Tasmota/sonoff/sonoff.ino

2985 lines
121 KiB
C++
Executable File

/*
sonoff.ino - Sonoff-Tasmota firmware for iTead Sonoff, Wemos and NodeMCU hardware
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*====================================================
Prerequisites:
- Change libraries/PubSubClient/src/PubSubClient.h
#define MQTT_MAX_PACKET_SIZE 1000
- Select IDE Tools - Flash Mode: "DOUT"
- Select IDE Tools - Flash Size: "1M (no SPIFFS)"
====================================================*/
// Location specific includes
#include <core_version.h> // Arduino_Esp8266 version information (ARDUINO_ESP8266_RELEASE and ARDUINO_ESP8266_RELEASE_2_3_0)
#include "sonoff_version.h" // Sonoff-Tasmota version information
#include "sonoff.h" // Enumeration used in my_user_config.h
#include "my_user_config.h" // Fixed user configurable options
#ifdef USE_CONFIG_OVERRIDE
#include "user_config_override.h" // Configuration overrides for my_user_config.h
#endif
#ifdef USE_MQTT_TLS
#include <t_bearssl.h> // we need to include before "sonoff_post.h" to take precedence over the BearSSL version in Arduino
#endif // USE_MQTT_TLS
#include "sonoff_post.h" // Configuration overrides for all previous includes
#include "i18n.h" // Language support configured by my_user_config.h
#include "sonoff_template.h" // Hardware configuration
#ifdef ARDUINO_ESP8266_RELEASE_2_4_0
#include "lwip/init.h"
#if LWIP_VERSION_MAJOR != 1
#error Please use stable lwIP v1.4
#endif
#endif
// Libraries
#include <ESP8266HTTPClient.h> // Ota
#include <ESP8266httpUpdate.h> // Ota
#include <StreamString.h> // Webserver, Updater
#include <ArduinoJson.h> // WemoHue, IRremote, Domoticz
#ifdef USE_ARDUINO_OTA
#include <ArduinoOTA.h> // Arduino OTA
#ifndef USE_DISCOVERY
#define USE_DISCOVERY
#endif
#endif // USE_ARDUINO_OTA
#ifdef USE_DISCOVERY
#include <ESP8266mDNS.h> // MQTT, Webserver, Arduino OTA
#endif // USE_DISCOVERY
#ifdef USE_I2C
#include <Wire.h> // I2C support library
#endif // USE_I2C
#ifdef USE_SPI
#include <SPI.h> // SPI support, TFT
#endif // USE_SPI
// Structs
#include "settings.h"
enum TasmotaCommands {
CMND_BACKLOG, CMND_DELAY, CMND_POWER, CMND_STATUS, CMND_STATE, CMND_POWERONSTATE, CMND_PULSETIME,
CMND_BLINKTIME, CMND_BLINKCOUNT, CMND_SENSOR, CMND_SAVEDATA, CMND_SETOPTION, CMND_TEMPERATURE_RESOLUTION, CMND_HUMIDITY_RESOLUTION,
CMND_PRESSURE_RESOLUTION, CMND_POWER_RESOLUTION, CMND_VOLTAGE_RESOLUTION, CMND_FREQUENCY_RESOLUTION, CMND_CURRENT_RESOLUTION, CMND_ENERGY_RESOLUTION, CMND_WEIGHT_RESOLUTION,
CMND_MODULE, CMND_MODULES, CMND_ADC, CMND_ADCS, CMND_GPIO, CMND_GPIOS, CMND_PWM, CMND_PWMFREQUENCY, CMND_PWMRANGE, CMND_COUNTER, CMND_COUNTERTYPE,
CMND_COUNTERDEBOUNCE, CMND_BUTTONDEBOUNCE, CMND_SWITCHDEBOUNCE, CMND_SLEEP, CMND_UPGRADE, CMND_UPLOAD, CMND_OTAURL, CMND_SERIALLOG, CMND_SYSLOG,
CMND_LOGHOST, CMND_LOGPORT, CMND_IPADDRESS, CMND_NTPSERVER, CMND_AP, CMND_SSID, CMND_PASSWORD, CMND_HOSTNAME,
CMND_WIFICONFIG, CMND_FRIENDLYNAME, CMND_SWITCHMODE, CMND_INTERLOCK, CMND_TEMPLATE,
CMND_TELEPERIOD, CMND_RESTART, CMND_RESET, CMND_TIME, CMND_TIMEZONE, CMND_TIMESTD, CMND_TIMEDST, CMND_ALTITUDE, CMND_LEDPOWER, CMND_LEDSTATE, CMND_LEDMASK,
CMND_I2CSCAN, CMND_SERIALSEND, CMND_BAUDRATE, CMND_SERIALDELIMITER, CMND_DRIVER };
const char kTasmotaCommands[] PROGMEM =
D_CMND_BACKLOG "|" D_CMND_DELAY "|" D_CMND_POWER "|" D_CMND_STATUS "|" D_CMND_STATE "|" D_CMND_POWERONSTATE "|" D_CMND_PULSETIME "|"
D_CMND_BLINKTIME "|" D_CMND_BLINKCOUNT "|" D_CMND_SENSOR "|" D_CMND_SAVEDATA "|" D_CMND_SETOPTION "|" D_CMND_TEMPERATURE_RESOLUTION "|" D_CMND_HUMIDITY_RESOLUTION "|"
D_CMND_PRESSURE_RESOLUTION "|" D_CMND_POWER_RESOLUTION "|" D_CMND_VOLTAGE_RESOLUTION "|" D_CMND_FREQUENCY_RESOLUTION "|" D_CMND_CURRENT_RESOLUTION "|" D_CMND_ENERGY_RESOLUTION "|" D_CMND_WEIGHT_RESOLUTION "|"
D_CMND_MODULE "|" D_CMND_MODULES "|" D_CMND_ADC "|" D_CMND_ADCS "|" D_CMND_GPIO "|" D_CMND_GPIOS "|" D_CMND_PWM "|" D_CMND_PWMFREQUENCY "|" D_CMND_PWMRANGE "|" D_CMND_COUNTER "|" D_CMND_COUNTERTYPE "|"
D_CMND_COUNTERDEBOUNCE "|" D_CMND_BUTTONDEBOUNCE "|" D_CMND_SWITCHDEBOUNCE "|" D_CMND_SLEEP "|" D_CMND_UPGRADE "|" D_CMND_UPLOAD "|" D_CMND_OTAURL "|" D_CMND_SERIALLOG "|" D_CMND_SYSLOG "|"
D_CMND_LOGHOST "|" D_CMND_LOGPORT "|" D_CMND_IPADDRESS "|" D_CMND_NTPSERVER "|" D_CMND_AP "|" D_CMND_SSID "|" D_CMND_PASSWORD "|" D_CMND_HOSTNAME "|"
D_CMND_WIFICONFIG "|" D_CMND_FRIENDLYNAME "|" D_CMND_SWITCHMODE "|" D_CMND_INTERLOCK "|" D_CMND_TEMPLATE "|"
D_CMND_TELEPERIOD "|" D_CMND_RESTART "|" D_CMND_RESET "|" D_CMND_TIME "|" D_CMND_TIMEZONE "|" D_CMND_TIMESTD "|" D_CMND_TIMEDST "|" D_CMND_ALTITUDE "|" D_CMND_LEDPOWER "|" D_CMND_LEDSTATE "|" D_CMND_LEDMASK "|"
D_CMND_I2CSCAN "|" D_CMND_SERIALSEND "|" D_CMND_BAUDRATE "|" D_CMND_SERIALDELIMITER "|" D_CMND_DRIVER;
const char kSleepMode[] PROGMEM = "Dynamic|Normal";
// Global variables
SerialConfig serial_config = SERIAL_8N1; // Serial interface configuration 8 data bits, No parity, 1 stop bit
WiFiUDP PortUdp; // UDP Syslog and Alexa
unsigned long feature_drv1; // Compiled driver feature map
unsigned long feature_drv2; // Compiled driver feature map
unsigned long feature_sns1; // Compiled sensor feature map
unsigned long feature_sns2; // Compiled sensor feature map
unsigned long serial_polling_window = 0; // Serial polling window
unsigned long state_second = 0; // State second timer
unsigned long state_50msecond = 0; // State 50msecond timer
unsigned long state_100msecond = 0; // State 100msecond timer
unsigned long state_250msecond = 0; // State 250msecond timer
unsigned long pulse_timer[MAX_PULSETIMERS] = { 0 }; // Power off timer
unsigned long blink_timer = 0; // Power cycle timer
unsigned long backlog_delay = 0; // Command backlog delay
power_t power = 0; // Current copy of Settings.power
power_t blink_power; // Blink power state
power_t blink_mask = 0; // Blink relay active mask
power_t blink_powersave; // Blink start power save state
power_t latching_power = 0; // Power state at latching start
power_t rel_inverted = 0; // Relay inverted flag (1 = (0 = On, 1 = Off))
int baudrate = APP_BAUDRATE; // Serial interface baud rate
int serial_in_byte_counter = 0; // Index in receive buffer
int ota_state_flag = 0; // OTA state flag
int ota_result = 0; // OTA result
int restart_flag = 0; // Sonoff restart flag
int wifi_state_flag = WIFI_RESTART; // Wifi state flag
int tele_period = 1; // Tele period timer
int blinks = 201; // Number of LED blinks
uint32_t uptime = 0; // Counting every second until 4294967295 = 130 year
uint32_t loop_load_avg = 0; // Indicative loop load average
uint32_t global_update = 0; // Timestamp of last global temperature and humidity update
float global_temperature = 9999; // Provide a global temperature to be used by some sensors
float global_humidity = 0; // Provide a global humidity to be used by some sensors
float global_pressure = 0; // Provide a global pressure to be used by some sensors
char *ota_url; // OTA url string pointer
uint16_t mqtt_cmnd_publish = 0; // ignore flag for publish command
uint16_t blink_counter = 0; // Number of blink cycles
uint16_t seriallog_timer = 0; // Timer to disable Seriallog
uint16_t syslog_timer = 0; // Timer to re-enable syslog_level
int16_t save_data_counter; // Counter and flag for config save to Flash
RulesBitfield rules_flag; // Rule state flags (16 bits)
uint8_t state_250mS = 0; // State 250msecond per second flag
uint8_t latching_relay_pulse = 0; // Latching relay pulse timer
uint8_t backlog_index = 0; // Command backlog index
uint8_t backlog_pointer = 0; // Command backlog pointer
uint8_t sleep; // Current copy of Settings.sleep
uint8_t blinkspeed = 1; // LED blink rate
uint8_t pin[GPIO_MAX]; // Possible pin configurations
uint8_t active_device = 1; // Active device in ExecuteCommandPower
