Tasmota/sonoff/xsns_25_sdm630.ino

353 lines
11 KiB
C++

/*
xsns_25_sdm630.ino - Eastron SDM630-Modbus energy meter support for Sonoff-Tasmota
Copyright (C) 2019 Gennaro Tortone
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_SDM630
/*********************************************************************************************\
* Eastron SDM630-Modbus energy meter
*
* Based on: https://github.com/reaper7/SDM_Energy_Meter
\*********************************************************************************************/
#define XSNS_25 25
#include <TasmotaSerial.h>
TasmotaSerial *SDM630Serial;
uint8_t sdm630_type = 1;
//uint8_t sdm630_state = 0;
float sdm630_voltage[] = {0,0,0};
float sdm630_current[] = {0,0,0};
float sdm630_active_power[] = {0,0,0};
float sdm630_reactive_power[] = {0,0,0};
float sdm630_power_factor[] = {0,0,0};
float sdm630_energy_total = 0;
bool SDM630_ModbusReceiveReady(void)
{
return (SDM630Serial->available() > 1);
}
void SDM630_ModbusSend(uint8_t function_code, uint16_t start_address, uint16_t register_count)
{
uint8_t frame[8];
frame[0] = 0x01; // default SDM630 Modbus address
frame[1] = function_code;
frame[2] = (uint8_t)(start_address >> 8);
frame[3] = (uint8_t)(start_address);
frame[4] = (uint8_t)(register_count >> 8);
frame[5] = (uint8_t)(register_count);
uint16_t crc = SDM630_calculateCRC(frame, 6); // calculate out crc only from first 6 bytes
frame[6] = lowByte(crc);
frame[7] = highByte(crc);
while (SDM630Serial->available() > 0) { // read serial if any old data is available
SDM630Serial->read();
}
SDM630Serial->flush();
SDM630Serial->write(frame, sizeof(frame));
}
uint8_t SDM630_ModbusReceive(float *value)
{
uint8_t buffer[9];
*value = NAN;
uint8_t len = 0;
while (SDM630Serial->available() > 0) {
buffer[len++] = (uint8_t)SDM630Serial->read();
}
if (len < 9)
return 3; // SDM_ERR_NOT_ENOUGHT_BYTES
if (len == 9) {
if (buffer[0] == 0x01 && buffer[1] == 0x04 && buffer[2] == 4) { // check node number, op code and reply bytes count
if((SDM630_calculateCRC(buffer, 7)) == ((buffer[8] << 8) | buffer[7])) { //calculate crc from first 7 bytes and compare with received crc (bytes 7 & 8)
((uint8_t*)value)[3] = buffer[3];
((uint8_t*)value)[2] = buffer[4];
((uint8_t*)value)[1] = buffer[5];
((uint8_t*)value)[0] = buffer[6];
} else return 1; // SDM_ERR_CRC_ERROR
} else return 2; // SDM_ERR_WRONG_BYTES
}
return 0; // SDM_ERR_NO_ERROR
}
uint16_t SDM630_calculateCRC(uint8_t *frame, uint8_t num)
{
uint16_t crc, flag;
crc = 0xFFFF;
for (uint8_t i = 0; i < num; i++) {
crc ^= frame[i];
for (uint8_t j = 8; j; j--) {
if ((crc & 0x0001) != 0) { // If the LSB is set
crc >>= 1; // Shift right and XOR 0xA001
crc ^= 0xA001;
} else { // Else LSB is not set
crc >>= 1; // Just shift right
}
}
}
return crc;
}
/*********************************************************************************************/
const uint16_t sdm630_start_addresses[] {
0x0000, // L1 - SDM630_VOLTAGE [V]
0x0002, // L2 - SDM630_VOLTAGE [V]
0x0004, // L3 - SDM630_VOLTAGE [V]
0x0006, // L1 - SDM630_CURRENT [A]
0x0008, // L2 - SDM630_CURRENT [A]
0x000A, // L3 - SDM630_CURRENT [A]
0x000C, // L1 - SDM630_POWER [W]
0x000E, // L2 - SDM630_POWER [W]
0x0010, // L3 - SDM630_POWER [W]
0x0018, // L1 - SDM630_REACTIVE_POWER [VAR]
0x001A, // L2 - SDM630_REACTIVE_POWER [VAR]
0x001C, // L3 - SDM630_REACTIVE_POWER [VAR]
0x001E, // L1 - SDM630_POWER_FACTOR
0x0020, // L2 - SDM630_POWER_FACTOR
0x0022, // L3 - SDM630_POWER_FACTOR
0x0156 // Total - SDM630_TOTAL_ACTIVE_ENERGY [Wh]
};
uint8_t sdm630_read_state = 0;
uint8_t sdm630_send_retry = 0;
void SDM630250ms(void) // Every 250 mSec
{
// sdm630_state++;
// if (6 == sdm630_state) { // Every 300 mSec
// sdm630_state = 0;
float value = 0;
bool data_ready = SDM630_ModbusReceiveReady();
if (data_ready) {
uint8_t error = SDM630_ModbusReceive(&value);
if (error) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "SDM630 response error %d"), error);
} else {
switch(sdm630_read_state) {
case 0:
sdm630_voltage[0] = value;
break;
case 1:
sdm630_voltage[1] = value;
break;
case 2:
sdm630_voltage[2] = value;
break;
case 3:
sdm630_current[0] = value;
break;
case 4:
sdm630_current[1] = value;
break;
case 5:
sdm630_current[2] = value;
break;
case 6:
sdm630_active_power[0] = value;
break;
case 7:
sdm630_active_power[1] = value;
break;
case 8:
sdm630_active_power[2] = value;
break;
case 9:
