Tasmota/lib/lib_display/UDisplay/uDisplay.cpp

4369 lines
111 KiB
C++
Executable File

/*
uDisplay.cpp - universal display driver support for Tasmota
Copyright (C) 2021 Gerhard Mutz and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <Arduino.h>
#include "uDisplay.h"
#ifdef ESP32
#include "esp8266toEsp32.h"
#endif
#ifdef USE_ESP32_S3
#include "esp_cache.h"
#endif // USE_ESP32_S3
#include "tasmota_options.h"
extern int Cache_WriteBack_Addr(uint32_t addr, uint32_t size);
//#define UDSP_DEBUG
#ifndef UDSP_LBSIZE
#define UDSP_LBSIZE 256
#endif
#define renderer_swap(a, b) { int16_t t = a; a = b; b = t; }
enum LoggingLevels {LOG_LEVEL_NONE, LOG_LEVEL_ERROR, LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG_MORE};
extern void AddLog(uint32_t loglevel, PGM_P formatP, ...);
const uint16_t udisp_colors[]={UDISP_BLACK,UDISP_WHITE,UDISP_RED,UDISP_GREEN,UDISP_BLUE,UDISP_CYAN,UDISP_MAGENTA,\
UDISP_YELLOW,UDISP_NAVY,UDISP_DARKGREEN,UDISP_DARKCYAN,UDISP_MAROON,UDISP_PURPLE,UDISP_OLIVE,\
UDISP_LIGHTGREY,UDISP_DARKGREY,UDISP_ORANGE,UDISP_GREENYELLOW,UDISP_PINK};
uint16_t uDisplay::GetColorFromIndex(uint8_t index) {
if (index >= sizeof(udisp_colors) / 2) index = 0;
return udisp_colors[index];
}
uint16_t uDisplay::fgcol(void) {
return fg_col;
}
uint16_t uDisplay::bgcol(void) {
return bg_col;
}
int8_t uDisplay::color_type(void) {
return col_type;
}
uDisplay::~uDisplay(void) {
#ifdef UDSP_DEBUG
Serial.printf("dealloc\n");
#endif
if (frame_buffer) {
free(frame_buffer);
}
if (lut_full) {
free(lut_full);
}
if (lut_partial) {
free(lut_partial);
}
for (uint16_t cnt = 0; cnt < MAX_LUTS; cnt++ ) {
if (lut_array[cnt]) {
free(lut_array[cnt]);
}
}
#ifdef USE_UNIVERSAL_TOUCH
if (ut_init_code) {
free(ut_init_code);
}
if (ut_touch_code) {
free(ut_touch_code);
}
if (ut_getx_code) {
free(ut_getx_code);
}
if (ut_gety_code) {
free(ut_gety_code);
}
#endif // USE_UNIVERSAL_TOUCH
#ifdef USE_ESP32_S3
if (_dmadesc) {
heap_caps_free(_dmadesc);
_dmadesc = nullptr;
_dmadesc_size = 0;
}
if (_i80_bus) {
esp_lcd_del_i80_bus(_i80_bus);
}
#endif // USE_ESP32_S3
}
uDisplay::uDisplay(char *lp) : Renderer(800, 600) {
// analyse decriptor
pwr_cbp = 0;
dim_cbp = 0;
framebuffer = 0;
col_mode = 16;
sa_mode = 16;
saw_3 = 0xff;
dim_op = 0xff;
bpmode = 0;
dsp_off = 0xff;
dsp_on = 0xff;
lutpsize = 0;
lutfsize = 0;
lutptime = 35;
lutftime = 350;
lut3time = 10;
busy_pin = -1;
spec_init = -1;
ep_mode = 0;
fg_col = 1;
bg_col = 0;
splash_font = -1;
rotmap_xmin = -1;
bpanel = -1;
allcmd_mode = 0;
startline = 0xA1;
uint8_t section = 0;
dsp_ncmds = 0;
epc_part_cnt = 0;
epc_full_cnt = 0;
lut_num = 0;
lvgl_param.data = 0;
lvgl_param.flushlines = 40;
rot_t[0] = 0;
rot_t[1] = 1;
rot_t[2] = 2;
rot_t[3] = 3;
epcoffs_full = 0;
epcoffs_part = 0;
interface = 0;
for (uint32_t cnt = 0; cnt < MAX_LUTS; cnt++) {
lut_cnt[cnt] = 0;
lut_cmd[cnt] = 0xff;
lut_array[cnt] = 0;
}
lut_partial = 0;
lut_full = 0;
char linebuff[UDSP_LBSIZE];
while (*lp) {
uint16_t llen = strlen_ln(lp);
strncpy(linebuff, lp, llen);
linebuff[llen] = 0;
lp += llen;
char *lp1 = linebuff;
if (*lp1 == '#') break;
if (*lp1 == '\n') lp1++;
while (*lp1 == ' ') lp1++;
//Serial.printf(">> %s\n",lp1);
if (*lp1 != ';') {
// check ids:
if (*lp1 == ':') {
// id line
lp1++;
section = *lp1++;
if (section == 'I') {
if (*lp1 == 'C') {
allcmd_mode = 1;
lp1++;
}
if (*lp1 == 'S') {
// pecial case RGB with software SPI init clk,mosi,cs,reset
lp1++;
if (interface == _UDSP_RGB) {
// collect line and send directly
lp1++;
spi_nr = 4;
spec_init = _UDSP_SPI;
spi_dc = -1;
spi_miso = -1;
spi_clk = next_val(&lp1);
spi_mosi = next_val(&lp1);
spi_cs = next_val(&lp1);
reset = next_val(&lp1);
pinMode(spi_cs, OUTPUT);
digitalWrite(spi_cs, HIGH);
pinMode(spi_clk, OUTPUT);
digitalWrite(spi_clk, LOW);
pinMode(spi_mosi, OUTPUT);
digitalWrite(spi_mosi, LOW);
if (reset >= 0) {
pinMode(reset, OUTPUT);
digitalWrite(reset, HIGH);
delay(50);
reset_pin(50, 200);
}
#ifdef UDSP_DEBUG
Serial.printf("SSPI_MOSI : %d\n", spi_mosi);
Serial.printf("SSPI_SCLK : %d\n", spi_clk);
Serial.printf("SSPI_CS : %d\n", spi_cs);
Serial.printf("DSP RESET : %d\n", reset);
#endif
}
} else if (*lp1 == 'I') {
// pecial case RGB with i2c init, bus nr, i2c addr
lp1++;
if (interface == _UDSP_RGB) {
// collect line and send directly
lp1++;
wire_n = next_val(&lp1);
i2caddr = next_hex(&lp1);
#ifdef UDSP_DEBUG
Serial.printf("I2C_INIT bus : %d\n", wire_n);
Serial.printf("I2C_INIT addr : %02x\n", i2caddr);
#endif
if (wire_n == 1) {
wire = &Wire;
} else {
#if SOC_HP_I2C_NUM > 1
wire = &Wire1;
#else
wire = &Wire;
#endif
}
spec_init = _UDSP_I2C;
}
}
} else if (section == 'L') {
if (*lp1 >= '1' && *lp1 <= '5') {
lut_num = (*lp1 & 0x07);
lp1 += 2;
lut_siz[lut_num - 1] = next_val(&lp1);
lut_array[lut_num - 1] = (uint8_t*)malloc(lut_siz[lut_num - 1]);
lut_cmd[lut_num - 1] = next_hex(&lp1);
} else {
lut_num = 0;
lp1++;
lut_siz_full = next_val(&lp1);
lut_full = (uint8_t*)malloc(lut_siz_full);
lut_cmd[0] = next_hex(&lp1);
}
} else if (section == 'l') {
lp1++;
lut_siz_partial = next_val(&lp1);
lut_partial = (uint8_t*)malloc(lut_siz_partial);
lut_cmd[0] = next_hex(&lp1);
}
if (*lp1 == ',') lp1++;
}
if (*lp1 && *lp1 != ':' && *lp1 != '\n' && *lp1 != ' ') { // Add space char
switch (section) {
case 'H':
// header line
// SD1306,128,64,1,I2C,5a,*,*,*
str2c(&lp1, dname, sizeof(dname));
char ibuff[16];
gxs = next_val(&lp1);
setwidth(gxs);
gys = next_val(&lp1);
setheight(gys);
disp_bpp = next_val(&lp1);
bpp = abs(disp_bpp);
if (bpp == 1) {
col_type = uCOLOR_BW;
} else {
col_type = uCOLOR_COLOR;
if (bpp == 16) {
fg_col = GetColorFromIndex(fg_col);
bg_col = GetColorFromIndex(bg_col);
}
}
str2c(&lp1, ibuff, sizeof(ibuff));
if (!strncmp(ibuff, "I2C", 3)) {
interface = _UDSP_I2C;
wire_n = 0;
if (!strncmp(ibuff, "I2C2", 4)) {
wire_n = 1;
}
i2caddr = next_hex(&lp1);
i2c_scl = next_val(&lp1);
i2c_sda = next_val(&lp1);
reset = next_val(&lp1);
section = 0;
} else if (!strncmp(ibuff, "SPI", 3)) {
interface = _UDSP_SPI;
spi_nr = next_val(&lp1);
spi_cs = next_val(&lp1);
spi_clk = next_val(&lp1);
spi_mosi = next_val(&lp1);
spi_dc = next_val(&lp1);
bpanel = next_val(&lp1);
reset = next_val(&lp1);
spi_miso = next_val(&lp1);
spi_speed = next_val(&lp1);
section = 0;
} else if (!strncmp(ibuff, "PAR", 3)) {
#ifdef USE_ESP32_S3
uint8_t bus = next_val(&lp1);
if (bus == 8) {
interface = _UDSP_PAR8;
} else {
interface = _UDSP_PAR16;
}
reset = next_val(&lp1);
par_cs = next_val(&lp1);
par_rs = next_val(&lp1);
par_wr = next_val(&lp1);
par_rd = next_val(&lp1);
bpanel = next_val(&lp1);
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
par_dbl[cnt] = next_val(&lp1);
}
if (interface == _UDSP_PAR16) {
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
par_dbh[cnt] = next_val(&lp1);
}
}
spi_speed = next_val(&lp1);
#endif // USE_ESP32_S3
section = 0;
} else if (!strncmp(ibuff, "RGB", 3)) {
#ifdef USE_ESP32_S3
interface = _UDSP_RGB;
de = next_val(&lp1);
vsync = next_val(&lp1);
hsync = next_val(&lp1);
pclk = next_val(&lp1);
bpanel = next_val(&lp1);
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
par_dbl[cnt] = next_val(&lp1);
}
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
par_dbh[cnt] = next_val(&lp1);
}
spi_speed = next_val(&lp1);
#endif // USE_ESP32_S3
section = 0;
}
break;
case 'S':
splash_font = next_val(&lp1);
splash_size = next_val(&lp1);
fg_col = next_val(&lp1);
bg_col = next_val(&lp1);
if (bpp == 16) {
fg_col = GetColorFromIndex(fg_col);
bg_col = GetColorFromIndex(bg_col);
}
splash_xp = next_val(&lp1);
splash_yp = next_val(&lp1);
break;
case 'I':
// init data
if (interface == _UDSP_RGB && spec_init > 0) {
// special case RGB with SPI or I2C init
// collect line and send directly
dsp_ncmds = 0;
while (1) {
if (dsp_ncmds >= sizeof(dsp_cmds)) break;
if (!str2c(&lp1, ibuff, sizeof(ibuff))) {
dsp_cmds[dsp_ncmds++] = strtol(ibuff, 0, 16);
} else {
break;
}
}
if (spec_init == _UDSP_SPI) {
interface = spec_init;
send_spi_icmds(dsp_ncmds);
} else {
if (dsp_ncmds == 2) {
wire->beginTransmission(i2caddr);
wire->write(dsp_cmds[0]);
wire->write(dsp_cmds[1]);
wire->endTransmission();
#ifdef UDSP_DEBUG
Serial.printf("reg = %02x, val = %02x\n", dsp_cmds[0], dsp_cmds[1]);
#endif
} else {
delay(dsp_cmds[0]);
#ifdef UDSP_DEBUG
Serial.printf("delay = %d ms\n", dsp_cmds[0]);
#endif
}
}
interface = _UDSP_RGB;
} else {
if (interface == _UDSP_I2C) {
dsp_cmds[dsp_ncmds++] = next_hex(&lp1);
if (!str2c(&lp1, ibuff, sizeof(ibuff))) {
dsp_cmds[dsp_ncmds++] = strtol(ibuff, 0, 16);
}
} else {
while (1) {
if (dsp_ncmds >= sizeof(dsp_cmds)) break;
if (!str2c(&lp1, ibuff, sizeof(ibuff))) {
dsp_cmds[dsp_ncmds++] = strtol(ibuff, 0, 16);
} else {
break;
}
}
}
}
break;
case 'f':
// epaper full update cmds
if (!epcoffs_full) {
epcoffs_full = dsp_ncmds;
epc_full_cnt = 0;
}
while (1) {
if (epc_full_cnt >= sizeof(dsp_cmds)) break;
if (!str2c(&lp1, ibuff, sizeof(ibuff))) {
dsp_cmds[epcoffs_full + epc_full_cnt++] = strtol(ibuff, 0, 16);
} else {
break;
}
}
break;
case 'p':
// epaper partial update cmds
if (!epcoffs_part) {
epcoffs_part = dsp_ncmds + epc_full_cnt;
epc_part_cnt = 0;
}
while (1) {
if (epc_part_cnt >= sizeof(dsp_cmds)) break;
if (!str2c(&lp1, ibuff, sizeof(ibuff))) {
dsp_cmds[epcoffs_part + epc_part_cnt++] = strtol(ibuff, 0, 16);
} else {
break;
}
}
break;
#ifdef USE_ESP32_S3
case 'V':
hsync_polarity = next_val(&lp1);
hsync_front_porch = next_val(&lp1);
hsync_pulse_width = next_val(&lp1);
hsync_back_porch = next_val(&lp1);
vsync_polarity = next_val(&lp1);
vsync_front_porch = next_val(&lp1);
vsync_pulse_width = next_val(&lp1);
vsync_back_porch = next_val(&lp1);
pclk_active_neg = next_val(&lp1);
break;
#endif // USE_ESP32_S3
case 'o':
dsp_off = next_hex(&lp1);
break;
case 'O':
dsp_on = next_hex(&lp1);
break;
case 'R':
madctrl = next_hex(&lp1);
startline = next_hex(&lp1);
break;
case '0':
if (interface != _UDSP_RGB) {
rot[0] = next_hex(&lp1);
x_addr_offs[0] = next_hex(&lp1);
y_addr_offs[0] = next_hex(&lp1);
}
rot_t[0] = next_hex(&lp1);
break;
case '1':
if (interface != _UDSP_RGB) {
rot[1] = next_hex(&lp1);
x_addr_offs[1] = next_hex(&lp1);
y_addr_offs[1] = next_hex(&lp1);
}
rot_t[1] = next_hex(&lp1);
break;
case '2':
if (interface != _UDSP_RGB) {
rot[2] = next_hex(&lp1);
x_addr_offs[2] = next_hex(&lp1);
y_addr_offs[2] = next_hex(&lp1);
}
rot_t[2] = next_hex(&lp1);
break;
case '3':
if (interface != _UDSP_RGB) {
rot[3] = next_hex(&lp1);
x_addr_offs[3] = next_hex(&lp1);
y_addr_offs[3] = next_hex(&lp1);
}
rot_t[3] = next_hex(&lp1);
break;
case 'A':
if (interface == _UDSP_I2C || bpp == 1) {
saw_1 = next_hex(&lp1);
i2c_page_start = next_hex(&lp1);
i2c_page_end = next_hex(&lp1);
saw_2 = next_hex(&lp1);
i2c_col_start = next_hex(&lp1);
i2c_col_end = next_hex(&lp1);
saw_3 = next_hex(&lp1);
} else {
saw_1 = next_hex(&lp1);
saw_2 = next_hex(&lp1);
saw_3 = next_hex(&lp1);
sa_mode = next_val(&lp1);
}
break;
case 'a':
saw_1 = next_hex(&lp1);
saw_2 = next_hex(&lp1);
saw_3 = next_hex(&lp1);
break;
case 'P':
col_mode = next_val(&lp1);
break;
case 'i':
inv_off = next_hex(&lp1);
inv_on = next_hex(&lp1);
break;
case 'D':
dim_op = next_hex(&lp1);
break;
case 'L':
if (!lut_num) {
if (!lut_full) {
break;
}
while (1) {
if (!str2c(&lp1, ibuff, sizeof(ibuff))) {
lut_full[lutfsize++] = strtol(ibuff, 0, 16);
} else {
break;
}
if (lutfsize >= lut_siz_full) break;
}
} else {
uint8_t index = lut_num - 1;
if (!lut_array[index]) {
break;
}
while (1) {
if (!str2c(&lp1, ibuff, sizeof(ibuff))) {
lut_array[index][lut_cnt[index]++] = strtol(ibuff, 0, 16);
} else {
break;
}
if (lut_cnt[index] >= lut_siz[index]) break;
}
}
break;
case 'l':
if (!lut_partial) {
break;
}
while (1) {
if (!str2c(&lp1, ibuff, sizeof(ibuff))) {
lut_partial[lutpsize++] = strtol(ibuff, 0, 16);
} else {
break;
}
if (lutpsize >= lut_siz_partial) break;
}
break;
case 'T':
lutftime = next_val(&lp1);
lutptime = next_val(&lp1);
lut3time = next_val(&lp1);
break;
case 'B':
lvgl_param.flushlines = next_val(&lp1);
lvgl_param.data = next_val(&lp1);
// temporary fix to disable DMA due to a problem in esp-idf 5.3
#ifdef ESP32
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 3, 0)
lvgl_param.use_dma = false;
#endif
#endif
break;
case 'M':
rotmap_xmin = next_val(&lp1);
rotmap_xmax = next_val(&lp1);
rotmap_ymin = next_val(&lp1);
rotmap_ymax = next_val(&lp1);
break;
case 'b':
bpmode = next_val(&lp1);
break;
#ifdef USE_UNIVERSAL_TOUCH
case 'U':
if (!strncmp(lp1, "TI", 2)) {
// init
ut_wire = 0;
ut_reset = -1;
ut_irq = -1;
lp1 += 3;
str2c(&lp1, ut_name, sizeof(ut_name));
if (*lp1 == 'I') {
// i2c mode
lp1++;
uint8_t ut_mode = *lp1 & 0xf;
lp1 += 2;
ut_i2caddr = next_hex(&lp1);
ut_reset = next_val(&lp1);
ut_irq = next_val(&lp1);
if (ut_mode == 1) {
ut_wire = &Wire;
} else {
#if SOC_HP_I2C_NUM > 1
ut_wire = &Wire1;
#else
ut_wire = &Wire;
#endif
}
} else if (*lp1 == 'S') {
// spi mode
lp1++;
ut_spi_nr = *lp1 & 0xf;
lp1 += 2;
ut_spi_cs = next_val(&lp1);
ut_reset = next_val(&lp1);
ut_irq = next_val(&lp1);
pinMode(ut_spi_cs, OUTPUT);
digitalWrite(ut_spi_cs, HIGH);
ut_spiSettings = SPISettings(2000000, MSBFIRST, SPI_MODE0);
} else {
// simple resistive touch
lp1++;
}
ut_trans(&lp, &ut_init_code);
} else if (!strncmp(lp1, "TT", 2)) {
lp1 += 2;
// touch
ut_trans(&lp, &ut_touch_code);
} else if (!strncmp(lp1, "TX", 2)) {
lp1 += 2;
// get x
ut_trans(&lp, &ut_getx_code);
} else if (!strncmp(lp1, "TY", 2)) {
lp1 += 2;
// get y
ut_trans(&lp, &ut_gety_code);
}
break;
#endif // USE_UNIVERSAL_TOUCH
}
}
}
nextline:
if (*lp == '\n' || *lp == ' ') { // Add space char
lp++;
} else {
lp = strchr(lp, '\n');
if (!lp) {
lp = strchr(lp, ' ');
if (!lp) {
break;
}
}
lp++;
}
}
if (lutfsize && lutpsize) {
// 2 table mode
ep_mode = 1;
}
if (lut_cnt[0] > 0 && lut_cnt[1] == lut_cnt[2] && lut_cnt[1] == lut_cnt[3] && lut_cnt[1] == lut_cnt[4]) {
// 5 table mode
ep_mode = 2;
}
#ifdef USE_ESP32_S3
void UfsCheckSDCardInit(void);
if (spec_init == _UDSP_SPI) {
// special case, assuming sd card and display on same spi bus
// end spi in case it was running
SPI.end();
// reininit SD card
UfsCheckSDCardInit();
}
#endif
if ((epcoffs_full || epcoffs_part) && !(lutfsize || lutpsize)) {
// no lutfsize or lutpsize, but epcoffs_full or epcoffs_part
ep_mode = 3;
}
#ifdef UDSP_DEBUG
Serial.printf("Device : %s\n", dname);
Serial.printf("xs : %d\n", gxs);
Serial.printf("ys : %d\n", gys);
Serial.printf("bpp: %d\n", bpp);
if (interface == _UDSP_SPI) {
Serial.printf("Nr. : %d\n", spi_nr);
Serial.printf("CS : %d\n", spi_cs);
Serial.printf("CLK : %d\n", spi_clk);
Serial.printf("MOSI: %d\n", spi_mosi);
Serial.printf("DC : %d\n", spi_dc);
Serial.printf("TS_CS: %d\n", ut_spi_cs);
Serial.printf("TS_RST: %d\n", ut_reset);
Serial.printf("TS_IRQ: %d\n", ut_irq);
Serial.printf("BPAN: %d\n", bpanel);
Serial.printf("RES : %d\n", reset);
Serial.printf("MISO: %d\n", spi_miso);
Serial.printf("SPED: %d\n", spi_speed*1000000);
Serial.printf("Pixels: %d\n", col_mode);
Serial.printf("SaMode: %d\n", sa_mode);
Serial.printf("DMA-Mode: %d\n", lvgl_param.use_dma);
Serial.printf("opts: %02x,%02x,%02x\n", saw_3, dim_op, startline);
Serial.printf("SetAddr : %x,%x,%x\n", saw_1, saw_2, saw_3);
Serial.printf("Rot 0: %x,%x - %d - %d\n", madctrl, rot[0], x_addr_offs[0], y_addr_offs[0]);
if (ep_mode == 1) {
Serial.printf("LUT_Partial : %d - %d - %x - %d - %d\n", lut_siz_partial, lutpsize, lut_cmd[0], epcoffs_part, epc_part_cnt);
Serial.printf("LUT_Full : %d - %d - %x - %d - %d\n", lut_siz_full, lutfsize, lut_cmd[0], epcoffs_full, epc_full_cnt);
}
if (ep_mode == 2) {
Serial.printf("LUT_SIZE 1: %d\n", lut_cnt[0]);
Serial.printf("LUT_SIZE 2: %d\n", lut_cnt[1]);
Serial.printf("LUT_SIZE 3: %d\n", lut_cnt[2]);
Serial.printf("LUT_SIZE 4: %d\n", lut_cnt[3]);
Serial.printf("LUT_SIZE 5: %d\n", lut_cnt[4]);
Serial.printf("LUT_CMDS %02x-%02x-%02x-%02x-%02x\n", lut_cmd[0], lut_cmd[1], lut_cmd[2], lut_cmd[3], lut_cmd[4]);
}
}
if (interface == _UDSP_I2C) {
Serial.printf("Addr : %02x\n", i2caddr);
Serial.printf("SCL : %d\n", i2c_scl);
Serial.printf("SDA : %d\n", i2c_sda);
Serial.printf("SPA : %x\n", saw_1);
Serial.printf("pa_sta: %x\n", i2c_page_start);
Serial.printf("pa_end: %x\n", i2c_page_end);
Serial.printf("SCA : %x\n", saw_2);
Serial.printf("ca_sta: %x\n", i2c_col_start);
Serial.printf("pa_end: %x\n", i2c_col_end);
Serial.printf("WRA : %x\n", saw_3);
}
if (interface == _UDSP_PAR8 || interface == _UDSP_PAR16) {
#ifdef USE_ESP32_S3
Serial.printf("par mode: %d\n", interface);
Serial.printf("par res: %d\n", reset);
Serial.printf("par cs : %d\n", par_cs);
Serial.printf("par rs : %d\n", par_rs);
Serial.printf("par wr : %d\n", par_wr);
Serial.printf("par rd : %d\n", par_rd);
Serial.printf("par bp : %d\n", bpanel);
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
Serial.printf("par d%d: %d\n", cnt, par_dbl[cnt]);
}
if (interface == _UDSP_PAR16) {
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
Serial.printf("par d%d: %d\n", cnt + 8, par_dbh[cnt]);
}
}
Serial.printf("par freq : %d\n", spi_speed);
#endif // USE_ESP32_S3
}
if (interface == _UDSP_RGB) {
#ifdef USE_ESP32_S3
Serial.printf("rgb de: %d\n", de);
Serial.printf("rgb vsync: %d\n", vsync);
Serial.printf("rgb hsync : %d\n", hsync);
Serial.printf("rgb pclk : %d\n", pclk);
Serial.printf("rgb bp : %d\n", bpanel);
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
Serial.printf("rgb d%d: %d\n", cnt, par_dbl[cnt]);
}
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
Serial.printf("rgb d%d: %d\n", cnt + 8, par_dbh[cnt]);
}
Serial.printf("rgb freq : %d\n", spi_speed);
Serial.printf("rgb hsync_polarity: %d\n", hsync_polarity);
Serial.printf("rgb hsync_front_porch: %d\n", hsync_front_porch);
Serial.printf("rgb hsync_pulse_width : %d\n", hsync_pulse_width);
Serial.printf("rgb hsync_back_porch : %d\n", hsync_back_porch);
Serial.printf("rgb vsync_polarity : %d\n", vsync_polarity);
Serial.printf("rgb vsync_front_porch : %d\n", vsync_front_porch);
Serial.printf("rgb vsync_pulse_width : %d\n", vsync_pulse_width);
Serial.printf("rgb vsync_back_porch : %d\n", vsync_back_porch);
Serial.printf("rgb pclk_active_neg : %d\n", pclk_active_neg);
#endif // USE_ESP32_S3
}
#endif
#ifdef UDSP_DEBUG
Serial.printf("Dsp class init complete\n");
#endif
}
void uDisplay::delay_arg(uint32_t args) {
uint32_t delay_ms = 0;
switch (args & 0xE0) {
case 0x80: delay_ms = 150; break;
case 0xA0: delay_ms = 10; break;
case 0xE0: delay_ms = 500; break;
}
if (delay_ms > 0) {
delay(delay_ms);
#ifdef UDSP_DEBUG
Serial.printf("delay %d ms\n", delay_ms);
#endif
}
}
// epaper pseudo opcodes
#define EP_RESET 0x60
#define EP_LUT_FULL 0x61
#define EP_LUT_PARTIAL 0x62
#define EP_WAITIDLE 0x63
#define EP_SET_MEM_AREA 0x64
#define EP_SET_MEM_PTR 0x65
#define EP_SEND_DATA 0x66
#define EP_CLR_FRAME 0x67
#define EP_SEND_FRAME 0x68
#define EP_BREAK_RR_EQU 0x69
#define EP_BREAK_RR_NEQ 0x6a
extern int32_t ESP_ResetInfoReason();
// special init for GC displays
void uDisplay::send_spi_icmds(uint16_t cmd_size) {
uint16_t index = 0;
uint16_t cmd_offset = 0;
#ifdef UDSP_DEBUG
Serial.printf("start send icmd table\n");
#endif
while (1) {
uint8_t iob;
SPI_CS_LOW
iob = dsp_cmds[cmd_offset++];
index++;
ulcd_command(iob);
uint8_t args = dsp_cmds[cmd_offset++];
index++;
#ifdef UDSP_DEBUG
Serial.printf("cmd, args %02x, %d ", iob, args & 0x7f);
#endif
for (uint32_t cnt = 0; cnt < (args & 0x7f); cnt++) {
iob = dsp_cmds[cmd_offset++];
index++;
#ifdef UDSP_DEBUG
Serial.printf("%02x ", iob);
#endif
ulcd_data8(iob);
}
SPI_CS_HIGH
#ifdef UDSP_DEBUG
Serial.printf("\n");
#endif
if (args & 0x80) { // delay after the command
delay_arg(args);
}
if (index >= cmd_size) break;
}
#ifdef UDSP_DEBUG
Serial.printf("end send icmd table\n");
#endif
return;
}
void uDisplay::send_spi_cmds(uint16_t cmd_offset, uint16_t cmd_size) {
uint16_t index = 0;
#ifdef UDSP_DEBUG
Serial.printf("start send cmd table\n");
#endif
while (1) {
uint8_t iob;
SPI_CS_LOW
iob = dsp_cmds[cmd_offset++];
index++;
if ((ep_mode == 1 || ep_mode == 3) && iob >= EP_RESET) {
// epaper pseudo opcodes
uint8_t args = dsp_cmds[cmd_offset++];
index++;
#ifdef UDSP_DEBUG
Serial.printf("cmd, args %02x, %d ", iob, args & 0x1f);
#endif
switch (iob) {
case EP_RESET:
if (args & 1) {
iob = dsp_cmds[cmd_offset++];
index++;
}
reset_pin(iob, iob);
break;
case EP_LUT_FULL:
SetLut(lut_full);
ep_update_mode = DISPLAY_INIT_FULL;
break;
case EP_LUT_PARTIAL:
SetLut(lut_partial);
ep_update_mode = DISPLAY_INIT_PARTIAL;
break;
case EP_WAITIDLE:
if (args & 1) {
iob = dsp_cmds[cmd_offset++];
index++;
}
//delay(iob * 10);
delay_sync(iob * 10);
break;
case EP_SET_MEM_AREA:
SetMemoryArea(0, 0, gxs - 1, gys - 1);
break;
case EP_SET_MEM_PTR:
SetMemoryPointer(0, 0);
break;
case EP_SEND_DATA:
Send_EP_Data();
break;
case EP_CLR_FRAME:
ClearFrameMemory(0xFF);
break;
case EP_SEND_FRAME:
SetFrameMemory(framebuffer);
break;
case EP_BREAK_RR_EQU:
if (args & 1) {
iob = dsp_cmds[cmd_offset++];
index++;
if (iob == ESP_ResetInfoReason()) {
ep_update_mode = DISPLAY_INIT_PARTIAL;
goto exit;
}
}
break;
case EP_BREAK_RR_NEQ:
if (args & 1) {
iob = dsp_cmds[cmd_offset++];
index++;
if (iob != ESP_ResetInfoReason()) {
ep_update_mode = DISPLAY_INIT_PARTIAL;
goto exit;
}
}
break;
}
#ifdef UDSP_DEBUG
if (args & 1) {
Serial.printf("%02x ", iob );
}
Serial.printf("\n");
#endif
if (args & 0x80) { // delay after the command
delay_arg(args);
}
} else {
if (spi_dc == -2) {
// pseudo opcodes
switch (iob) {
case UDSP_WRITE_16:
break;
case UDSP_READ_DATA:
break;
case UDSP_READ_STATUS:
break;
}
}
ulcd_command(iob);
uint8_t args = dsp_cmds[cmd_offset++];
index++;
#ifdef UDSP_DEBUG
Serial.printf("cmd, args %02x, %d ", iob, args & 0x1f);
#endif
for (uint32_t cnt = 0; cnt < (args & 0x1f); cnt++) {
iob = dsp_cmds[cmd_offset++];
index++;
#ifdef UDSP_DEBUG
Serial.printf("%02x ", iob );
#endif
if (!allcmd_mode) {
ulcd_data8(iob);
} else {
ulcd_command(iob);
}
}
SPI_CS_HIGH
#ifdef UDSP_DEBUG
Serial.printf("\n");
#endif
if (args & 0x80) { // delay after the command
delay_arg(args);
}
}
if (index >= cmd_size) break;
}
exit:
#ifdef UDSP_DEBUG
Serial.printf("end send cmd table\n");
#endif
return;
}
Renderer *uDisplay::Init(void) {
extern bool UsePSRAM(void);
if (!interface) { // no valid configuration, abort
#ifdef UDSP_DEBUG
Serial.printf("Dsp Init no valid configuration\n");
#endif
return NULL;
}
#ifdef UDSP_DEBUG
Serial.printf("Dsp Init 1 start \n");
#endif
// for any bpp below native 16 bits, we allocate a local framebuffer to copy into
if (ep_mode || bpp < 16) {
if (framebuffer) free(framebuffer);
#ifdef ESP8266
framebuffer = (uint8_t*)calloc((gxs * gys * bpp) / 8, 1);
#else
if (UsePSRAM()) {
framebuffer = (uint8_t*)heap_caps_malloc((gxs * gys * bpp) / 8, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
} else {
framebuffer = (uint8_t*)calloc((gxs * gys * bpp) / 8, 1);
}
#endif // ESP8266
}
frame_buffer = framebuffer;
if (interface == _UDSP_I2C) {
if (wire_n == 0) {
wire = &Wire;
}
#if SOC_HP_I2C_NUM > 1
if (wire_n == 1) {
wire = &Wire1;
}
#endif // ESP32
/*
if (i2c_sda != i2c_scl) {
wire->begin(i2c_sda, i2c_scl); // TODO: aren't I2C buses already initialized? Shouldn't this be moved to display driver?
}
*/
#ifdef UDSP_DEBUG
Serial.printf("I2C cmds: %d\n", dsp_ncmds);
#endif
for (uint32_t cnt = 0; cnt < dsp_ncmds; cnt++) {
i2c_command(dsp_cmds[cnt]);
#ifdef UDSP_DEBUG
Serial.printf("cmd = %x\n", dsp_cmds[cnt]);
#endif
}
}
if (interface == _UDSP_SPI) {
if (bpanel >= 0) {
#ifdef ESP32
analogWrite(bpanel, 32);
#else
pinMode(bpanel, OUTPUT);
digitalWrite(bpanel, HIGH);
#endif // ESP32
}
if (spi_dc >= 0) {
pinMode(spi_dc, OUTPUT);
digitalWrite(spi_dc, HIGH);
}
if (spi_cs >= 0) {
pinMode(spi_cs, OUTPUT);
digitalWrite(spi_cs, HIGH);
}
#ifdef ESP8266
if (spi_nr <= 1) {
SPI.begin();
uspi = &SPI;
} else {
pinMode(spi_clk, OUTPUT);
digitalWrite(spi_clk, LOW);
pinMode(spi_mosi, OUTPUT);
digitalWrite(spi_mosi, LOW);
if (spi_miso >= 0) {
pinMode(spi_miso, INPUT_PULLUP);
busy_pin = spi_miso;
}
}
#endif // ESP8266
#ifdef ESP32
if (spi_nr == 1) {
uspi = &SPI;
uspi->begin(spi_clk, spi_miso, spi_mosi, -1);
if (lvgl_param.use_dma) {
spi_host = VSPI_HOST;
initDMA(lvgl_param.async_dma ? spi_cs : -1); // disable DMA CS if sync, we control it directly
}
} else if (spi_nr == 2) {
uspi = new SPIClass(HSPI);
uspi->begin(spi_clk, spi_miso, spi_mosi, -1);
if (lvgl_param.use_dma) {
spi_host = HSPI_HOST;
initDMA(lvgl_param.async_dma ? spi_cs : -1); // disable DMA CS if sync, we control it directly
}
} else {
pinMode(spi_clk, OUTPUT);
digitalWrite(spi_clk, LOW);
pinMode(spi_mosi, OUTPUT);
digitalWrite(spi_mosi, LOW);
if (spi_miso >= 0) {
busy_pin = spi_miso;
pinMode(spi_miso, INPUT_PULLUP);
#ifdef UDSP_DEBUG
Serial.printf("Dsp busy pin: %d\n", busy_pin);
#endif
}
}
#endif // ESP32
spiSettings = SPISettings((uint32_t)spi_speed*1000000, MSBFIRST, SPI_MODE3);
SPI_BEGIN_TRANSACTION
if (reset >= 0) {
pinMode(reset, OUTPUT);
digitalWrite(reset, HIGH);
delay(50);
reset_pin(50, 200);
}
send_spi_cmds(0, dsp_ncmds);
SPI_END_TRANSACTION
}
if (interface == _UDSP_RGB) {
#ifdef USE_ESP32_S3
if (!UsePSRAM()) { // RGB is not supported on S3 without PSRAM
#ifdef UDSP_DEBUG
Serial.printf("Dsp RGB requires PSRAM, abort\n");
#endif
return NULL;
}
if (bpanel >= 0) {
analogWrite(bpanel, 32);
}
esp_lcd_rgb_panel_config_t *_panel_config = (esp_lcd_rgb_panel_config_t *)heap_caps_calloc(1, sizeof(esp_lcd_rgb_panel_config_t), MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
_panel_config->clk_src = LCD_CLK_SRC_PLL160M;
//if (spi_speed > 14) {
//spi_speed = 14;
//}
_panel_config->timings.pclk_hz = spi_speed*1000000;
_panel_config->timings.h_res = gxs;
_panel_config->timings.v_res = gys;
_panel_config->timings.hsync_pulse_width = hsync_pulse_width;
_panel_config->timings.hsync_back_porch = hsync_back_porch;
_panel_config->timings.hsync_front_porch = hsync_front_porch;
_panel_config->timings.vsync_pulse_width = vsync_pulse_width;
_panel_config->timings.vsync_back_porch = vsync_back_porch;
_panel_config->timings.vsync_front_porch = vsync_front_porch;
_panel_config->timings.flags.hsync_idle_low = (hsync_polarity == 0) ? 1 : 0;
_panel_config->timings.flags.vsync_idle_low = (vsync_polarity == 0) ? 1 : 0;
_panel_config->timings.flags.de_idle_high = 0;
_panel_config->timings.flags.pclk_active_neg = pclk_active_neg;
_panel_config->timings.flags.pclk_idle_high = 0;
_panel_config->data_width = 16; // RGB565 in parallel mode, thus 16bit in width
_panel_config->sram_trans_align = 8;
_panel_config->psram_trans_align = 64;
_panel_config->hsync_gpio_num = hsync;
_panel_config->vsync_gpio_num = vsync;
_panel_config->de_gpio_num = de;
_panel_config->pclk_gpio_num = pclk;
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
_panel_config->data_gpio_nums[cnt] = par_dbh[cnt];
}
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
_panel_config->data_gpio_nums[cnt + 8] = par_dbl[cnt];
}
_panel_config->disp_gpio_num = GPIO_NUM_NC;
_panel_config->flags.disp_active_low = 0;
#if ESP_IDF_VERSION_MAJOR >= 5
_panel_config->flags.refresh_on_demand = 0;
#else
_panel_config->flags.relax_on_idle = 0;
#endif // ESP_IDF_VERSION_MAJOR >= 5
_panel_config->flags.fb_in_psram = 1; // allocate frame buffer in PSRAM
ESP_ERROR_CHECK(esp_lcd_new_rgb_panel(_panel_config, &_panel_handle));
ESP_ERROR_CHECK(esp_lcd_panel_reset(_panel_handle));
ESP_ERROR_CHECK(esp_lcd_panel_init(_panel_handle));
uint16_t color = random(0xffff);
ESP_ERROR_CHECK(_panel_handle->draw_bitmap(_panel_handle, 0, 0, 1, 1, &color));
#if ESP_IDF_VERSION_MAJOR < 5
_rgb_panel = __containerof(_panel_handle, esp_rgb_panel_t, base);
rgb_fb = (uint16_t *)_rgb_panel->fb;
#else
void * buf = NULL;
esp_lcd_rgb_panel_get_frame_buffer(_panel_handle, 1, &buf);
rgb_fb = (uint16_t *)buf;
#endif
#endif // USE_ESP32_S3
}
if (interface == _UDSP_PAR8 || interface == _UDSP_PAR16) {
#ifdef USE_ESP32_S3
if (bpanel >= 0) {
analogWrite(bpanel, 32);
}
pinMode(par_cs, OUTPUT);
digitalWrite(par_cs, HIGH);
pinMode(par_rs, OUTPUT);
digitalWrite(par_rs, HIGH);
pinMode(par_wr, OUTPUT);
digitalWrite(par_wr, HIGH);
if (par_rd >= 0) {
pinMode(par_rd, OUTPUT);
digitalWrite(par_rd, HIGH);
}
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
pinMode(par_dbl[cnt], OUTPUT);
}
uint8_t bus_width = 8;
if (interface == _UDSP_PAR16) {
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
pinMode(par_dbh[cnt], OUTPUT);
}
bus_width = 16;
}
if (reset >= 0) {
pinMode(reset, OUTPUT);
digitalWrite(reset, HIGH);
delay(50);
reset_pin(50, 200);
}
esp_lcd_i80_bus_config_t bus_config = {
.dc_gpio_num = par_rs,
.wr_gpio_num = par_wr,
.clk_src = LCD_CLK_SRC_DEFAULT,
.bus_width = bus_width,
.max_transfer_bytes = 32768
};
if (interface == _UDSP_PAR8) {
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
bus_config.data_gpio_nums[cnt] = par_dbl[cnt];
}
} else {
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
bus_config.data_gpio_nums[cnt] = par_dbl[cnt];
}
for (uint32_t cnt = 0; cnt < 8; cnt ++) {
bus_config.data_gpio_nums[cnt + 8] = par_dbh[cnt];
}
}
// to disable SPI TRANSACTION
spi_nr = 3;
spi_cs = par_cs;
_i80_bus = nullptr;
esp_lcd_new_i80_bus(&bus_config, &_i80_bus);
#if ESP_IDF_VERSION_MAJOR < 5
_dma_chan = _i80_bus->dma_chan;
#endif
uint32_t div_a, div_b, div_n, clkcnt;
calcClockDiv(&div_a, &div_b, &div_n, &clkcnt, 240*1000*1000, spi_speed*1000000);
lcd_cam_lcd_clock_reg_t lcd_clock;
lcd_clock.lcd_clkcnt_n = std::max((uint32_t)1u, clkcnt - 1); // ESP_IDF_VERSION_MAJOR >= 5
lcd_clock.lcd_clk_equ_sysclk = (clkcnt == 1);
lcd_clock.lcd_ck_idle_edge = true;
lcd_clock.lcd_ck_out_edge = false;
lcd_clock.lcd_clkm_div_num = div_n;
lcd_clock.lcd_clkm_div_b = div_b;
lcd_clock.lcd_clkm_div_a = div_a;
lcd_clock.lcd_clk_sel = 2; // clock_select: 1=XTAL CLOCK / 2=240MHz / 3=160MHz
lcd_clock.clk_en = true;
_clock_reg_value = lcd_clock.val;
_alloc_dmadesc(1);
_dev = &LCD_CAM;
pb_beginTransaction();
uint16_t index = 0;
while (1) {
uint8_t iob;
cs_control(0);
iob = dsp_cmds[index++];
pb_writeCommand(iob, 8);
uint8_t args = dsp_cmds[index++];
#ifdef UDSP_DEBUG
Serial.printf("cmd, args %02x, %d ", iob, args&0x1f);
#endif
for (uint32_t cnt = 0; cnt < (args & 0x1f); cnt++) {
iob = dsp_cmds[index++];
#ifdef UDSP_DEBUG
Serial.printf("%02x ", iob );
#endif
pb_writeData(iob, 8);
}
cs_control(1);
#ifdef UDSP_DEBUG
Serial.printf("\n");
#endif
if (args & 0x80) { // delay after the command
uint32_t delay_ms = 0;
switch (args & 0xE0) {
case 0x80: delay_ms = 150; break;
case 0xA0: delay_ms = 10; break;
case 0xE0: delay_ms = 500; break;
}
if (delay_ms > 0) {
delay(delay_ms);
#ifdef UDSP_DEBUG
Serial.printf("delay %d ms\n", delay_ms);
#endif
}
}
if (index >= dsp_ncmds) break;
}
pb_endTransaction();
#endif // USE_ESP32_S3
}
// must init luts on epaper
if (ep_mode) {
if (ep_mode == 2) Init_EPD(DISPLAY_INIT_FULL);
//if (ep_mode == 1) Init_EPD(DISPLAY_INIT_PARTIAL);
}
#ifdef UDSP_DEBUG
Serial.printf("Dsp Init 1 complete \n");
#endif
return this;
}
void uDisplay::DisplayInit(int8_t p, int8_t size, int8_t rot, int8_t font) {
if (p != DISPLAY_INIT_MODE && ep_mode) {
ep_update_mode = p;
if (p == DISPLAY_INIT_PARTIAL) {
if (lutpsize) {
#ifdef UDSP_DEBUG
Serial.printf("init partial epaper mode\n");
#endif
SetLut(lut_partial);
Updateframe_EPD();
delay_sync(lutptime * 10);
}
return;
} else if (p == DISPLAY_INIT_FULL) {
#ifdef UDSP_DEBUG
Serial.printf("init full epaper mode\n");
#endif
if (lutfsize) {
SetLut(lut_full);
Updateframe_EPD();
}
if (ep_mode == 2) {
ClearFrame_42();
DisplayFrame_42();
}
delay_sync(lutftime * 10);
return;
}
} else {
setRotation(rot);
invertDisplay(false);
setTextWrap(false);
cp437(true);
setTextFont(font);
setTextSize(size);
setTextColor(fg_col, bg_col);
setCursor(0,0);
if (splash_font >= 0) {
fillScreen(bg_col);
Updateframe();
}
#ifdef UDSP_DEBUG
Serial.printf("Dsp Init 2 complete \n");
#endif
}
}
void uDisplay::reset_pin(int32_t msl, int32_t msh) {
if (reset > 0) {
digitalWrite(reset, LOW);
delay(msl);
digitalWrite(reset, HIGH);
delay(msh);
}
}
#define UDSP_BUSY_TIMEOUT 3000
// epaper sync or delay
void uDisplay::delay_sync(int32_t ms) {
uint8_t busy_level = HIGH;
if (lvgl_param.busy_invert) {
busy_level = LOW;
}
uint32_t time = millis();
if (busy_pin > 0) {
while (digitalRead(busy_pin) == busy_level) {
delay(1);
if ((millis() - time) > UDSP_BUSY_TIMEOUT) {
break;
}
}
} else {
delay(ms);
}
}
void uDisplay::ulcd_command(uint8_t val) {
if (interface == _UDSP_SPI) {
if (spi_dc < 0) {
if (spi_nr > 2) {
if (spi_nr == 3) {
write9(val, 0);
} else {
write9_slow(val, 0);
}
} else {
hw_write9(val, 0);
}
} else {
SPI_DC_LOW
if (spi_nr > 2) {
if (spi_nr == 3) {
write8(val);
} else {
write8_slow(val);
}
} else {
uspi->write(val);
}
SPI_DC_HIGH
}
return;
}
#ifdef USE_ESP32_S3
if (interface == _UDSP_PAR8 || interface == _UDSP_PAR16) {
pb_writeCommand(val, 8);
}
#endif // USE_ESP32_S3
}
void uDisplay::ulcd_data8(uint8_t val) {
if (interface == _UDSP_SPI) {
if (spi_dc < 0) {
if (spi_nr > 2) {
if (spi_nr == 3) {
write9(val, 1);
} else {
write9_slow(val, 1);
}
} else {
hw_write9(val, 1);
}
} else {
if (spi_nr > 2) {
if (spi_nr == 3) {
write8(val);
} else {
write8_slow(val);
}
} else {
uspi->write(val);
}
}
return;
}
#ifdef USE_ESP32_S3
if (interface == _UDSP_PAR8 || interface == _UDSP_PAR16) {
pb_writeData(val, 8);
}
#endif // USE_ESP32_S3
}
void uDisplay::ulcd_data16(uint16_t val) {
if (interface == _UDSP_SPI) {
if (spi_dc < 0) {
if (spi_nr > 2) {
write9(val >> 8, 1);
write9(val, 1);
} else {
hw_write9(val >> 8, 1);
hw_write9(val, 1);
}
} else {
if (spi_nr > 2) {
write16(val);
} else {
uspi->write16(val);
}
}
return;
}
#ifdef USE_ESP32_S3
if (interface == _UDSP_PAR8 || interface == _UDSP_PAR16) {
pb_writeData(val, 16);
}
#endif // USE_ESP32_S3
}
void uDisplay::ulcd_data32(uint32_t val) {
if (interface == _UDSP_SPI) {
if (spi_dc < 0) {
if (spi_nr > 2) {
write9(val >> 24, 1);
write9(val >> 16, 1);
write9(val >> 8, 1);
write9(val, 1);
} else {
hw_write9(val >> 24, 1);
hw_write9(val >> 16, 1);
hw_write9(val >> 8, 1);
hw_write9(val, 1);
}
} else {
if (spi_nr > 2) {
write32(val);
} else {
uspi->write32(val);
}
}
return;
}
#ifdef USE_ESP32_S3
if (interface == _UDSP_PAR8 || interface == _UDSP_PAR16) {
pb_writeData(val, 32);
}
#endif // USE_ESP32_S3
}
void uDisplay::ulcd_command_one(uint8_t val) {
if (interface == _UDSP_SPI) {
SPI_BEGIN_TRANSACTION
SPI_CS_LOW
ulcd_command(val);
SPI_CS_HIGH
SPI_END_TRANSACTION
}
}
void uDisplay::i2c_command(uint8_t val) {
//Serial.printf("%02x\n",val );
wire->beginTransmission(i2caddr);
wire->write(0);
wire->write(val);
wire->endTransmission();