uint8_t leds_present = 0; // Max number of LED supported
uint8_t led_inverted = 0; // LED inverted flag (1 = (0 = On, 1 = Off))
uint8_t led_power = 0; // LED power state
uint8_t ledlnk_inverted = 0; // Link LED inverted flag (1 = (0 = On, 1 = Off))
uint8_t buzzer_inverted = 0; // Buzzer inverted flag (1 = (0 = On, 1 = Off))
uint8_t pwm_inverted = 0; // PWM inverted flag (1 = inverted)
uint8_t counter_no_pullup = 0; // Counter input pullup flag (1 = No pullup)
uint8_t energy_flg = 0; // Energy monitor configured
uint8_t light_type = 0; // Light types
uint8_t serial_in_byte; // Received byte
uint8_t ota_retry_counter = OTA_ATTEMPTS; // OTA retry counter
uint8_t web_log_index = 1; // Index in Web log buffer (should never be 0)
uint8_t devices_present = 0; // Max number of devices supported
uint8_t seriallog_level; // Current copy of Settings.seriallog_level
uint8_t syslog_level; // Current copy of Settings.syslog_level
uint8_t my_module_type; // Current copy of Settings.module or user template type
uint8_t my_adc0; // Active copy of Module ADC0
uint8_t buzzer_count = 0; // Number of buzzes
//uint8_t mdns_delayed_start = 0; // mDNS delayed start
bool serial_local = false; // Handle serial locally;
bool fallback_topic_flag = false; // Use Topic or FallbackTopic
bool backlog_mutex = false; // Command backlog pending
bool interlock_mutex = false; // Interlock power command pending
bool stop_flash_rotate = false; // Allow flash configuration rotation
bool blinkstate = false; // LED state
//bool latest_uptime_flag = true; // Signal latest uptime
bool pwm_present = false; // Any PWM channel configured with SetOption15 0
bool dht_flg = false; // DHT configured
bool i2c_flg = false; // I2C configured
bool spi_flg = false; // SPI configured
bool soft_spi_flg = false; // Software SPI configured
bool ntp_force_sync = false; // Force NTP sync
bool ntp_synced_message = false; // NTP synced message flag
myio my_module; // Active copy of Module GPIOs (17 x 8 bits)
gpio_flag my_module_flag; // Active copy of Template GPIO flags
StateBitfield global_state; // Global states (currently Wifi and Mqtt) (8 bits)
char my_version[33]; // Composed version string
char my_image[33]; // Code image and/or commit
char my_hostname[33]; // Composed Wifi hostname
char mqtt_client[33]; // Composed MQTT Clientname
char mqtt_topic[33]; // Composed MQTT topic
char serial_in_buffer[INPUT_BUFFER_SIZE]; // Receive buffer
char mqtt_data[MESSZ]; // MQTT publish buffer and web page ajax buffer
char log_data[LOGSZ]; // Logging
char web_log[WEB_LOG_SIZE] = {'\0'}; // Web log buffer
String backlog[MAX_BACKLOG]; // Command backlog
/********************************************************************************************/
char* Format(char* output, const char* input, int size)
{
char *token;
uint8_t digits = 0;
if (strstr(input, "%") != nullptr) {
strlcpy(output, input, size);
token = strtok(output, "%");
if (strstr(input, "%") == input) {
output[0] = '\0';
} else {
token = strtok(nullptr, "");
}
if (token != nullptr) {
digits = atoi(token);
if (digits) {
char tmp[size];
if (strchr(token, 'd')) {
snprintf_P(tmp, size, PSTR("%s%c0%dd"), output, '%', digits);
snprintf_P(output, size, tmp, ESP.getChipId() & 0x1fff); // %04d - short chip ID in dec, like in hostname
} else {
snprintf_P(tmp, size, PSTR("%s%c0%dX"), output, '%', digits);
snprintf_P(output, size, tmp, ESP.getChipId()); // %06X - full chip ID in hex
}
} else {
if (strchr(token, 'd')) {
snprintf_P(output, size, PSTR("%s%d"), output, ESP.getChipId()); // %d - full chip ID in dec
digits = 8;
}
}
}
}
if (!digits) { strlcpy(output, input, size); }
return output;
}
char* GetOtaUrl(char *otaurl, size_t otaurl_size)
{
if (strstr(Settings.ota_url, "%04d") != nullptr) { // OTA url contains placeholder for chip ID
snprintf(otaurl, otaurl_size, Settings.ota_url, ESP.getChipId() & 0x1fff);
}
else if (strstr(Settings.ota_url, "%d") != nullptr) { // OTA url contains placeholder for chip ID
snprintf_P(otaurl, otaurl_size, Settings.ota_url, ESP.getChipId());
}
else {
strlcpy(otaurl, Settings.ota_url, otaurl_size);
}
return otaurl;
}
char* GetTopic_P(char *stopic, uint8_t prefix, char *topic, const char* subtopic)
{
/* prefix 0 = Cmnd
prefix 1 = Stat
prefix 2 = Tele
prefix 4 = Cmnd fallback
prefix 5 = Stat fallback
prefix 6 = Tele fallback
*/
char romram[CMDSZ];
String fulltopic;
snprintf_P(romram, sizeof(romram), subtopic);
if (fallback_topic_flag || (prefix > 3)) {
prefix &= 3;
fulltopic = FPSTR(kPrefixes[prefix]);
fulltopic += F("/");
fulltopic += mqtt_client;
fulltopic += F("_fb"); // cmnd/<mqttclient>_fb
} else {
fulltopic = Settings.mqtt_fulltopic;
if ((0 == prefix) && (-1 == fulltopic.indexOf(FPSTR(MQTT_TOKEN_PREFIX)))) {
fulltopic += F("/");
fulltopic += FPSTR(MQTT_TOKEN_PREFIX); // Need prefix for commands to handle mqtt topic loops
}
for (uint32_t i = 0; i < 3; i++) {
if ('\0' == Settings.mqtt_prefix[i][0]) {
snprintf_P(Settings.mqtt_prefix[i], sizeof(Settings.mqtt_prefix[i]), kPrefixes[i]);
}
}
fulltopic.replace(FPSTR(MQTT_TOKEN_PREFIX), Settings.mqtt_prefix[prefix]);
fulltopic.replace(FPSTR(MQTT_TOKEN_TOPIC), topic);
fulltopic.replace(F("%hostname%"), my_hostname);
String token_id = WiFi.macAddress();
token_id.replace(":", "");
fulltopic.replace(F("%id%"), token_id);
}
fulltopic.replace(F("#"), "");
fulltopic.replace(F("//"), "/");
if (!fulltopic.endsWith("/")) fulltopic += "/";
snprintf_P(stopic, TOPSZ, PSTR("%s%s"), fulltopic.c_str(), romram);
return stopic;
}
char* GetFallbackTopic_P(char *stopic, uint8_t prefix, const char* subtopic)
{
return GetTopic_P(stopic, prefix +4, nullptr, subtopic);
}
char* GetStateText(uint8_t state)
{
if (state > 3) { state = 1; }
return Settings.state_text[state];
}
/********************************************************************************************/
void SetLatchingRelay(power_t lpower, uint8_t state)
{
// power xx00 - toggle REL1 (Off) and REL3 (Off) - device 1 Off, device 2 Off
// power xx01 - toggle REL2 (On) and REL3 (Off) - device 1 On, device 2 Off
// power xx10 - toggle REL1 (Off) and REL4 (On) - device 1 Off, device 2 On
// power xx11 - toggle REL2 (On) and REL4 (On) - device 1 On, device 2 On
if (state && !latching_relay_pulse) { // Set latching relay to power if previous pulse has finished
latching_power = lpower;
latching_relay_pulse = 2; // max 200mS (initiated by stateloop())
}
for (uint32_t i = 0; i < devices_present; i++) {
uint8_t port = (i << 1) + ((latching_power >> i) &1);
if (pin[GPIO_REL1 +port] < 99) {
digitalWrite(pin[GPIO_REL1 +port], bitRead(rel_inverted, port) ? !state : state);
}
}
}
void SetDevicePower(power_t rpower, int source)
{
uint8_t state;
ShowSource(source);
if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) { // All on and stay on
power = (1 << devices_present) -1;
rpower = power;
}
if (Settings.flag.interlock) { // Allow only one or no relay set
for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) {
power_t mask = 1;
uint8_t count = 0;
for (uint32_t j = 0; j < devices_present; j++) {
if ((Settings.interlock[i] & mask) && (rpower & mask)) { count++; }
mask <<= 1;
}
if (count > 1) {
mask = ~Settings.interlock[i]; // Turn interlocked group off as there would be multiple relays on
power &= mask;
rpower &= mask;
}
}
}
XdrvMailbox.index = rpower;
XdrvCall(FUNC_SET_POWER); // Signal power state
XdrvMailbox.index = rpower;
XdrvMailbox.payload = source;
if (XdrvCall(FUNC_SET_DEVICE_POWER)) { // Set power state and stop if serviced
// Serviced
}
else if ((SONOFF_DUAL == my_module_type) || (CH4 == my_module_type)) {
Serial.write(0xA0);
Serial.write(0x04);
Serial.write(rpower &0xFF);
Serial.write(0xA1);
Serial.write('\n');
Serial.flush();
}
else if (EXS_RELAY == my_module_type) {
SetLatchingRelay(rpower, 1);
}
else {
for (uint32_t i = 0; i < devices_present; i++) {
state = rpower &1;
if ((i < MAX_RELAYS) && (pin[GPIO_REL1 +i] < 99)) {
digitalWrite(pin[GPIO_REL1 +i], bitRead(rel_inverted, i) ? !state : state);
}
rpower >>= 1;
}
}
}
void SetLedPowerIdx(uint8_t led, uint8_t state)
{
if ((99 == pin[GPIO_LEDLNK]) && (0 == led)) { // Legacy - LED1 is link led only if LED2 is present
if (pin[GPIO_LED2] < 99) { led = 1; }
}
if (pin[GPIO_LED1 + led] < 99) {
uint8_t mask = 1 << led;
if (state) {
state = 1;
led_power |= mask;
} else {
led_power &= (0xFF ^ mask);
}
digitalWrite(pin[GPIO_LED1 + led], bitRead(led_inverted, led) ? !state : state);
}
}
void SetLedPower(uint8_t state)
{
if (99 == pin[GPIO_LEDLNK]) { // Legacy - Only use LED1 and/or LED2
SetLedPowerIdx(0, state);
} else {
power_t mask = 1;
for (uint32_t i = 0; i < leds_present; i++) { // Map leds to power
bool tstate = (power & mask);
SetLedPowerIdx(i, tstate);
mask <<= 1;
}
}
}
void SetLedPowerAll(uint8_t state)
{
for (uint32_t i = 0; i < leds_present; i++) {
SetLedPowerIdx(i, state);
}
}
void SetLedLink(uint8_t state)
{
uint8_t led_pin = pin[GPIO_LEDLNK];
uint8_t led_inv = ledlnk_inverted;
if (99 == led_pin) { // Legacy - LED1 is status
led_pin = pin[GPIO_LED1];
led_inv = bitRead(led_inverted, 0);
}
if (led_pin < 99) {
if (state) { state = 1; }
digitalWrite(led_pin, (led_inv) ? !state : state);
}
}
void SetPulseTimer(uint8_t index, uint16_t time)
{
pulse_timer[index] = (time > 111) ? millis() + (1000 * (time - 100)) : (time > 0) ? millis() + (100 * time) : 0L;
}
uint16_t GetPulseTimer(uint8_t index)
{
uint16_t result = 0;
long time = TimePassedSince(pulse_timer[index]);
if (time < 0) {
time *= -1;
result = (time > 11100) ? (time / 1000) + 100 : (time > 0) ? time / 100 : 0;
}
return result;
}
/********************************************************************************************/
void MqttDataHandler(char* topic, uint8_t* data, unsigned int data_len)
{
if (data_len > MQTT_MAX_PACKET_SIZE) { return; } // Do not allow more data than would be feasable within stack space
char *str;
if (!strcmp(Settings.mqtt_prefix[0],Settings.mqtt_prefix[1])) {
str = strstr(topic,Settings.mqtt_prefix[0]);
if ((str == topic) && mqtt_cmnd_publish) {
if (mqtt_cmnd_publish > 3) {
mqtt_cmnd_publish -= 3;
} else {
mqtt_cmnd_publish = 0;
}
return;
}
}
char topicBuf[TOPSZ];
char dataBuf[data_len+1];
char command [CMDSZ];
char stemp1[TOPSZ];
char *p;
char *type = nullptr;
uint8_t lines = 1;
bool jsflg = false;
bool grpflg = false;
// bool user_append_index = false;
uint32_t i = 0;
uint32_t index;
uint32_t address;
#ifdef USE_DEBUG_DRIVER
ShowFreeMem(PSTR("MqttDataHandler"));
#endif
strlcpy(topicBuf, topic, sizeof(topicBuf));
for (i = 0; i < data_len; i++) {
if (!isspace(data[i])) { break; }
}
data_len -= i;
memcpy(dataBuf, data +i, sizeof(dataBuf));
dataBuf[sizeof(dataBuf)-1] = 0;
if (topicBuf[0] != '/') { ShowSource(SRC_MQTT); }
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_RESULT D_RECEIVED_TOPIC " %s, " D_DATA_SIZE " %d, " D_DATA " %s"), topicBuf, data_len, dataBuf);
// if (LOG_LEVEL_DEBUG_MORE <= seriallog_level) { Serial.println(dataBuf); }
if (XdrvMqttData(topicBuf, sizeof(topicBuf), dataBuf, sizeof(dataBuf))) { return; }
grpflg = (strstr(topicBuf, Settings.mqtt_grptopic) != nullptr);
GetFallbackTopic_P(stemp1, CMND, ""); // Full Fallback topic = cmnd/DVES_xxxxxxxx_fb/
fallback_topic_flag = (!strncmp(topicBuf, stemp1, strlen(stemp1)));
type = strrchr(topicBuf, '/'); // Last part of received topic is always the command (type)
index = 1;
if (type != nullptr) {
type++;
for (i = 0; i < strlen(type); i++) {
type[i] = toupper(type[i]);
}
while (isdigit(type[i-1])) {
i--;
}
if (i < strlen(type)) {
index = atoi(type +i);
// user_append_index = true;
}
type[i] = '\0';
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_RESULT D_GROUP " %d, " D_INDEX " %d, " D_COMMAND " %s, " D_DATA " %s"), grpflg, index, type, dataBuf);