sdm630_reactive_power[0] = value;
break;
case 10:
sdm630_reactive_power[1] = value;
break;
case 11:
sdm630_reactive_power[2] = value;
break;
case 12:
sdm630_power_factor[0] = value;
break;
case 13:
sdm630_power_factor[1] = value;
break;
case 14:
sdm630_power_factor[2] = value;
break;
case 15:
sdm630_energy_total = value;
break;
} // end switch
sdm630_read_state++;
if (sizeof(sdm630_start_addresses)/2 == sdm630_read_state) {
sdm630_read_state = 0;
}
}
} // end data ready
if (0 == sdm630_send_retry || data_ready) {
sdm630_send_retry = 5;
SDM630_ModbusSend(0x04, sdm630_start_addresses[sdm630_read_state], 2);
} else {
sdm630_send_retry--;
}
// } // end 300 ms
}
void SDM630Init(void)
{
sdm630_type = 0;
if ((pin[GPIO_SDM630_RX] < 99) && (pin[GPIO_SDM630_TX] < 99)) {
SDM630Serial = new TasmotaSerial(pin[GPIO_SDM630_RX], pin[GPIO_SDM630_TX], 1);
#ifdef SDM630_SPEED
if (SDM630Serial->begin(SDM630_SPEED)) {
#else
if (SDM630Serial->begin(2400)) {
#endif
if (SDM630Serial->hardwareSerial()) { ClaimSerial(); }
sdm630_type = 1;
}
}
}
#ifdef USE_WEBSERVER
const char HTTP_SNS_SDM630_DATA[] PROGMEM = "%s"
"{s}SDM630 " D_VOLTAGE "{m}%s/%s/%s " D_UNIT_VOLT "{e}"
"{s}SDM630 " D_CURRENT "{m}%s/%s/%s " D_UNIT_AMPERE "{e}"
"{s}SDM630 " D_POWERUSAGE_ACTIVE "{m}%s/%s/%s " D_UNIT_WATT "{e}"
"{s}SDM630 " D_POWERUSAGE_REACTIVE "{m}%s/%s/%s " D_UNIT_VAR "{e}"
"{s}SDM630 " D_POWER_FACTOR "{m}%s/%s/%s{e}"
"{s}SDM630 " D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}";
#endif // USE_WEBSERVER
void SDM630Show(bool json)
{
char voltage_l1[33];
dtostrfd(sdm630_voltage[0], Settings.flag2.voltage_resolution, voltage_l1);
char voltage_l2[33];
dtostrfd(sdm630_voltage[1], Settings.flag2.voltage_resolution, voltage_l2);
char voltage_l3[33];
dtostrfd(sdm630_voltage[2], Settings.flag2.voltage_resolution, voltage_l3);
char current_l1[33];
dtostrfd(sdm630_current[0], Settings.flag2.current_resolution, current_l1);
char current_l2[33];
dtostrfd(sdm630_current[1], Settings.flag2.current_resolution, current_l2);
char current_l3[33];
dtostrfd(sdm630_current[2], Settings.flag2.current_resolution, current_l3);
char active_power_l1[33];
dtostrfd(sdm630_active_power[0], Settings.flag2.wattage_resolution, active_power_l1);
char active_power_l2[33];
dtostrfd(sdm630_active_power[1], Settings.flag2.wattage_resolution, active_power_l2);
char active_power_l3[33];
dtostrfd(sdm630_active_power[2], Settings.flag2.wattage_resolution, active_power_l3);
char reactive_power_l1[33];
dtostrfd(sdm630_reactive_power[0], Settings.flag2.wattage_resolution, reactive_power_l1);
char reactive_power_l2[33];
dtostrfd(sdm630_reactive_power[1], Settings.flag2.wattage_resolution, reactive_power_l2);
char reactive_power_l3[33];
dtostrfd(sdm630_reactive_power[2], Settings.flag2.wattage_resolution, reactive_power_l3);
char power_factor_l1[33];
dtostrfd(sdm630_power_factor[0], 2, power_factor_l1);
char power_factor_l2[33];
dtostrfd(sdm630_power_factor[1], 2, power_factor_l2);
char power_factor_l3[33];
dtostrfd(sdm630_power_factor[2], 2, power_factor_l3);
char energy_total[33];
dtostrfd(sdm630_energy_total, Settings.flag2.energy_resolution, energy_total);
if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL "\":%s,\""
D_JSON_ACTIVE_POWERUSAGE "\":[%s,%s,%s],\"" D_JSON_REACTIVE_POWERUSAGE "\":[%s,%s,%s],\""
D_JSON_POWERFACTOR "\":[%s,%s,%s],\"" D_JSON_VOLTAGE "\":[%s,%s,%s],\"" D_JSON_CURRENT "\":[%s,%s,%s]}"),
mqtt_data, energy_total, active_power_l1, active_power_l2, active_power_l3,
reactive_power_l1, reactive_power_l2, reactive_power_l3,
power_factor_l1, power_factor_l2, power_factor_l3,
voltage_l1, voltage_l2, voltage_l3,
current_l1, current_l2, current_l3);
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_SDM630_DATA, mqtt_data,
voltage_l1, voltage_l2, voltage_l3, current_l1, current_l2, current_l3,
active_power_l1, active_power_l2, active_power_l3,
reactive_power_l1, reactive_power_l2, reactive_power_l3,
power_factor_l1, power_factor_l2, power_factor_l3, energy_total);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns25(uint8_t function)
{
bool result = false;
if (sdm630_type) {
switch (function) {
case FUNC_INIT:
SDM630Init();
break;
case FUNC_EVERY_250_MSECOND:
SDM630250ms();
break;
case FUNC_JSON_APPEND:
SDM630Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_APPEND:
SDM630Show(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif