerial(Pin(GPIO_CSE7766_RX), Pin(GPIO_CSE7766_TX), 1);
CseSerial = new TasmotaSerial(Pin(GPIO_CSE7766_RX), -1, 1);
if (CseSerial->begin(4800, SERIAL_8E1)) {
if (CseSerial->hardwareSerial()) {
SetSerial(4800, TS_SERIAL_8E1);
ClaimSerial();
}
#ifdef ESP32
AddLog(LOG_LEVEL_DEBUG, PSTR("CSE: Serial UART%d"), CseSerial->getUart());
#endif
if (0 == Settings->param[P_CSE7766_INVALID_POWER]) {
Settings->param[P_CSE7766_INVALID_POWER] = CSE_MAX_INVALID_POWER; // SetOption39 1..255
}
Cse.power_invalid = Settings->param[P_CSE7766_INVALID_POWER];
Energy->use_overtemp = true; // Use global temperature for overtemp detection
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void CseDrvInit(void) {
// if (PinUsed(GPIO_CSE7766_RX) && PinUsed(GPIO_CSE7766_TX)) {
if (PinUsed(GPIO_CSE7766_RX)) {
Cse.rx_buffer = (uint8_t*)(malloc(CSE_BUFFER_SIZE));
if (Cse.rx_buffer != nullptr) {
TasmotaGlobal.energy_driver = XNRG_02;
}
}
}
bool CseCommand(void) {
bool serviced = true;
float value = CharToFloat(XdrvMailbox.data);
if ((CMND_POWERCAL == Energy->command_code) ||
(CMND_VOLTAGECAL == Energy->command_code) ||
(CMND_CURRENTCAL == Energy->command_code)) {
// Service in xdrv_03_energy.ino
}
else if (CMND_POWERSET == Energy->command_code) { // xxx W
if (XdrvMailbox.data_len && Cse.power_cycle) {
XdrvMailbox.payload = (uint32_t)(value * Cse.power_cycle) / CSE_PREF;
}
}
else if (CMND_VOLTAGESET == Energy->command_code) { // xxx V
if (XdrvMailbox.data_len && Cse.voltage_cycle) {
XdrvMailbox.payload = (uint32_t)(value * Cse.voltage_cycle) / CSE_UREF;
}
}
else if (CMND_CURRENTSET == Energy->command_code) { // xxx mA
if (XdrvMailbox.data_len && Cse.current_cycle) {
XdrvMailbox.payload = (uint32_t)(value * Cse.current_cycle) / 1000;
}
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg02(uint32_t function) {
bool result = false;
switch (function) {
case FUNC_LOOP:
if (CseSerial) { CseSerialInput(); }
break;
case FUNC_EVERY_SECOND:
CseEverySecond();
break;
case FUNC_COMMAND:
result = CseCommand();
break;
case FUNC_INIT:
CseSnsInit();
break;
case FUNC_PRE_INIT:
CseDrvInit();
break;
}
return result;
}
#endif // USE_CSE7766
#endif // USE_ENERGY_SENSOR