}
#define WIRE_MAX 32
void uDisplay::Updateframe(void) {
if (interface == _UDSP_RGB) {
return;
}
if (ep_mode) {
Updateframe_EPD();
return;
}
if (interface == _UDSP_I2C) {
#if 0
i2c_command(saw_1);
i2c_command(i2c_page_start);
i2c_command(i2c_page_end);
i2c_command(saw_2);
i2c_command(i2c_col_start);
i2c_command(i2c_col_end);
uint16_t count = gxs * ((gys + 7) / 8);
uint8_t *ptr = framebuffer;
wire->beginTransmission(i2caddr);
i2c_command(saw_3);
uint8_t bytesOut = 1;
while (count--) {
if (bytesOut >= WIRE_MAX) {
wire->endTransmission();
wire->beginTransmission(i2caddr);
i2c_command(saw_3);
bytesOut = 1;
}
i2c_command(*ptr++);
bytesOut++;
}
wire->endTransmission();
#else
i2c_command(saw_1 | 0x0); // set low col = 0, 0x00
i2c_command(i2c_page_start | 0x0); // set hi col = 0, 0x10
i2c_command(i2c_page_end | 0x0); // set startline line #0, 0x40
uint8_t ys = gys >> 3;
uint8_t xs = gxs >> 3;
//uint8_t xs = 132 >> 3;
uint8_t m_row = saw_2;
uint8_t m_col = i2c_col_start;
uint16_t p = 0;
uint8_t i, j, k = 0;
for ( i = 0; i < ys; i++) {
// send a bunch of data in one xmission
i2c_command(0xB0 + i + m_row); //set page address
i2c_command(m_col & 0xf); //set lower column address
i2c_command(0x10 | (m_col >> 4)); //set higher column address
for ( j = 0; j < 8; j++) {
wire->beginTransmission(i2caddr);
wire->write(0x40);
for ( k = 0; k < xs; k++, p++) {
wire->write(framebuffer[p]);
}
wire->endTransmission();
}
}
#endif
}
if (interface == _UDSP_SPI) {
if (framebuffer == nullptr) { return; }
SPI_BEGIN_TRANSACTION
SPI_CS_LOW
// below commands are not needed for SH1107
// ulcd_command(saw_1 | 0x0); // set low col = 0, 0x00
// ulcd_command(i2c_page_start | 0x0); // set hi col = 0, 0x10
// ulcd_command(i2c_page_end | 0x0); // set startline line #0, 0x40
uint8_t ys = gys >> 3;
uint8_t xs = gxs >> 3;
//uint8_t xs = 132 >> 3;
uint8_t m_row = saw_2;
uint8_t m_col = i2c_col_start;
// Serial.printf("m_row=%d m_col=%d xs=%d ys=%d\n", m_row, m_col, xs, ys);
uint16_t p = 0;
uint8_t i, j, k = 0;
for ( i = 0; i < ys; i++) { // i = line from 0 to ys
// send a bunch of data in one xmission
ulcd_command(0xB0 + i + m_row); //set page address
ulcd_command(m_col & 0xf); //set lower column address
ulcd_command(0x10 | (m_col >> 4)); //set higher column address
for ( j = 0; j < 8; j++) {
for ( k = 0; k < xs; k++, p++) {
ulcd_data8(framebuffer[p]);
}
}
}
SPI_CS_HIGH
SPI_END_TRANSACTION
}
}
void uDisplay::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) {
if (ep_mode) {
drawFastVLine_EPD(x, y, h, color);
return;
}
if (framebuffer) {
Renderer::drawFastVLine(x, y, h, color);
return;
}
// Rudimentary clipping
if ((x >= _width) || (y >= _height)) return;
if ((y + h - 1) >= _height) h = _height - y;
if (interface == _UDSP_RGB) {
#ifdef USE_ESP32_S3
if (lvgl_param.swap_color) {
color = color << 8 | color >> 8;
}
if (cur_rot > 0) {
while (h--) {
drawPixel_RGB(x , y , color);
y++;
}
} else {
uint16_t *fb = rgb_fb;
fb += (int32_t)y * _width;
fb += x;
while (h--) {
*fb = color;
Cache_WriteBack_Addr((uint32_t)fb, 2);
fb+=_width;
y++;
}
}
#endif
return;
}
SPI_BEGIN_TRANSACTION
SPI_CS_LOW
setAddrWindow_int(x, y, 1, h);
if (col_mode == 18) {
uint8_t r = (color & 0xF800) >> 11;
uint8_t g = (color & 0x07E0) >> 5;
uint8_t b = color & 0x001F;
r = (r * 255) / 31;
g = (g * 255) / 63;
b = (b * 255) / 31;
while (h--) {
ulcd_data8(r);
ulcd_data8(g);
ulcd_data8(b);
}
} else {
while (h--) {
WriteColor(color);
}
}
SPI_CS_HIGH
SPI_END_TRANSACTION
}
void uDisplay::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) {
if (ep_mode) {
drawFastHLine_EPD(x, y, w, color);
return;
}
if (framebuffer) {
Renderer::drawFastHLine(x, y, w, color);
return;
}
// Rudimentary clipping
if((x >= _width) || (y >= _height)) return;
if((x + w - 1) >= _width) w = _width - x;
if (interface == _UDSP_RGB) {
#ifdef USE_ESP32_S3
if (lvgl_param.swap_color) {
color = color << 8 | color >> 8;
}
if (cur_rot > 0) {
while (w--) {
drawPixel_RGB(x , y , color);
x++;
}
} else {
uint16_t *fb = rgb_fb;
fb += (int32_t)y * _width;
fb += x;
while (w--) {
*fb = color;
Cache_WriteBack_Addr((uint32_t)fb, 2);
fb++;
x++;
}
}
#endif
return;
}
SPI_BEGIN_TRANSACTION
SPI_CS_LOW
setAddrWindow_int(x, y, w, 1);
if (col_mode == 18) {
uint8_t r = (color & 0xF800) >> 11;
uint8_t g = (color & 0x07E0) >> 5;
uint8_t b = color & 0x001F;
r = (r * 255) / 31;
g = (g * 255) / 63;
b = (b * 255) / 31;
while (w--) {
ulcd_data8(r);
ulcd_data8(g);
ulcd_data8(b);
}
} else {
while (w--) {
WriteColor(color);
}
}
SPI_CS_HIGH
SPI_END_TRANSACTION
}
//#define CD_XS gxs
//#define CD_YS gys
#define CD_XS width()
#define CD_YS height()
void uDisplay::fillScreen(uint16_t color) {
fillRect(0, 0, CD_XS, CD_YS, color);
}
// fill a rectangle
void uDisplay::fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) {
if (interface == _UDSP_RGB) {
for (uint32_t yp = y; yp < y + h; yp++) {
drawFastHLine(x, yp, w, color);
}
return;
}
if (ep_mode) {
fillRect_EPD(x, y, w, h, color);
return;
}
if (framebuffer) {
Renderer::fillRect(x, y, w, h, color);
return;
}
if((x >= CD_XS) || (y >= CD_YS)) return;
if((x + w - 1) >= CD_XS) w = CD_XS - x;
if((y + h - 1) >= CD_YS) h = CD_YS - y;
SPI_BEGIN_TRANSACTION
SPI_CS_LOW
setAddrWindow_int(x, y, w, h);
if (col_mode == 18) {
uint8_t r = (color & 0xF800) >> 11;
uint8_t g = (color & 0x07E0) >> 5;
uint8_t b = color & 0x001F;
r = (r * 255) / 31;
g = (g * 255) / 63;
b = (b * 255) / 31;
for (y = h; y > 0; y--) {
for (x = w; x > 0; x--) {
ulcd_data8(r);
ulcd_data8(g);
ulcd_data8(b);
}
}
} else {
for (y = h; y > 0; y--) {
for (x = w; x > 0; x--) {
WriteColor(color);
}
}
}
SPI_CS_HIGH
SPI_END_TRANSACTION
}
/*
// pack RGB into uint32
uint32_t pack_rgb(uint32_t r, uint32_t g, uint32_t b) {
uint32_t data;
data=r<<23;
data|=g<<14;
data|=b<<5;
data|=0b10000000010000000010000000000000;
return ulswap(data);
}
// init 27 bit mode
uint32_t data=pack_rgb(r,g,b);
REG_SET_BIT(SPI_USER_REG(3), SPI_USR_MOSI);
REG_WRITE(SPI_MOSI_DLEN_REG(3), 27 - 1);
uint32_t *dp=(uint32_t*)SPI_W0_REG(3);
digitalWrite( _cs, LOW);
for(y=h; y>0; y--) {
for(x=w; x>0; x--) {
while (REG_GET_FIELD(SPI_CMD_REG(3), SPI_USR));
*dp=data;
REG_SET_BIT(SPI_CMD_REG(3), SPI_USR);
}
}
*/
#ifdef USE_UNIVERSAL_TOUCH
uint8_t ut_irq_flg;
void IRAM_ATTR ut_touch_irq(void) {
ut_irq_flg = 1;
}
// universal touch driver
bool uDisplay::utouch_Init(char **name) {
*name = ut_name;
if (ut_init_code) {
if (ut_reset >= 0) {
pinMode(ut_reset, OUTPUT);
digitalWrite(ut_reset, HIGH);
delay(10);
digitalWrite(ut_reset, LOW);
delay(5);
digitalWrite(ut_reset, HIGH);
delay(10);
}
if (ut_irq >= 0) {
pinMode(ut_irq, INPUT );
attachInterrupt(ut_irq, ut_touch_irq, FALLING);
}
extern SPIClass *SpiBegin(uint32 bus);
if (ut_spi_nr == spi_nr) {
// same as display
ut_spi = uspi;
} else {
#ifdef ESP32
ut_spi = SpiBegin(ut_spi_nr);
#endif
}
return ut_execute(ut_init_code);
}
return false;
}
uint16_t uDisplay::touched(void) {
if (ut_irq >= 0) {
if (!ut_irq_flg) {
return false;
}
ut_irq_flg = 0;
}
if (ut_touch_code) {
return ut_execute(ut_touch_code);
}
return 0;
}
int16_t uDisplay::getPoint_x(void) {
if (ut_getx_code) {
return ut_execute(ut_getx_code);
}
return 0;
}
int16_t uDisplay::getPoint_y(void) {
if (ut_gety_code) {
return ut_execute(ut_gety_code);
}
return 0;
}
#endif // USE_UNIVERSAL_TOUCH
void uDisplay::Splash(void) {
if (splash_font < 0) return;
if (ep_mode) {
Updateframe();
delay_sync(lut3time * 10);
}
setTextFont(splash_font);
setTextSize(splash_size);
DrawStringAt(splash_xp, splash_yp, dname, fg_col, 0);
Updateframe();
#ifdef UDSP_DEBUG
Serial.printf("draw splash\n");
#endif
}
void uDisplay::setAddrWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) {
if (bpp != 16 || interface == _UDSP_RGB) {
// just save params or update frame
if (!x0 && !y0 && !x1 && !y1) {
if (!ep_mode) {
Updateframe();
}
} else {
seta_xp1 = x0;
seta_xp2 = x1;
seta_yp1 = y0;
seta_yp2 = y1;
// Serial.printf("xp1=%d xp2=%d yp1=%d yp2=%d\n", seta_xp1, seta_xp2, seta_yp1, seta_yp2);
}
return;
}
if (interface == _UDSP_RGB) {
return;
}
if (!x0 && !y0 && !x1 && !y1) {
SPI_CS_HIGH
SPI_END_TRANSACTION
} else {
SPI_BEGIN_TRANSACTION
SPI_CS_LOW
setAddrWindow_int(x0, y0, x1 - x0, y1 - y0 );
}
}
#define udisp_swap(a, b) (((a) ^= (b)), ((b) ^= (a)), ((a) ^= (b))) ///< No-temp-var swap operation
void uDisplay::setAddrWindow_int(uint16_t x, uint16_t y, uint16_t w, uint16_t h) {
if (interface == _UDSP_RGB) {
return;
}
x += x_addr_offs[cur_rot];
y += y_addr_offs[cur_rot];
if (sa_mode != 8) {
uint32_t xa = ((uint32_t)x << 16) | (x + w - 1);
uint32_t ya = ((uint32_t)y << 16) | (y + h - 1);
ulcd_command(saw_1);
ulcd_data32(xa);
ulcd_command(saw_2);
ulcd_data32(ya);
if (saw_3 != 0xff) {
ulcd_command(saw_3); // write to RAM
}
} else {
uint16_t x2 = x + w - 1,
y2 = y + h - 1;
if (cur_rot & 1) { // Vertical address increment mode
udisp_swap(x,y);
udisp_swap(x2,y2);
}
ulcd_command(saw_1);
if (allcmd_mode) {
ulcd_data8(x);
ulcd_data8(x2);
} else {
ulcd_command(x);
ulcd_command(x2);
}
ulcd_command(saw_2);
if (allcmd_mode) {
ulcd_data8(y);
ulcd_data8(y2);
} else {
ulcd_command(y);
ulcd_command(y2);
}
if (saw_3 != 0xff) {
ulcd_command(saw_3); // write to RAM
}
}
}
#define RGB16_TO_MONO 0x8410
#define RGB16_SWAP_TO_MONO 0x1084
// #define CNV_B1_OR ((0x10<<11) | (0x20<<5) | 0x10)
// static inline uint8_t ulv_color_to1(uint16_t color) {
// if (color & CNV_B1_OR) {
// return 1;
// }
// else {
// return 0;
// }
/*
// this needs optimization
if (((color>>11) & 0x10) || ((color>>5) & 0x20) || (color & 0x10)) {
return 1;
}
else {
return 0;
}*/
// }
// convert to mono, these are framebuffer based
void uDisplay::pushColorsMono(uint16_t *data, uint16_t len, bool rgb16_swap) {
// pixel is white if at least one of the 3 components is above 50%
// this is tested with a simple mask, swapped if needed
uint16_t rgb16_to_mono_mask = rgb16_swap ? RGB16_SWAP_TO_MONO : RGB16_TO_MONO;
for (uint32_t y = seta_yp1; y < seta_yp2; y++) {
seta_yp1++;
if (lvgl_param.invert_bw) {
for (uint32_t x = seta_xp1; x < seta_xp2; x++) {
uint16_t color = *data++;
if (bpp == 1) color = (color & rgb16_to_mono_mask) ? 0 : 1;
drawPixel(x, y, color); // todo - inline the method to save speed
len--;
if (!len) return; // failsafe - exist if len (pixel number) is exhausted
}
} else {
for (uint32_t x = seta_xp1; x < seta_xp2; x++) {
uint16_t color = *data++;
if (bpp == 1) color = (color & rgb16_to_mono_mask) ? 1 : 0;
drawPixel(x, y, color); // todo - inline the method to save speed
len--;
if (!len) return; // failsafe - exist if len (pixel number) is exhausted
}
}
}
}
// swap high low byte
static inline void lvgl_color_swap(uint16_t *data, uint16_t len) { for (uint32_t i = 0; i < len; i++) (data[i] = data[i] << 8 | data[i] >> 8); }
void uDisplay::pushColors(uint16_t *data, uint16_t len, boolean not_swapped) {
uint16_t color;
if (lvgl_param.swap_color) {
not_swapped = !not_swapped;
}
//Serial.printf("push %x - %d - %d - %d\n", (uint32_t)data, len, not_swapped, lvgl_param.data);
// Isolating _UDSP_RGB to increase code sharing
//
// LVGL documentation suggest to call the following:
// lv_draw_sw_rgb565_swap() to invert bytes
// esp_lcd_panel_draw_bitmap() to paste bytes
// but it appears to be faster to include the color swap in the copy loop
// because the CPU is much faster than PSRAM (SPI bus), therefore
// swapping bytes on the fly costs zero performance
//