if (type != nullptr) {
Response_P(PSTR("{\"" D_JSON_COMMAND "\":\"" D_JSON_ERROR "\"}"));
if (Settings.ledstate &0x02) { blinks++; }
if (!strcmp(dataBuf,"?")) { data_len = 0; }
int16_t payload = -99; // No payload
uint16_t payload16 = 0;
long payload32 = strtol(dataBuf, &p, 0); // decimal, octal (0) or hex (0x)
if (p != dataBuf) {
payload = (int16_t) payload32; // -32766 - 32767
payload16 = (uint16_t) payload32; // 0 - 65535
} else {
payload32 = 0;
}
backlog_delay = millis() + (100 * MIN_BACKLOG_DELAY);
int temp_payload = GetStateNumber(dataBuf);
if (temp_payload > -1) { payload = temp_payload; }
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_RESULT "Payload %d, Payload16 %d, payload32 %u"), payload, payload16, payload32);
int command_code = GetCommandCode(command, sizeof(command), type, kTasmotaCommands);
if (-1 == command_code) {
// XdrvMailbox.valid = 1;
XdrvMailbox.index = index;
XdrvMailbox.data_len = data_len;
XdrvMailbox.payload16 = payload16;
XdrvMailbox.payload = payload;
XdrvMailbox.grpflg = grpflg;
XdrvMailbox.topic = type;
XdrvMailbox.data = dataBuf;
if (!XdrvCall(FUNC_COMMAND)) {
if (!XsnsCall(FUNC_COMMAND)) {
type = nullptr; // Unknown command
}
}
}
else if (CMND_BACKLOG == command_code) {
if (data_len) {
uint8_t bl_pointer = (!backlog_pointer) ? MAX_BACKLOG -1 : backlog_pointer;
bl_pointer--;
char *blcommand = strtok(dataBuf, ";");
while ((blcommand != nullptr) && (backlog_index != bl_pointer)) {
while(true) {
blcommand = Trim(blcommand);
if (!strncasecmp_P(blcommand, PSTR(D_CMND_BACKLOG), strlen(D_CMND_BACKLOG))) {
blcommand += strlen(D_CMND_BACKLOG); // Skip unnecessary command Backlog
} else {
break;
}
}
if (*blcommand != '\0') {
backlog[backlog_index] = String(blcommand);
backlog_index++;
if (backlog_index >= MAX_BACKLOG) backlog_index = 0;
}
blcommand = strtok(nullptr, ";");
}
// Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_APPENDED);
mqtt_data[0] = '\0';
} else {
uint8_t blflag = (backlog_pointer == backlog_index);
backlog_pointer = backlog_index;
Response_P(S_JSON_COMMAND_SVALUE, command, blflag ? D_JSON_EMPTY : D_JSON_ABORTED);
}
}
else if (CMND_DELAY == command_code) {
if ((payload >= MIN_BACKLOG_DELAY) && (payload <= 3600)) {
backlog_delay = millis() + (100 * payload);
}
uint16_t bl_delay = 0;
long bl_delta = TimePassedSince(backlog_delay);
if (bl_delta < 0) { bl_delay = (bl_delta *-1) / 100; }
Response_P(S_JSON_COMMAND_NVALUE, command, bl_delay);
}
else if ((CMND_POWER == command_code) && (index > 0) && (index <= devices_present)) {
if ((payload < 0) || (payload > 4)) { payload = 9; }
// Settings.flag.device_index_enable = user_append_index;
ExecuteCommandPower(index, payload, SRC_IGNORE);
fallback_topic_flag = false;
return;
}
else if (CMND_STATUS == command_code) {
if ((payload < 0) || (payload > MAX_STATUS)) payload = 99;
PublishStatus(payload);
fallback_topic_flag = false;
return;
}
else if (CMND_STATE == command_code) {
mqtt_data[0] = '\0';
MqttShowState();
if (Settings.flag3.hass_tele_on_power) {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), MQTT_TELE_RETAIN);
}
#ifdef USE_HOME_ASSISTANT
if (Settings.flag.hass_discovery) {
HAssPublishStatus();
}
#endif // USE_HOME_ASSISTANT
}
else if (CMND_SLEEP == command_code) {
if ((payload >= 0) && (payload < 251)) {
Settings.sleep = payload;
sleep = payload;
WiFiSetSleepMode();
}
Response_P(S_JSON_COMMAND_NVALUE_UNIT_NVALUE_UNIT, command, sleep, (Settings.flag.value_units) ? " " D_UNIT_MILLISECOND : "", Settings.sleep, (Settings.flag.value_units) ? " " D_UNIT_MILLISECOND : "");
}
else if ((CMND_UPGRADE == command_code) || (CMND_UPLOAD == command_code)) {
// Check if the payload is numerically 1, and had no trailing chars.
// e.g. "1foo" or "1.2.3" could fool us.
// Check if the version we have been asked to upgrade to is higher than our current version.
// We also need at least 3 chars to make a valid version number string.
if (((1 == data_len) && (1 == payload)) || ((data_len >= 3) && NewerVersion(dataBuf))) {
ota_state_flag = 3;
Response_P(PSTR("{\"%s\":\"" D_JSON_VERSION " %s " D_JSON_FROM " %s\"}"), command, my_version, GetOtaUrl(stemp1, sizeof(stemp1)));
} else {
Response_P(PSTR("{\"%s\":\"" D_JSON_ONE_OR_GT "\"}"), command, my_version);
}
}
else if (CMND_OTAURL == command_code) {
if ((data_len > 0) && (data_len < sizeof(Settings.ota_url))) {
strlcpy(Settings.ota_url, (SC_DEFAULT == Shortcut(dataBuf)) ? OTA_URL : dataBuf, sizeof(Settings.ota_url));
}
Response_P(S_JSON_COMMAND_SVALUE, command, Settings.ota_url);
}
else if (CMND_SERIALLOG == command_code) {
if ((payload >= LOG_LEVEL_NONE) && (payload <= LOG_LEVEL_ALL)) {
Settings.flag.mqtt_serial = 0;
SetSeriallog(payload);
}
Response_P(S_JSON_COMMAND_NVALUE_ACTIVE_NVALUE, command, Settings.seriallog_level, seriallog_level);
}
else if (CMND_RESTART == command_code) {
switch (payload) {
case 1:
restart_flag = 2;
Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_RESTARTING);
break;
case 99:
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_RESTARTING));
EspRestart();
break;
default:
Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_ONE_TO_RESTART);
}
}
else if ((CMND_POWERONSTATE == command_code) && (my_module_type != MOTOR)) {
/* 0 = Keep relays off after power on
* 1 = Turn relays on after power on, if PulseTime set wait for PulseTime seconds, and turn relays off
* 2 = Toggle relays after power on
* 3 = Set relays to last saved state after power on
* 4 = Turn relays on and disable any relay control (used for Sonoff Pow to always measure power)
* 5 = Keep relays off after power on, if PulseTime set wait for PulseTime seconds, and turn relays on
*/
if ((payload >= POWER_ALL_OFF) && (payload <= POWER_ALL_OFF_PULSETIME_ON)) {
Settings.poweronstate = payload;
if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) {
for (uint32_t i = 1; i <= devices_present; i++) {
ExecuteCommandPower(i, POWER_ON, SRC_IGNORE);
}
}
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.poweronstate);
}
else if ((CMND_PULSETIME == command_code) && (index > 0) && (index <= MAX_PULSETIMERS)) {
if (data_len > 0) {
Settings.pulse_timer[index -1] = payload16; // 0 - 65535
SetPulseTimer(index -1, payload16);
}
Response_P(S_JSON_COMMAND_INDEX_NVALUE_ACTIVE_NVALUE, command, index, Settings.pulse_timer[index -1], GetPulseTimer(index -1));
}
else if (CMND_BLINKTIME == command_code) {
if ((payload > 1) && (payload <= 3600)) {
Settings.blinktime = payload;
if (blink_timer > 0) { blink_timer = millis() + (100 * payload); }
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.blinktime);
}
else if (CMND_BLINKCOUNT == command_code) {
if (data_len > 0) {
Settings.blinkcount = payload16; // 0 - 65535
if (blink_counter) blink_counter = Settings.blinkcount *2;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.blinkcount);
}
else if (CMND_SAVEDATA == command_code) {
if ((payload >= 0) && (payload <= 3600)) {
Settings.save_data = payload;
save_data_counter = Settings.save_data;
}
SettingsSaveAll();
if (Settings.save_data > 1) {
snprintf_P(stemp1, sizeof(stemp1), PSTR(D_JSON_EVERY " %d " D_UNIT_SECOND), Settings.save_data);
}
Response_P(S_JSON_COMMAND_SVALUE, command, (Settings.save_data > 1) ? stemp1 : GetStateText(Settings.save_data));
}
else if ((CMND_SENSOR == command_code) || (CMND_DRIVER == command_code)) {
XdrvMailbox.index = index;
XdrvMailbox.data_len = data_len;
XdrvMailbox.payload16 = payload16;
XdrvMailbox.payload = payload;
XdrvMailbox.grpflg = grpflg;
XdrvMailbox.topic = command;
XdrvMailbox.data = dataBuf;
if (CMND_SENSOR == command_code) {
XsnsCall(FUNC_COMMAND_SENSOR);
} else {
XdrvCall(FUNC_COMMAND_DRIVER);
}
}
else if ((CMND_SETOPTION == command_code) && (index < 82)) {
uint8_t ptype;
uint8_t pindex;
if (index <= 31) { // SetOption0 .. 31 = Settings.flag
ptype = 0;
pindex = index; // 0 .. 31
}
else if (index <= 49) { // SetOption32 .. 49 = Settings.param
ptype = 2;
pindex = index -32; // 0 .. 17 (= PARAM8_SIZE -1)
}
else { // SetOption50 .. 81 = Settings.flag3
ptype = 1;
pindex = index -50; // 0 .. 31
}
if (payload >= 0) {
if (0 == ptype) { // SetOption0 .. 31
if (payload <= 1) {
switch (pindex) {
case 5: // mqtt_power_retain (CMND_POWERRETAIN)
case 6: // mqtt_button_retain (CMND_BUTTONRETAIN)
case 7: // mqtt_switch_retain (CMND_SWITCHRETAIN)
case 9: // mqtt_sensor_retain (CMND_SENSORRETAIN)