// not_swapped == false : called from LVGL bytes are swapped
// not_swapped == true : called from displaytext, no byte swap, currently no dma here
if (interface == _UDSP_RGB) {
#ifdef USE_ESP32_S3
// check that bytes count matches the size of area, and remove from inner loop
if ((seta_yp2 - seta_yp1) * (seta_xp2 - seta_xp2) > len) { return; }
uint16_t lenc = len;
if (cur_rot > 0) {
for (uint32_t y = seta_yp1; y < seta_yp2; y++) {
seta_yp1++;
for (uint32_t x = seta_xp1; x < seta_xp2; x++) {
uint16_t color = *data++;
if (!not_swapped) { color = color << 8 | color >> 8; }
drawPixel_RGB(x, y, color);
lenc--;
if (!lenc) return; // failsafe - exist if len (pixel number) is exhausted
}
}
} else {
uint16_t *fb_y = rgb_fb + (int32_t)seta_yp1 * _width;
for (uint32_t y = seta_yp1; y < seta_yp2; y++) {
uint16_t * fb_xy = fb_y + seta_xp1;
// we get the 'not_swapped' test outside of the inner loop
if (not_swapped) {
for (uint32_t x = seta_xp1; x < seta_xp2; x++) {
uint16_t color = *data++;
*fb_xy = color;
fb_xy++;
lenc--;
if (!lenc) break; // failsafe - exist if len (pixel number) is exhausted
}
} else {
for (uint32_t x = seta_xp1; x < seta_xp2; x++) {
uint16_t color = *data++;
color = color << 8 | color >> 8;
*fb_xy = color;
fb_xy++;
lenc--;
if (!lenc) break; // failsafe - exist if len (pixel number) is exhausted
}
}
uint16_t * flush_ptr = rgb_fb + (int32_t)seta_yp1 * _width + seta_xp1;
Cache_WriteBack_Addr((uint32_t)flush_ptr, (seta_xp2 - seta_xp1) * 2);
fb_y += _width;
seta_yp1++;
if (!lenc) break;
}
}
#endif
return;
}
if (not_swapped == false) {
// called from LVGL bytes are swapped
if (bpp != 16) {
// lvgl_color_swap(data, len); -- no need to swap anymore, we have inverted the mask
pushColorsMono(data, len, true);
return;
}
if ( (col_mode != 18) && (spi_dc >= 0) && (spi_nr <= 2) ) {
// special version 8 bit spi I or II
#ifdef ESP8266
lvgl_color_swap(data, len);
while (len--) {
uspi->write(*data++);
}
#else
if (lvgl_param.use_dma) {
pushPixelsDMA(data, len );
} else {
uspi->writeBytes((uint8_t*)data, len * 2);
}
#endif
} else {
#ifdef ESP32
if ( (col_mode == 18) && (spi_dc >= 0) && (spi_nr <= 2) ) {
uint8_t *line = (uint8_t*)malloc(len * 3);
uint8_t *lp = line;
if (line) {
for (uint32_t cnt = 0; cnt < len; cnt++) {
color = *data++;
color = (color << 8) | (color >> 8);
uint8_t r = (color & 0xF800) >> 11;
uint8_t g = (color & 0x07E0) >> 5;
uint8_t b = color & 0x001F;
r = (r * 255) / 31;
g = (g * 255) / 63;
b = (b * 255) / 31;
*lp++ = r;
*lp++ = g;
*lp++ = b;
}
if (lvgl_param.use_dma) {
pushPixels3DMA(line, len );
} else {
uspi->writeBytes(line, len * 3);
}
free(line);
}
} else {
// 9 bit and others
if (interface == _UDSP_PAR8 || interface == _UDSP_PAR16) {
#ifdef USE_ESP32_S3
pb_pushPixels(data, len, true, false);
#endif // USE_ESP32_S3
} else {
lvgl_color_swap(data, len);
while (len--) {
WriteColor(*data++);
}
}
}
#endif // ESP32
#ifdef ESP8266
lvgl_color_swap(data, len);
while (len--) {
WriteColor(*data++);
}
#endif
}
} else {
// called from displaytext, no byte swap, currently no dma here
if (bpp != 16) {
pushColorsMono(data, len);
return;
}
if ( (col_mode != 18) && (spi_dc >= 0) && (spi_nr <= 2) ) {
// special version 8 bit spi I or II
#ifdef ESP8266
while (len--) {
//uspi->write(*data++);
WriteColor(*data++);
}
#else
uspi->writePixels(data, len * 2);
#endif
} else {
// 9 bit and others
if (interface == _UDSP_PAR8 || interface == _UDSP_PAR16) {
#ifdef USE_ESP32_S3
pb_pushPixels(data, len, false, false);
#endif // USE_ESP32_S3
} else {
while (len--) {
WriteColor(*data++);
}
}
}
}
}
void uDisplay::WriteColor(uint16_t color) {
if (col_mode == 18) {
uint8_t r = (color & 0xF800) >> 11;
uint8_t g = (color & 0x07E0) >> 5;
uint8_t b = color & 0x001F;
r = (r * 255) / 31;
g = (g * 255) / 63;
b = (b * 255) / 31;
ulcd_data8(r);
ulcd_data8(g);
ulcd_data8(b);
} else {
ulcd_data16(color);
}
}
#ifdef USE_ESP32_S3
void uDisplay::drawPixel_RGB(int16_t x, int16_t y, uint16_t color) {
int16_t w = _width, h = _height;
if ((x < 0) || (x >= w) || (y < 0) || (y >= h)) {
return;
}
// check rotation, move pixel around if necessary
switch (cur_rot) {
case 1:
renderer_swap(w, h);
renderer_swap(x, y);
x = w - x - 1;
break;
case 2:
x = w - x - 1;
y = h - y - 1;
break;
case 3:
renderer_swap(w, h);
renderer_swap(x, y);
y = h - y - 1;
break;
}
uint16_t *fb = rgb_fb;
fb += (int32_t)y * w;
fb += x;
*fb = color;
Cache_WriteBack_Addr((uint32_t)fb, 2);
}
#endif // USE_ESP32_S3
void uDisplay::drawPixel(int16_t x, int16_t y, uint16_t color) {
#ifdef USE_ESP32_S3
if (interface == _UDSP_RGB) {
if (lvgl_param.swap_color) {
color = color << 8 | color >> 8;
}
drawPixel_RGB(x, y, color);
return;
}
#endif
if (ep_mode) {
drawPixel_EPD(x, y, color);
return;
}
if (framebuffer) {
Renderer::drawPixel(x, y, color);
return;
}
if ((x < 0) || (x >= _width) || (y < 0) || (y >= _height)) return;
SPI_BEGIN_TRANSACTION
SPI_CS_LOW
setAddrWindow_int(x, y, 1, 1);
WriteColor(color);
SPI_CS_HIGH
SPI_END_TRANSACTION
}
void uDisplay::setRotation(uint8_t rotation) {
cur_rot = rotation;
if (framebuffer) {
Renderer::setRotation(cur_rot);
return;
}
if (interface == _UDSP_SPI || interface == _UDSP_PAR8 || interface == _UDSP_PAR16) {
if (ep_mode) {
Renderer::setRotation(cur_rot);
return;
}
SPI_BEGIN_TRANSACTION
SPI_CS_LOW
ulcd_command(madctrl);
if (!allcmd_mode) {
ulcd_data8(rot[cur_rot]);
} else {
ulcd_command(rot[cur_rot]);
}
if ((sa_mode == 8) && !allcmd_mode) {
ulcd_command(startline);
ulcd_data8((cur_rot < 2) ? height() : 0);
}
SPI_CS_HIGH
SPI_END_TRANSACTION
}
switch (rotation) {
case 0:
_width = gxs;
_height = gys;
break;
case 1:
_width = gys;
_height = gxs;
break;
case 2:
_width = gxs;
_height = gys;
break;
case 3:
_width = gys;
_height = gxs;
break;
}
}
void udisp_bpwr(uint8_t on);
void uDisplay::DisplayOnff(int8_t on) {
if (ep_mode) {
return;
}
if (pwr_cbp) {
pwr_cbp(on);
}
#define AW_PWMRES 1024
if (interface == _UDSP_I2C) {
if (on) {
i2c_command(dsp_on);
} else {
i2c_command(dsp_off);
}
} else {
if (on) {
if (dsp_on != 0xff) ulcd_command_one(dsp_on);
if (bpanel >= 0) {
#ifdef ESP32
if (!bpmode) {
analogWrite(bpanel, dimmer10_gamma);
} else {
analogWrite(bpanel, AW_PWMRES - dimmer10_gamma);
}
#else
if (!bpmode) {
digitalWrite(bpanel, HIGH);
} else {
digitalWrite(bpanel, LOW);
}
#endif
}
} else {
if (dsp_off != 0xff) ulcd_command_one(dsp_off);
if (bpanel >= 0) {
#ifdef ESP32
if (!bpmode) {
analogWrite(bpanel, 0);
} else {
analogWrite(bpanel, AW_PWMRES - 1);
}
#else
if (!bpmode) {
digitalWrite(bpanel, LOW);
} else {
digitalWrite(bpanel, HIGH);
}
#endif
}
}
}
}
void uDisplay::invertDisplay(boolean i) {
if (ep_mode) {
return;
}
if (interface == _UDSP_SPI || interface == _UDSP_PAR8 || interface == _UDSP_PAR16) {
if (i) {
ulcd_command_one(inv_on);
} else {
ulcd_command_one(inv_off);
}
}
if (interface == _UDSP_I2C) {
if (i) {
i2c_command(inv_on);
} else {
i2c_command(inv_off);
}
}
}
void udisp_dimm(uint8_t dim);
// input value is 0..15
// void uDisplay::dim(uint8_t dim) {
// dim8(((uint32_t)dim * 255) / 15);
// }
// dim is 0..255
void uDisplay::dim10(uint8_t dim, uint16_t dim_gamma) { // dimmer with 8 bits resolution, 0..255. Gamma correction must be done by caller
dimmer8 = dim;
dimmer10_gamma = dim_gamma;
if (ep_mode) {
return;
}
#ifdef ESP32 // TODO should we also add a ESP8266 version for bpanel?
if (bpanel >= 0) { // is the BaclPanel GPIO configured
if (!bpmode) {
analogWrite(bpanel, dimmer10_gamma);
} else {
analogWrite(bpanel, AW_PWMRES - dimmer10_gamma);
}
// ledcWrite(ESP32_PWM_CHANNEL, dimmer8_gamma);
} else if (dim_cbp) {
dim_cbp(dim);
}
#endif
if (interface == _UDSP_SPI) {
if (dim_op != 0xff) { // send SPI command if dim configured
SPI_BEGIN_TRANSACTION
SPI_CS_LOW
ulcd_command(dim_op);
ulcd_data8(dimmer8);
SPI_CS_HIGH
SPI_END_TRANSACTION
}
}
}
// the cases are PSEUDO_OPCODES from MODULE_DESCRIPTOR
// and may be expanded with more opcodes
void uDisplay::TS_RotConvert(int16_t *x, int16_t *y) {
int16_t temp;
if (rot_t[cur_rot] & 0x80) {
temp = *y;
*y = *x;
*x = temp;
}
if (rotmap_xmin >= 0) {
*y = map(*y, rotmap_ymin, rotmap_ymax, 0, gys);
*x = map(*x, rotmap_xmin, rotmap_xmax, 0, gxs);
*x = constrain(*x, 0, gxs);
*y = constrain(*y, 0, gys);
}
// *x = constrain(*x, 0, gxs);
// *y = constrain(*y, 0, gys);
//Serial.printf("rot 1 %d - %d\n",*x,*y );
switch (rot_t[cur_rot] & 0xf) {
case 0:
break;
case 1:
temp = *y;
*y = height() - *x;
*x = temp;
break;
case 2:
*x = width() - *x;
*y = height() - *y;
break;
case 3:
temp = *y;
*y = *x;
*x = width() - temp;
break;
case 4:
*x = width() - *x;
break;
case 5:
*y = height() - *y;
break;
}
//Serial.printf("rot 2 %d - %d\n",*x,*y );
}
uint8_t uDisplay::strlen_ln(char *str) {
for (uint32_t cnt = 0; cnt < 256; cnt++) {
if (!str[cnt] || str[cnt] == '\n' || str[cnt] == ' ') return cnt;
}
return 0;
}
char *uDisplay::devname(void) {
return dname;
}
#ifdef USE_UNIVERSAL_TOUCH
float CharToFloat(const char *str);
uint32_t uDisplay::ut_par(char **lp, uint32_t mode) {
char *cp = *lp;
while (*cp != ' ') {
if (!cp) break;
cp++;
}
cp++;
uint32_t result;
if (!mode) {
// hex
result = strtol(cp, &cp, 16);
} else if (mode == 1) {
// word
result = strtol(cp, &cp, 10);
} else {
// float as 32bit integer
float fval = CharToFloat(cp);
result = *(uint32_t*)&fval;
while (*cp) {
if (*cp == ' ' || *cp =='\n') {
break;
}
cp++;
}
}
*lp = cp;
return result;
}
// translate pseudo opcodes to tokens
void uDisplay::ut_trans(char **sp, uint8_t **code) {
char *cp = *sp;
uint16_t wval;
uint8_t tmp_code[64];
uint8_t *ut_code = tmp_code;
while (*cp) {
if (*cp == ':' || *cp == '#') {
break;
}
if (*cp == ';') {
// skip comment line
while (*cp) {
if (*cp == '\n') {
cp++;
break;
}
cp++;
}
}
if (!strncmp(cp, "RDWM", 4)) {
// read word many
*ut_code++ = UT_RDWM;
wval = ut_par(&cp, 0);
*ut_code++ = wval>>8;
*ut_code++ = wval;
wval = ut_par(&cp, 1);
if (wval > sizeof(ut_array)) {
wval = sizeof(ut_array);
}
*ut_code++ = wval;
} else if (!strncmp(cp, "RDW", 3)) {
// read word one
*ut_code++ = UT_RDW;
wval = ut_par(&cp, 0);
*ut_code++ = wval>>8;
*ut_code++ = wval;
} else if (!strncmp(cp, "RDM", 3)) {
// read many
*ut_code++ = UT_RDM;
*ut_code++ = ut_par(&cp, 0);
wval = ut_par(&cp, 1);
if (wval > sizeof(ut_array)) {
wval = sizeof(ut_array);
}
*ut_code++ = wval;
} else if (!strncmp(cp, "RD", 2)) {
// read one
*ut_code++ = UT_RD;
*ut_code++ = ut_par(&cp, 0);
} else if (!strncmp(cp, "CPR", 3)) {
// cmp and set
*ut_code++ = UT_CPR;
*ut_code++ = ut_par(&cp, 0);
} else if (!strncmp(cp, "CPM", 3)) {
// cmp multiple and set
*ut_code++ = UT_CPM;
uint8_t num = ut_par(&cp, 0);
*ut_code++ = num;
for (uint32_t cnt = 0; cnt < num; cnt++) {
*ut_code++ = ut_par(&cp, 0);
}
} else if (!strncmp(cp, "CP", 2)) {
// cmp and set
*ut_code++ = UT_CP;
*ut_code++ = ut_par(&cp, 0);
} else if (!strncmp(cp, "RTF", 3)) {
// return when false
*ut_code++ = UT_RTF;
} else if (!strncmp(cp, "RTT", 3)) {
// return when true
*ut_code++ = UT_RTT;
} else if (!strncmp(cp, "MVB", 3)) {
// move
*ut_code++ = UT_MVB;
*ut_code++ = ut_par(&cp, 1);
*ut_code++ = ut_par(&cp, 1);
} else if (!strncmp(cp, "MV", 2)) {
// move
*ut_code++ = UT_MV;
*ut_code++ = ut_par(&cp, 1);
*ut_code++ = ut_par(&cp, 1);
} else if (!strncmp(cp, "RT", 2)) {
// return status
*ut_code++ = UT_RT;
} else if (!strncmp(cp, "WRW", 3)) {
*ut_code++ = UT_WRW;
wval = ut_par(&cp, 0);
*ut_code++ = wval>>8;
*ut_code++ = wval;
wval = ut_par(&cp, 0);
*ut_code++ = wval;
} else if (!strncmp(cp, "WR", 2)) {
*ut_code++ = UT_WR;
wval = ut_par(&cp, 0);
*ut_code++ = wval;
wval = ut_par(&cp, 0);
*ut_code++ = wval;
} else if (!strncmp(cp, "AND", 3)) {
*ut_code++ = UT_AND;
wval = ut_par(&cp, 0);
*ut_code++ = wval >> 8;
*ut_code++ = wval;
} else if (!strncmp(cp, "SCL", 3)) {
*ut_code++ = UT_SCALE;
wval = ut_par(&cp, 1);
*ut_code++ = wval >> 8;
*ut_code++ = wval;
uint32_t lval = ut_par(&cp, 2);
*ut_code++ = lval >> 24;
*ut_code++ = lval >> 16;
*ut_code++ = lval >> 8;
*ut_code++ = lval;
} else if (!strncmp(cp, "LIM", 3)) {
*ut_code++ = UT_LIM;
wval = ut_par(&cp, 1);
*ut_code++ = wval >> 8;
*ut_code++ = wval;
} else if (!strncmp(cp, "GSRT", 4)) {
*ut_code++ = UT_GSRT;
wval = ut_par(&cp, 1);
*ut_code++ = wval >> 8;
*ut_code++ = wval;
} else if (!strncmp(cp, "XPT", 3)) {
*ut_code++ = UT_XPT;
wval = ut_par(&cp, 1);
*ut_code++ = wval >> 8;
*ut_code++ = wval;
} else if (!strncmp(cp, "DBG", 3)) {
*ut_code++ = UT_DBG;
wval = ut_par(&cp, 1);
*ut_code++ = wval;
}
cp++;
}
*ut_code++ = UT_END;
*sp = cp - 1;
uint16_t memsize = (uint32_t)ut_code - (uint32_t)tmp_code;
// allocate memory
//AddLog(LOG_LEVEL_INFO, PSTR("UT-code: %d bytes"),memsize);
#ifdef UDSP_DEBUG
Serial.printf("Utouch code size : %d\n", memsize);
#endif
uint8_t *mp = (uint8_t*)malloc(memsize + 2);
if (mp) {
memmove(mp, tmp_code, memsize);
*code = mp;
}
}
uint8_t *uDisplay::ut_rd(uint8_t *iop, uint32_t len, uint32_t amode) {
if (ut_wire) {
// i2c mode
ut_wire->beginTransmission(ut_i2caddr);
ut_wire->write(*iop++);
if (amode == 2) {
ut_wire->write(*iop++);
}
ut_wire->endTransmission(false);
if (len > 1) {
len = *iop++;
}
ut_wire->requestFrom(ut_i2caddr, (size_t)len);
uint8_t index = 0;
while (ut_wire->available()) {
ut_array[index++] = ut_wire->read();
}
} else {
// spi mode
if (amode == 1) {
uint16_t val = *iop++;
uint16_t len = *iop++;
if (ut_spi) {
digitalWrite(ut_spi_cs, LOW);
ut_spi->beginTransaction(ut_spiSettings);
ut_spi->transfer(val);
val = ut_spi->transfer16(0);
ut_spi->endTransaction();
ut_array[len] = val << 8;
ut_array[len + 1] = val;
digitalWrite(ut_spi_cs, HIGH);
}
}
}
return iop;
}
uint8_t *uDisplay::ut_wr(uint8_t *iop, uint32_t amode) {
if (ut_wire) {
// i2c mode
ut_wire->beginTransmission(ut_i2caddr);
ut_wire->write(*iop++);
if (amode == 2) {
ut_wire->write(*iop++);
}
ut_wire->write(*iop++);
ut_wire->endTransmission(true);
} else {
// spi mode
}
return iop;
}
int16_t uDisplay::besttwoavg( int16_t x , int16_t y , int16_t z ) {
int16_t da, db, dc;
int16_t reta = 0;
if ( x > y ) da = x - y; else da = y - x;
if ( x > z ) db = x - z; else db = z - x;
if ( z > y ) dc = z - y; else dc = y - z;
if ( da <= db && da <= dc ) reta = (x + y) >> 1;
else if ( db <= da && db <= dc ) reta = (x + z) >> 1;
else reta = (y + z) >> 1;
return (reta);
}
uint16_t uDisplay::ut_XPT2046(uint16_t z_th) {
uint16_t result = 0;
if (ut_spi) {
int16_t data[6];
ut_spi->beginTransaction(ut_spiSettings);
digitalWrite(ut_spi_cs, LOW);
ut_spi->transfer(0xB1 /* Z1 */);
int16_t z1 = ut_spi->transfer16(0xC1 /* Z2 */) >> 3;
int16_t z = z1 + 4095;
int16_t z2 = ut_spi->transfer16(0x91 /* X */) >> 3;
z -= z2;
if (z >= z_th) {
ut_spi->transfer16(0x91 /* X */); // dummy X measure, 1st is always noisy
data[0] = ut_spi->transfer16(0xD1 /* Y */) >> 3;
data[1] = ut_spi->transfer16(0x91 /* X */) >> 3; // make 3 x-y measurements
data[2] = ut_spi->transfer16(0xD1 /* Y */) >> 3;
data[3] = ut_spi->transfer16(0x91 /* X */) >> 3;
result = 1;
}
else {
data[0] = data[1] = data[2] = data[3] = 0;
}
data[4] = ut_spi->transfer16(0xD0 /* Y */) >> 3; // Last Y touch power down
data[5] = ut_spi->transfer16(0) >> 3;
digitalWrite(ut_spi_cs, HIGH);
ut_spi->endTransaction();
uint16_t x = besttwoavg( data[0], data[2], data[4] );
uint16_t y = besttwoavg( data[1], data[3], data[5] );
ut_array[0] = x >> 8;
ut_array[1] = x;
ut_array[2] = y >> 8;
ut_array[3] = y;
}
return result;
}
int16_t uDisplay::ut_execute(uint8_t *ut_code) {
int16_t result = 0;
uint8_t iob, len;
uint16_t wval;
while (*ut_code != UT_END) {
iob = *ut_code++;
switch (iob) {
case UT_RD:
// read 1 byte
ut_code = ut_rd(ut_code, 1, 1);
break;
case UT_RDM:
// read multiple bytes
ut_code = ut_rd(ut_code, 2, 1);
break;
case UT_RDW:
// read 1 byte
ut_code = ut_rd(ut_code, 1, 2);
break;
case UT_RDWM:
// read multiple bytes
ut_code = ut_rd(ut_code, 2, 2);
break;
case UT_WR:
ut_code = ut_wr(ut_code, 1);
break;
case UT_WRW:
ut_code = ut_wr(ut_code, 2);
break;
case UT_CP:
// compare
iob = *ut_code++;
result = (iob == ut_array[0]);
break;
case UT_CPM:
// compare multiple
len = *ut_code++;
result = 0;
for (uint32_t cnt = 0; cnt < len; cnt++) {
iob = *ut_code++;
result |= (iob == ut_array[0]);
}
break;
case UT_CPR:
// compare
iob = *ut_code++;
result = (iob == result);
break;
case UT_RTF:
// return when false
if (result == 0) {
return false;
}
break;
case UT_RTT:
// return when true
if (result > 0) {
return false;
}
break;
case UT_MVB:
// move byte from index to high or low result
wval = *ut_code++;
iob = *ut_code++;
if (wval == 0) {
result &= 0xff00;
result |= ut_array[iob];
} else {
result &= 0x00ff;
result |= (ut_array[iob] << 8);
}
break;
case UT_MV:
// move
// source
result = *ut_code++;
iob = *ut_code++;
if (iob == 1) {
result = ut_array[result];
} else if (iob == 2) {
iob = result;
result = ut_array[iob] << 8;
result |= ut_array[iob + 1];
} else {
iob = result;
result = ut_array[iob + 1] << 8;
result |= ut_array[iob];
}
result &= 0xfff;
break;
case UT_AND:
// and
wval = *ut_code++ << 8;
wval |= *ut_code++;
result &= wval;
break;
case UT_SCALE:
{
wval = *ut_code++ << 8;
wval |= *ut_code++;
result -= wval;
uint32_t lval = (uint32_t)*ut_code++ << 24;
lval |= (uint32_t)*ut_code++ << 16;
lval |= (uint32_t)*ut_code++ << 8;
lval |= (uint32_t)*ut_code++;
float fval = *(float*)&lval;
fval *= (float)result;
result = fval;
}
break;
case UT_LIM:
wval = *ut_code++ << 8;
wval |= *ut_code++;
if (result > wval) {
result = wval;
}
break;
case UT_RT:
// result
return result;
break;
case UT_GSRT:
#ifdef USE_ESP32_S3
{ uint32_t val = get_sr_touch(SIMPLERS_XP, SIMPLERS_XM, SIMPLERS_YP, SIMPLERS_YM);
if (val == 0) {
return false;
}
uint16_t xp = val >> 16;
uint16_t yp = val;
wval = *ut_code++ << 8;
wval |= *ut_code++;
if (xp > wval && yp > wval) {
ut_array[0] = val >> 24;
ut_array[1] = val >> 16;
ut_array[2] = val >> 8;
ut_array[3] = val;
return true;
}
return false;
}
#endif // USE_ESP32_S3
break;
case UT_XPT:
wval = *ut_code++ << 8;
wval |= *ut_code++;
result = ut_XPT2046(wval);
break;
case UT_DBG:
// debug show result
//Serial.printf("UTDBG: %d\n", result);
wval = *ut_code++;
AddLog(LOG_LEVEL_INFO, PSTR("UTDBG %d: %02x : %02x,%02x,%02x,%02x"), wval, result, ut_array[0], ut_array[1], ut_array[2], ut_array[3]);
break;
case UT_END:
break;
}
}
return result;
}
#endif // USE_UNIVERSAL_TOUCH
uint32_t uDisplay::str2c(char **sp, char *vp, uint32_t len) {
char *lp = *sp;
if (len) len--;
char *cp = strchr(lp, ',');
if (cp) {
while (1) {
if (*lp == ',') {
*vp = 0;
*sp = lp + 1;
return 0;
}
if (len) {
*vp++ = *lp++;
len--;
} else {
lp++;
}
}
} else {
uint16_t slen = strlen(lp);
if (slen) {
strlcpy(vp, *sp, len);
*sp = lp + slen;
return 0;
}
}
return 1;
}
int32_t uDisplay::next_val(char **sp) {
char ibuff[16];
if (!str2c(sp, ibuff, sizeof(ibuff))) {
return atoi(ibuff);
}
return 0xff;
}
uint32_t uDisplay::next_hex(char **sp) {
char ibuff[16];
if (!str2c(sp, ibuff, sizeof(ibuff))) {
return strtol(ibuff, 0, 16);
}
return 0xff;
}
#ifdef ESP32
#include "soc/spi_reg.h"
#include "soc/spi_struct.h"
#include "esp32-hal-spi.h"
#include "esp32-hal.h"
#include "soc/spi_struct.h"
// since ardunio transferBits is completely disfunctional
// we use our own hardware driver for 9 bit spi
void uDisplay::hw_write9(uint8_t val, uint8_t dc) {
if (spi_dc < -1) {
// RA8876 mode
if (!dc) {
uspi->write(RA8876_CMD_WRITE);
uspi->write(val);
} else {
uspi->write(RA8876_DATA_WRITE);
uspi->write(val);
}
} else {
uint32_t regvalue = val >> 1;
if (dc) regvalue |= 0x80;
else regvalue &= 0x7f;
if (val & 1) regvalue |= 0x8000;
REG_SET_BIT(SPI_USER_REG(3), SPI_USR_MOSI);
REG_WRITE(SPI_MOSI_DLEN_REG(3), 9 - 1);
uint32_t *dp = (uint32_t*)SPI_W0_REG(3);
*dp = regvalue;
REG_SET_BIT(SPI_CMD_REG(3), SPI_USR);
while (REG_GET_FIELD(SPI_CMD_REG(3), SPI_USR));
}
}
#else
#include "spi_register.h"
void uDisplay::hw_write9(uint8_t val, uint8_t dc) {
if (spi_dc < -1) {
// RA8876 mode
if (!dc) {
uspi->write(RA8876_CMD_WRITE);
uspi->write(val);
} else {
uspi->write(RA8876_DATA_WRITE);
uspi->write(val);
}
} else {
uint32_t regvalue;
uint8_t bytetemp;
if (!dc) {
bytetemp = (val>> 1) & 0x7f;
} else {
bytetemp = (val >> 1) | 0x80;
}
regvalue = ((8 & SPI_USR_COMMAND_BITLEN) << SPI_USR_COMMAND_BITLEN_S) | ((uint32)bytetemp); //configure transmission variable,9bit transmission length and first 8 command bit
if (val & 0x01) regvalue |= BIT15; //write the 9th bit
while (READ_PERI_REG(SPI_CMD(1)) & SPI_USR); //waiting for spi module available
WRITE_PERI_REG(SPI_USER2(1), regvalue); //write command and command length into spi reg
SET_PERI_REG_MASK(SPI_CMD(1), SPI_USR); //transmission start
}
}
#endif
#define USECACHE ICACHE_RAM_ATTR
// slow software spi needed for displays with max 10 Mhz clck
void USECACHE uDisplay::write8(uint8_t val) {
for (uint8_t bit = 0x80; bit; bit >>= 1) {
GPIO_CLR(spi_clk);
if (val & bit) GPIO_SET(spi_mosi);
else GPIO_CLR(spi_mosi);
GPIO_SET(spi_clk);
}
}
uint8_t uDisplay::writeReg16(uint8_t reg, uint16_t wval) {
hw_write9(reg, 0);
hw_write9(wval, 1);
hw_write9(reg + 1, 0);
hw_write9(wval >> 8, 1);
return 0;
}
uint8_t uDisplay::readData(void) {
uspi->write(RA8876_DATA_READ);
uint8_t val = uspi->transfer(0);
return val;
}
uint8_t uDisplay::readStatus(void) {
uspi->write(RA8876_STATUS_READ);
uint8_t val = uspi->transfer(0);
return val;
}
void uDisplay::write8_slow(uint8_t val) {
for (uint8_t bit = 0x80; bit; bit >>= 1) {
GPIO_CLR_SLOW(spi_clk);
if (val & bit) GPIO_SET_SLOW(spi_mosi);
else GPIO_CLR_SLOW(spi_mosi);
GPIO_SET_SLOW(spi_clk);
}
}
void USECACHE uDisplay::write9(uint8_t val, uint8_t dc) {
GPIO_CLR(spi_clk);
if (dc) GPIO_SET(spi_mosi);
else GPIO_CLR(spi_mosi);
GPIO_SET(spi_clk);
for (uint8_t bit = 0x80; bit; bit >>= 1) {
GPIO_CLR(spi_clk);
if (val & bit) GPIO_SET(spi_mosi);
else GPIO_CLR(spi_mosi);
GPIO_SET(spi_clk);
}
}
void uDisplay::write9_slow(uint8_t val, uint8_t dc) {
GPIO_CLR_SLOW(spi_clk);
if (dc) GPIO_SET_SLOW(spi_mosi);
else GPIO_CLR_SLOW(spi_mosi);
GPIO_SET_SLOW(spi_clk);
for (uint8_t bit = 0x80; bit; bit >>= 1) {
GPIO_CLR_SLOW(spi_clk);
if (val & bit) GPIO_SET_SLOW(spi_mosi);
else GPIO_CLR_SLOW(spi_mosi);
GPIO_SET_SLOW(spi_clk);
}
}
void USECACHE uDisplay::write16(uint16_t val) {
for (uint16_t bit = 0x8000; bit; bit >>= 1) {
GPIO_CLR(spi_clk);
if (val & bit) GPIO_SET(spi_mosi);
else GPIO_CLR(spi_mosi);
GPIO_SET(spi_clk);
}
}
void USECACHE uDisplay::write32(uint32_t val) {
for (uint32_t bit = 0x80000000; bit; bit >>= 1) {
GPIO_CLR(spi_clk);
if (val & bit) GPIO_SET(spi_mosi);
else GPIO_CLR(spi_mosi);
GPIO_SET(spi_clk);
}
}
// epaper section
// EPD2IN9 commands
#define DRIVER_OUTPUT_CONTROL 0x01
#define BOOSTER_SOFT_START_CONTROL 0x0C
#define GATE_SCAN_START_POSITION 0x0F
#define DEEP_SLEEP_MODE 0x10
#define DATA_ENTRY_MODE_SETTING 0x11
#define SW_RESET 0x12
#define TEMPERATURE_SENSOR_CONTROL 0x1A
#define MASTER_ACTIVATION 0x20
#define DISPLAY_UPDATE_CONTROL_1 0x21
#define DISPLAY_UPDATE_CONTROL_2 0x22
#define WRITE_RAM 0x24
#define WRITE_VCOM_REGISTER 0x2C
#define WRITE_LUT_REGISTER 0x32
#define SET_DUMMY_LINE_PERIOD 0x3A
#define SET_GATE_TIME 0x3B
#define BORDER_WAVEFORM_CONTROL 0x3C
#define SET_RAM_X_ADDRESS_START_END_POSITION 0x44
#define SET_RAM_Y_ADDRESS_START_END_POSITION 0x45
#define SET_RAM_X_ADDRESS_COUNTER 0x4E
#define SET_RAM_Y_ADDRESS_COUNTER 0x4F
#define TERMINATE_FRAME_READ_WRITE 0xFF
void uDisplay::spi_data8_EPD(uint8_t val) {
SPI_BEGIN_TRANSACTION
SPI_CS_LOW
ulcd_data8(val);
SPI_CS_HIGH
SPI_END_TRANSACTION
}
void uDisplay::spi_command_EPD(uint8_t val) {
SPI_BEGIN_TRANSACTION
SPI_CS_LOW
ulcd_command(val);
SPI_CS_HIGH
SPI_END_TRANSACTION
}
void uDisplay::Init_EPD(int8_t p) {
if (p == DISPLAY_INIT_PARTIAL) {
if (lutpsize) {
SetLut(lut_partial);
}
} else {
if (lutfsize) {
SetLut(lut_full);
}
if (lut_cnt[0]) {
SetLuts();
}
}
if (ep_mode == 1) {
ClearFrameMemory(0xFF);
Updateframe_EPD();
} else if (ep_mode == 3) {
ClearFrameMemory(0xFF);
Updateframe_EPD();
} else {
ClearFrame_42();
}
if (p == DISPLAY_INIT_PARTIAL) {
delay_sync(lutptime * 10);
} else {
delay_sync(lutftime * 10);
}
}
void uDisplay::ClearFrameMemory(unsigned char color) {
SetMemoryArea(0, 0, gxs - 1, gys - 1);
SetMemoryPointer(0, 0);
spi_command_EPD(WRITE_RAM);
/* send the color data */
for (int i = 0; i < gxs / 8 * gys; i++) {
spi_data8_EPD(color);
}
}
void uDisplay::SetLuts(void) {
uint8_t index, count;
for (index = 0; index < MAX_LUTS; index++) {
spi_command_EPD(lut_cmd[index]);
for (count = 0; count < lut_cnt[index]; count++) {
spi_data8_EPD(lut_array[index][count]);
}
}
}
void uDisplay::DisplayFrame_42(void) {
spi_command_EPD(saw_1);
for(int i = 0; i < gxs / 8 * gys; i++) {
spi_data8_EPD(0xFF);
}
delay(2);
spi_command_EPD(saw_2);
for(int i = 0; i < gxs / 8 * gys; i++) {
spi_data8_EPD(framebuffer[i]^0xff);
}
delay(2);
SetLuts();
spi_command_EPD(saw_3);
delay_sync(100);
#ifdef UDSP_DEBUG
Serial.printf("EPD Diplayframe\n");
#endif
}
void uDisplay::ClearFrame_42(void) {
spi_command_EPD(saw_1);
for (uint16_t j = 0; j < gys; j++) {
for (uint16_t i = 0; i < gxs; i++) {
spi_data8_EPD(0xFF);
}
}
spi_command_EPD(saw_2);
for (uint16_t j = 0; j < gys; j++) {
for (uint16_t i = 0; i < gxs; i++) {
spi_data8_EPD(0xFF);
}
}
spi_command_EPD(saw_3);
delay_sync(100);
#ifdef UDSP_DEBUG
Serial.printf("EPD Clearframe\n");
#endif
}
void uDisplay::SetLut(const unsigned char* lut) {
//spi_command_EPD(WRITE_LUT_REGISTER);
spi_command_EPD(lut_cmd[0]);
/* the length of look-up table is 30 bytes */
for (int i = 0; i < lutfsize; i++) {
spi_data8_EPD(lut[i]);
}
}
void uDisplay::Updateframe_EPD(void) {
if (ep_mode == 1 || ep_mode == 3) {
switch (ep_update_mode) {
case DISPLAY_INIT_PARTIAL:
if (epc_part_cnt) {
send_spi_cmds(epcoffs_part, epc_part_cnt);
}
break;
case DISPLAY_INIT_FULL:
if (epc_full_cnt) {
send_spi_cmds(epcoffs_full, epc_full_cnt);
}
break;
default:
SetFrameMemory(framebuffer, 0, 0, gxs, gys);
DisplayFrame_29();
}
} else {
DisplayFrame_42();
}
}
void uDisplay::DisplayFrame_29(void) {
spi_command_EPD(DISPLAY_UPDATE_CONTROL_2);
spi_data8_EPD(0xC4);
spi_command_EPD(MASTER_ACTIVATION);
spi_data8_EPD(TERMINATE_FRAME_READ_WRITE);
}
void uDisplay::SetMemoryArea(int x_start, int y_start, int x_end, int y_end) {
int x_start1 = (x_start >> 3) & 0xFF;
int x_end1 = (x_end >> 3) & 0xFF;
int y_start1 = y_start & 0xFF;
int y_start2 = (y_start >> 8) & 0xFF;
int y_end1 = y_end & 0xFF;
int y_end2 = (y_end >> 8) & 0xFF;
/* x point must be the multiple of 8 or the last 3 bits will be ignored */
if (ep_mode == 3) {
spi_command_EPD(SET_RAM_X_ADDRESS_START_END_POSITION);
spi_data8_EPD(x_start1);
spi_data8_EPD(x_end1);
spi_command_EPD(SET_RAM_Y_ADDRESS_START_END_POSITION);
spi_data8_EPD(y_end1);
spi_data8_EPD(y_end2);
spi_data8_EPD(y_start1);
spi_data8_EPD(y_start2);
} else {
spi_command_EPD(SET_RAM_X_ADDRESS_START_END_POSITION);
spi_data8_EPD(x_start1);
spi_data8_EPD(x_end1);
spi_command_EPD(SET_RAM_Y_ADDRESS_START_END_POSITION);
spi_data8_EPD(y_start1);
spi_data8_EPD(y_start2);
spi_data8_EPD(y_end1);
spi_data8_EPD(y_end2);
}
}
void uDisplay::SetFrameMemory(const unsigned char* image_buffer) {
SetMemoryArea(0, 0, gxs - 1, gys - 1);
SetMemoryPointer(0, 0);
spi_command_EPD(WRITE_RAM);
/* send the image data */
for (int i = 0; i < gxs / 8 * gys; i++) {
spi_data8_EPD(image_buffer[i] ^ 0xff);
}
}
void uDisplay::SetMemoryPointer(int x, int y) {
int x1;
int y1;
int y2;
if (ep_mode == 3) {
x1 = (x >> 3) & 0xFF;
y--;
y1 = y & 0xFF;
y2 = (y >> 8) & 0xFF;
} else {
x1 = (x >> 3) & 0xFF;
y1 = y & 0xFF;
y2 = (y >> 8) & 0xFF;
}
spi_command_EPD(SET_RAM_X_ADDRESS_COUNTER);
/* x point must be the multiple of 8 or the last 3 bits will be ignored */
spi_data8_EPD(x1);
spi_command_EPD(SET_RAM_Y_ADDRESS_COUNTER);
spi_data8_EPD(y1);
spi_data8_EPD(y2);
}
#if 0
void uDisplay::Send_EP_Data() {
for (int i = 0; i < gys / 8 * gys; i++) {
spi_data8_EPD(framebuffer[i]^0xff);
}
}
#else
void uDisplay::Send_EP_Data() {
uint16_t image_width = gxs & 0xFFF8;
uint16_t x = 0;
uint16_t y = 0;
uint16_t x_end = gxs - 1;
uint16_t y_end = gys - 1;
for (uint16_t j = 0; j < y_end - y + 1; j++) {
for (uint16_t i = 0; i < (x_end - x + 1) / 8; i++) {
spi_data8_EPD(framebuffer[i + j * (image_width / 8)]^0xff);
}
}
}
#endif
void uDisplay::SetFrameMemory(
const unsigned char* image_buffer,
uint16_t x,
uint16_t y,
uint16_t image_width,
uint16_t image_height
) {
uint16_t x_end;
uint16_t y_end;
if (
image_buffer == NULL ||
x < 0 || image_width < 0 ||
y < 0 || image_height < 0
) {
return;
}
/* x point must be the multiple of 8 or the last 3 bits will be ignored */
x &= 0xFFF8;
image_width &= 0xFFF8;
if (x + image_width >= gxs) {
x_end = gxs - 1;
} else {
x_end = x + image_width - 1;
}
if (y + image_height >= gys) {
y_end = gys - 1;
} else {
y_end = y + image_height - 1;
}
if (!x && !y && image_width == gxs && image_height == gys) {
SetFrameMemory(image_buffer);
return;
}
SetMemoryArea(x, y, x_end, y_end);
SetMemoryPointer(x, y);
spi_command_EPD(WRITE_RAM);
/* send the image data */
for (uint16_t j = 0; j < y_end - y + 1; j++) {
for (uint16_t i = 0; i < (x_end - x + 1) / 8; i++) {
spi_data8_EPD(image_buffer[i + j * (image_width / 8)]^0xff);
}
}
}
#define IF_INVERT_COLOR 1
/**
* @brief: this draws a pixel by absolute coordinates.
* this function won't be affected by the rotate parameter.
* we must use this for epaper because these displays have a strange and different bit pattern
*/
void uDisplay::DrawAbsolutePixel(int x, int y, int16_t color) {
int16_t w = width(), h = height();
if (cur_rot == 1 || cur_rot == 3) {
renderer_swap(w, h);
}
if (x < 0 || x >= w || y < 0 || y >= h) {
return;
}
if (IF_INVERT_COLOR) {
if (color) {
framebuffer[(x + y * w) / 8] |= 0x80 >> (x % 8);
} else {
framebuffer[(x + y * w) / 8] &= ~(0x80 >> (x % 8));
}
} else {
if (color) {
framebuffer[(x + y * w) / 8] &= ~(0x80 >> (x % 8));
} else {
framebuffer[(x + y * w) / 8] |= 0x80 >> (x % 8);
}
}
}
void uDisplay::drawPixel_EPD(int16_t x, int16_t y, uint16_t color) {
if (!framebuffer) return;
if ((x < 0) || (x >= width()) || (y < 0) || (y >= height()))
return;
// check rotation, move pixel around if necessary
switch (cur_rot) {
case 1:
renderer_swap(x, y);
x = gxs - x - 1;
break;
case 2:
x = gxs - x - 1;
y = gys - y - 1;
break;
case 3:
renderer_swap(x, y);
y = gys - y - 1;
break;
}
// x is which column
DrawAbsolutePixel(x, y, color);
}
void uDisplay::fillRect_EPD(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) {
for (uint32_t yp = y; yp < y + h; yp++) {
for (uint32_t xp = x; xp < x + w; xp++) {
drawPixel_EPD(xp , yp , color);
}
}
}
void uDisplay::drawFastVLine_EPD(int16_t x, int16_t y, int16_t h, uint16_t color) {
while (h--) {
drawPixel_EPD(x , y , color);
y++;
}
}
void uDisplay::drawFastHLine_EPD(int16_t x, int16_t y, int16_t w, uint16_t color) {
while (w--) {
drawPixel_EPD(x , y , color);
x++;
}
}
void uDisplay::beginTransaction(SPISettings s) {
#ifdef ESP32
if (lvgl_param.use_dma) {
dmaWait();
}
#endif
uspi->beginTransaction(s);
}
void uDisplay::endTransaction(void) {
uspi->endTransaction();
}
// ESP 32 DMA section , derived from TFT_eSPI
#ifdef ESP32
/***************************************************************************************
** Function name: initDMA
** Description: Initialise the DMA engine - returns true if init OK
***************************************************************************************/
bool uDisplay::initDMA(int32_t ctrl_cs)
{
if (DMA_Enabled) return false;
esp_err_t ret;
spi_bus_config_t buscfg = {
.mosi_io_num = spi_mosi,
.miso_io_num = -1,
.sclk_io_num = spi_clk,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
.max_transfer_sz = width() * height() * 2 + 8, // TFT screen size
.flags = 0,
.intr_flags = 0
};
spi_device_interface_config_t devcfg = {
.command_bits = 0,
.address_bits = 0,
.dummy_bits = 0,
.mode = SPI_MODE3,
.duty_cycle_pos = 0,
.cs_ena_pretrans = 0,
.cs_ena_posttrans = 0,
.clock_speed_hz = spi_speed*1000000,
.input_delay_ns = 0,
.spics_io_num = ctrl_cs,
.flags = SPI_DEVICE_NO_DUMMY, //0,
.queue_size = 1,
.pre_cb = 0, //dc_callback, //Callback to handle D/C line
.post_cb = 0
};
ret = spi_bus_initialize(spi_host, &buscfg, 1);
ESP_ERROR_CHECK(ret);
ret = spi_bus_add_device(spi_host, &devcfg, &dmaHAL);
ESP_ERROR_CHECK(ret);
DMA_Enabled = true;
spiBusyCheck = 0;
return true;
}
/***************************************************************************************
** Function name: deInitDMA
** Description: Disconnect the DMA engine from SPI
***************************************************************************************/
void uDisplay::deInitDMA(void) {
if (!DMA_Enabled) return;
spi_bus_remove_device(dmaHAL);
spi_bus_free(spi_host);
DMA_Enabled = false;
}
/***************************************************************************************
** Function name: dmaBusy
** Description: Check if DMA is busy
***************************************************************************************/
bool uDisplay::dmaBusy(void) {
if (!DMA_Enabled || !spiBusyCheck) return false;
spi_transaction_t *rtrans;
esp_err_t ret;
uint8_t checks = spiBusyCheck;
for (int i = 0; i < checks; ++i) {
ret = spi_device_get_trans_result(dmaHAL, &rtrans, 0);
if (ret == ESP_OK) spiBusyCheck--;
}
//Serial.print("spiBusyCheck=");Serial.println(spiBusyCheck);
if (spiBusyCheck == 0) return false;
return true;
}
/***************************************************************************************
** Function name: dmaWait
** Description: Wait until DMA is over (blocking!)
***************************************************************************************/
void uDisplay::dmaWait(void) {
if (!DMA_Enabled || !spiBusyCheck) return;
spi_transaction_t *rtrans;
esp_err_t ret;
for (int i = 0; i < spiBusyCheck; ++i) {
ret = spi_device_get_trans_result(dmaHAL, &rtrans, portMAX_DELAY);
assert(ret == ESP_OK);
}
spiBusyCheck = 0;
}
/***************************************************************************************
** Function name: pushPixelsDMA
** Description: Push pixels to TFT (len must be less than 32767)
***************************************************************************************/
// This will byte swap the original image if setSwapBytes(true) was called by sketch.
void uDisplay::pushPixelsDMA(uint16_t* image, uint32_t len) {
if ((len == 0) || (!DMA_Enabled)) return;
dmaWait();
esp_err_t ret;
memset(&trans, 0, sizeof(spi_transaction_t));
trans.user = (void *)1;
trans.tx_buffer = image; //finally send the line data
trans.length = len * 16; //Data length, in bits
trans.flags = 0; //SPI_TRANS_USE_TXDATA flag
ret = spi_device_queue_trans(dmaHAL, &trans, portMAX_DELAY);
assert(ret == ESP_OK);
spiBusyCheck++;
if (!lvgl_param.async_dma) {
dmaWait();
}
}
/***************************************************************************************
** Function name: pushPixelsDMA
** Description: Push pixels to TFT (len must be less than 32767)
***************************************************************************************/
// This will byte swap the original image if setSwapBytes(true) was called by sketch.
void uDisplay::pushPixels3DMA(uint8_t* image, uint32_t len) {
if ((len == 0) || (!DMA_Enabled)) return;
dmaWait();
esp_err_t ret;
memset(&trans, 0, sizeof(spi_transaction_t));
trans.user = (void *)1;
trans.tx_buffer = image; //finally send the line data
trans.length = len * 24; //Data length, in bits
trans.flags = 0; //SPI_TRANS_USE_TXDATA flag
ret = spi_device_queue_trans(dmaHAL, &trans, portMAX_DELAY);
assert(ret == ESP_OK);
spiBusyCheck++;
if (!lvgl_param.async_dma) {
dmaWait();
}
}
#ifdef USE_ESP32_S3
void uDisplay::calcClockDiv(uint32_t* div_a, uint32_t* div_b, uint32_t* div_n, uint32_t* clkcnt, uint32_t baseClock, uint32_t targetFreq) {
uint32_t diff = INT32_MAX;
*div_n = 256;
*div_a = 63;
*div_b = 62;
*clkcnt = 64;
uint32_t start_cnt = std::min<uint32_t>(64u, (baseClock / (targetFreq * 2) + 1));
uint32_t end_cnt = std::max<uint32_t>(2u, baseClock / 256u / targetFreq);
if (start_cnt <= 2) { end_cnt = 1; }
for (uint32_t cnt = start_cnt; diff && cnt >= end_cnt; --cnt)
{
float fdiv = (float)baseClock / cnt / targetFreq;
uint32_t n = std::max<uint32_t>(2u, (uint32_t)fdiv);
fdiv -= n;
for (uint32_t a = 63; diff && a > 0; --a)
{
uint32_t b = roundf(fdiv * a);
if (a == b && n == 256) {
break;
}
uint32_t freq = baseClock / ((n * cnt) + (float)(b * cnt) / (float)a);
uint32_t d = abs((int)targetFreq - (int)freq);
if (diff <= d) { continue; }
diff = d;
*clkcnt = cnt;
*div_n = n;
*div_b = b;
*div_a = a;
if (b == 0 || a == b) {
break;
}
}
}
if (*div_a == *div_b)
{
*div_b = 0;
*div_n += 1;
}
}
void uDisplay::_alloc_dmadesc(size_t len) {
if (_dmadesc) heap_caps_free(_dmadesc);
_dmadesc_size = len;
_dmadesc = (lldesc_t*)heap_caps_malloc(sizeof(lldesc_t) * len, MALLOC_CAP_DMA);
}
void uDisplay::_setup_dma_desc_links(const uint8_t *data, int32_t len) {
static constexpr size_t MAX_DMA_LEN = (4096-4);
/*
if (_dmadesc_size * MAX_DMA_LEN < len) {
_alloc_dmadesc(len / MAX_DMA_LEN + 1);
}
lldesc_t *dmadesc = _dmadesc;
while (len > MAX_DMA_LEN) {
len -= MAX_DMA_LEN;
dmadesc->buffer = (uint8_t *)data;
data += MAX_DMA_LEN;
*(uint32_t*)dmadesc = MAX_DMA_LEN | MAX_DMA_LEN << 12 | 0x80000000;
dmadesc->next = dmadesc + 1;
dmadesc++;
}
*(uint32_t*)dmadesc = ((len + 3) & ( ~3 )) | len << 12 | 0xC0000000;
dmadesc->buffer = (uint8_t *)data;
dmadesc->next = nullptr;
*/
}
#define WAIT_LCD_NOT_BUSY while (*reg_lcd_user & LCD_CAM_LCD_START) {}
void uDisplay::pb_beginTransaction(void) {
auto dev = _dev;
dev->lcd_clock.val = _clock_reg_value;
// int clk_div = std::min(63u, std::max(1u, 120*1000*1000 / (_cfg.freq_write+1)));
// dev->lcd_clock.lcd_clk_sel = 2; // clock_select: 1=XTAL CLOCK / 2=240MHz / 3=160MHz
// dev->lcd_clock.lcd_clkcnt_n = clk_div;
// dev->lcd_clock.lcd_clk_equ_sysclk = 0;
// dev->lcd_clock.lcd_ck_idle_edge = true;
// dev->lcd_clock.lcd_ck_out_edge = false;
dev->lcd_misc.val = LCD_CAM_LCD_CD_IDLE_EDGE;
// dev->lcd_misc.lcd_cd_idle_edge = 1;
// dev->lcd_misc.lcd_cd_cmd_set = 0;
// dev->lcd_misc.lcd_cd_dummy_set = 0;
// dev->lcd_misc.lcd_cd_data_set = 0;
dev->lcd_user.val = 0;
// dev->lcd_user.lcd_byte_order = false;
// dev->lcd_user.lcd_bit_order = false;
// dev->lcd_user.lcd_8bits_order = false;
dev->lcd_user.val = LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG;
_cache_flip = _cache[0];
}
void uDisplay::pb_endTransaction(void) {
auto dev = _dev;
while (dev->lcd_user.val & LCD_CAM_LCD_START) {}
}
void uDisplay::pb_wait(void) {
auto dev = _dev;
while (dev->lcd_user.val & LCD_CAM_LCD_START) {}
}
bool uDisplay::pb_busy(void) {
auto dev = _dev;
return (dev->lcd_user.val & LCD_CAM_LCD_START);
}
bool uDisplay::pb_writeCommand(uint32_t data, uint_fast8_t bit_length) {
auto dev = _dev;
auto reg_lcd_user = &(dev->lcd_user.val);
dev->lcd_misc.val = LCD_CAM_LCD_CD_IDLE_EDGE | LCD_CAM_LCD_CD_CMD_SET;
if (interface == _UDSP_PAR8) {
// 8bit bus
auto bytes = bit_length >> 3;
do {
dev->lcd_cmd_val.lcd_cmd_value = data;
data >>= 8;
WAIT_LCD_NOT_BUSY
*reg_lcd_user = LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
} while (--bytes);
return true;
} else {
dev->lcd_cmd_val.val = data;
WAIT_LCD_NOT_BUSY
*reg_lcd_user = LCD_CAM_LCD_2BYTE_EN | LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
return true;
}
}
void uDisplay::pb_writeData(uint32_t data, uint_fast8_t bit_length) {
auto dev = _dev;
auto reg_lcd_user = &(dev->lcd_user.val);
dev->lcd_misc.val = LCD_CAM_LCD_CD_IDLE_EDGE;
auto bytes = bit_length >> 3;
if (interface == _UDSP_PAR8) {
uint8_t shift = (bytes - 1) * 8;
for (uint32_t cnt = 0; cnt < bytes; cnt++) {
dev->lcd_cmd_val.lcd_cmd_value = (data >> shift) & 0xff;
shift -= 8;
WAIT_LCD_NOT_BUSY
*reg_lcd_user = LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
}
return;
} else {
if (bytes == 1 || bytes == 4) {
uint8_t shift = (bytes - 1) * 8;
for (uint32_t cnt = 0; cnt < bytes; cnt++) {
dev->lcd_cmd_val.lcd_cmd_value = (data >> shift) & 0xff;
shift -= 8;
WAIT_LCD_NOT_BUSY
*reg_lcd_user = LCD_CAM_LCD_2BYTE_EN | LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
}
return;
}
dev->lcd_cmd_val.val = data;
WAIT_LCD_NOT_BUSY
*reg_lcd_user = LCD_CAM_LCD_2BYTE_EN | LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
return;
}
}
void uDisplay::pb_pushPixels(uint16_t* data, uint32_t length, bool swap_bytes, bool use_dma) {
auto dev = _dev;
auto reg_lcd_user = &(dev->lcd_user.val);
dev->lcd_misc.val = LCD_CAM_LCD_CD_IDLE_EDGE;
if (interface == _UDSP_PAR8) {
if (swap_bytes) {
for (uint32_t cnt = 0; cnt < length; cnt++) {
dev->lcd_cmd_val.lcd_cmd_value = *data;
while (*reg_lcd_user & LCD_CAM_LCD_START) {}
*reg_lcd_user = LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
dev->lcd_cmd_val.lcd_cmd_value = *data >> 8;
WAIT_LCD_NOT_BUSY
*reg_lcd_user = LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
data++;
}
} else {
for (uint32_t cnt = 0; cnt < length; cnt++) {
dev->lcd_cmd_val.lcd_cmd_value = *data >> 8;
while (*reg_lcd_user & LCD_CAM_LCD_START) {}
*reg_lcd_user = LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
dev->lcd_cmd_val.lcd_cmd_value = *data;
WAIT_LCD_NOT_BUSY
*reg_lcd_user = LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
data++;
}
}
} else {
if (swap_bytes) {
uint16_t iob;
for (uint32_t cnt = 0; cnt < length; cnt++) {
iob = *data++;
iob = (iob << 8) | (iob >> 8);
dev->lcd_cmd_val.lcd_cmd_value = iob;
WAIT_LCD_NOT_BUSY
*reg_lcd_user = LCD_CAM_LCD_2BYTE_EN | LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
}
} else {
for (uint32_t cnt = 0; cnt < length; cnt++) {
dev->lcd_cmd_val.lcd_cmd_value = *data++;
WAIT_LCD_NOT_BUSY
*reg_lcd_user = LCD_CAM_LCD_2BYTE_EN | LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
}
}
}
}
void uDisplay::pb_writeBytes(const uint8_t* data, uint32_t length, bool use_dma) {
/*
uint32_t freq = spi_speed * 1000000;
uint32_t slow = (freq< 4000000) ? 2 : (freq < 8000000) ? 1 : 0;
auto dev = _dev;
do {
auto reg_lcd_user = &(dev->lcd_user.val);
dev->lcd_misc.lcd_cd_cmd_set = 0;
dev->lcd_cmd_val.lcd_cmd_value = data[0] | data[1] << 16;
uint32_t cmd_val = data[2] | data[3] << 16;
while (*reg_lcd_user & LCD_CAM_LCD_START) {}
*reg_lcd_user = LCD_CAM_LCD_CMD | LCD_CAM_LCD_CMD_2_CYCLE_EN | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
if (use_dma) {
if (slow) { ets_delay_us(slow); }
_setup_dma_desc_links(&data[4], length - 4);
gdma_start(_dma_chan, (intptr_t)(_dmadesc));
length = 0;
} else {
size_t len = length;
if (len > CACHE_SIZE) {
len = (((len - 1) % CACHE_SIZE) + 4) & ~3u;
}
memcpy(_cache_flip, &data[4], (len-4+3)&~3);
_setup_dma_desc_links((const uint8_t*)_cache_flip, len-4);
gdma_start(_dma_chan, (intptr_t)(_dmadesc));
length -= len;
data += len;
_cache_flip = _cache[(_cache_flip == _cache[0])];
}
dev->lcd_cmd_val.lcd_cmd_value = cmd_val;
dev->lcd_misc.lcd_cd_data_set = 0;
*reg_lcd_user = LCD_CAM_LCD_ALWAYS_OUT_EN | LCD_CAM_LCD_DOUT | LCD_CAM_LCD_CMD | LCD_CAM_LCD_CMD_2_CYCLE_EN | LCD_CAM_LCD_UPDATE_REG;
while (*reg_lcd_user & LCD_CAM_LCD_START) {}
*reg_lcd_user = LCD_CAM_LCD_ALWAYS_OUT_EN | LCD_CAM_LCD_DOUT | LCD_CAM_LCD_CMD | LCD_CAM_LCD_CMD_2_CYCLE_EN | LCD_CAM_LCD_START;
} while (length);
*/
}
void uDisplay::_send_align_data(void) {
_has_align_data = false;
auto dev = _dev;
dev->lcd_cmd_val.lcd_cmd_value = _align_data;
auto reg_lcd_user = &(dev->lcd_user.val);
while (*reg_lcd_user & LCD_CAM_LCD_START) {}
*reg_lcd_user = LCD_CAM_LCD_2BYTE_EN | LCD_CAM_LCD_CMD | LCD_CAM_LCD_UPDATE_REG | LCD_CAM_LCD_START;
}
void uDisplay::cs_control(bool level) {
auto pin = par_cs;
if (pin < 0) return;
if (level) {
gpio_hi(pin);
}
else {
gpio_lo(pin);
}
}
void uDisplay::_pb_init_pin(bool read) {
if (read) {
if (interface == _UDSP_PAR8) {
for (size_t i = 0; i < 8; ++i) {
gpio_ll_output_disable(&GPIO, (gpio_num_t)par_dbl[i]);
}
} else {
for (size_t i = 0; i < 8; ++i) {
gpio_ll_output_disable(&GPIO, (gpio_num_t)par_dbl[i]);
}
for (size_t i = 0; i < 8; ++i) {
gpio_ll_output_disable(&GPIO, (gpio_num_t)par_dbh[i]);
}
}
}
else {
auto idx_base = LCD_DATA_OUT0_IDX;
if (interface == _UDSP_PAR8) {
for (size_t i = 0; i < 8; ++i) {
gpio_matrix_out(par_dbl[i], idx_base + i, 0, 0);
}
} else {
for (size_t i = 0; i < 8; ++i) {
gpio_matrix_out(par_dbl[i], idx_base + i, 0, 0);
}
for (size_t i = 0; i < 8; ++i) {
gpio_matrix_out(par_dbh[i], idx_base + 8 + i, 0, 0);
}
}
}
}
/* read analog value from pin for simple digitizer
X+ = d1
X- = CS
Y+ = RS
Y- = D0
define YP A2 // must be an analog pin, use "An" notation!
#define XM A3 // must be an analog pin, use "An" notation!
#define YM 8 // can be a digital pin
#define XP 9 // can be a digital pin
*/
uint32_t uDisplay::get_sr_touch(uint32_t _xp, uint32_t _xm, uint32_t _yp, uint32_t _ym) {
uint32_t aval = 0;
uint16_t xp,yp;
if (pb_busy()) return 0;
_pb_init_pin(true);
gpio_matrix_out(par_rs, 0x100, 0, 0);
pinMode(_ym, INPUT_PULLUP); // d0
pinMode(_yp, INPUT_PULLUP); // rs
pinMode(_xm, OUTPUT); // cs
pinMode(_xp, OUTPUT); // d1
digitalWrite(_xm, HIGH); // cs
digitalWrite(_xp, LOW); // d1
xp = 4096 - analogRead(_ym); // d0
pinMode(_xm, INPUT_PULLUP); // cs
pinMode(_xp, INPUT_PULLUP); // d1
pinMode(_ym, OUTPUT); // d0
pinMode(_yp, OUTPUT); // rs
digitalWrite(_ym, HIGH); // d0
digitalWrite(_yp, LOW); // rs
yp = 4096 - analogRead(_xp); // d1
aval = (xp << 16) | yp;
pinMode(_yp, OUTPUT); // rs
pinMode(_xm, OUTPUT); // cs
pinMode(_ym, OUTPUT); // d0
pinMode(_xp, OUTPUT); // d1
digitalWrite(_yp, HIGH); // rs
digitalWrite(_xm, HIGH); // cs
_pb_init_pin(false);
gpio_matrix_out(par_rs, LCD_DC_IDX, 0, 0);
return aval;
}
#if 0
void TFT_eSPI::startWrite(void)
{
begin_tft_write();
lockTransaction = true; // Lock transaction for all sequentially run sketch functions
inTransaction = true;
}
/***************************************************************************************
** Function name: endWrite
** Description: end transaction with CS high
***************************************************************************************/
void TFT_eSPI::endWrite(void)
{
lockTransaction = false; // Release sketch induced transaction lock
inTransaction = false;
DMA_BUSY_CHECK; // Safety check - user code should have checked this!
end_tft_write(); // Release SPI bus
}
#endif
#endif // USE_ESP32_S3
#endif // ESP32