case 14: // interlock (CMND_INTERLOCK)
case 22: // mqtt_serial (SerialSend and SerialLog)
case 23: // mqtt_serial_raw (SerialSend)
case 25: // knx_enabled (Web config)
case 27: // knx_enable_enhancement (Web config)
ptype = 99; // Command Error
break; // Ignore command SetOption
case 3: // mqtt
case 15: // pwm_control
restart_flag = 2;
default:
bitWrite(Settings.flag.data, pindex, payload);
}
if (12 == pindex) { // stop_flash_rotate
stop_flash_rotate = payload;
SettingsSave(2);
}
#ifdef USE_HOME_ASSISTANT
if ((19 == pindex) || (30 == pindex)) {
HAssDiscover(); // Delayed execution to provide enough resources during hass_discovery or hass_light
}
#endif // USE_HOME_ASSISTANT
}
}
else if (1 == ptype) { // SetOption50 .. 81
if (payload <= 1) {
bitWrite(Settings.flag3.data, pindex, payload);
if (5 == pindex) { // SetOption55
if (0 == payload) {
restart_flag = 2; // Disable mDNS needs restart
}
}
if (10 == pindex) { // SetOption60 enable or disable traditional sleep
WiFiSetSleepMode(); // Update WiFi sleep mode accordingly
}
}
}
else { // SetOption32 .. 49
uint8_t param_low = 0;
uint8_t param_high = 255;
switch (pindex) {
case P_HOLD_TIME:
case P_MAX_POWER_RETRY:
param_low = 1;
param_high = 250;
break;
case P_TUYA_RELAYS:
param_high = 8;
break;
}
if ((payload >= param_low) && (payload <= param_high)) {
Settings.param[pindex] = payload;
switch (pindex) {
#ifdef USE_LIGHT
case P_RGB_REMAP:
LightUpdateColorMapping();
break;
#endif
#if defined(USE_IR_REMOTE) && defined(USE_IR_RECEIVE)
case P_IR_UNKNOW_THRESHOLD:
IrReceiveUpdateThreshold();
break;
#endif
#ifdef USE_TUYA_DIMMER
case P_TUYA_RELAYS:
restart_flag = 2; // Need a restart to update GUI
break;
#endif
}
}
}
}
if (ptype < 99) {
if (2 == ptype) snprintf_P(stemp1, sizeof(stemp1), PSTR("%d"), Settings.param[pindex]);
Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, (2 == ptype) ? stemp1 : (1 == ptype) ? GetStateText(bitRead(Settings.flag3.data, pindex)) : GetStateText(bitRead(Settings.flag.data, pindex)));
}
}
else if (CMND_TEMPERATURE_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.temperature_resolution = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.temperature_resolution);
}
else if (CMND_HUMIDITY_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.humidity_resolution = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.humidity_resolution);
}
else if (CMND_PRESSURE_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.pressure_resolution = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.pressure_resolution);
}
else if (CMND_POWER_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.wattage_resolution = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.wattage_resolution);
}
else if (CMND_VOLTAGE_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.voltage_resolution = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.voltage_resolution);
}
else if (CMND_FREQUENCY_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.frequency_resolution = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.frequency_resolution);
}
else if (CMND_CURRENT_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.current_resolution = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.current_resolution);
}
else if (CMND_ENERGY_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 5)) {
Settings.flag2.energy_resolution = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.energy_resolution);
}
else if (CMND_WEIGHT_RESOLUTION == command_code) {
if ((payload >= 0) && (payload <= 3)) {
Settings.flag2.weight_resolution = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.flag2.weight_resolution);
}
else if (CMND_MODULE == command_code) {
if ((payload >= 0) && (payload <= MAXMODULE)) {
bool present = false;
if (0 == payload) {
payload = USER_MODULE;
present = true;
} else {
payload--;
present = ValidTemplateModule(payload);
}
if (present) {
Settings.last_module = Settings.module;
Settings.module = payload;
SetModuleType();
if (Settings.last_module != payload) {
for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) {
Settings.my_gp.io[i] = GPIO_NONE;
}
}
restart_flag = 2;
}
}
Response_P(S_JSON_COMMAND_NVALUE_SVALUE, command, ModuleNr(), ModuleName().c_str());
}
else if (CMND_MODULES == command_code) {
uint8_t midx = USER_MODULE;
for (uint32_t i = 0; i <= sizeof(kModuleNiceList); i++) {
if (i > 0) { midx = pgm_read_byte(kModuleNiceList + i -1); }
if (!jsflg) {
Response_P(PSTR("{\"" D_CMND_MODULES "%d\":["), lines);
} else {
ResponseAppend_P(PSTR(","));
}
jsflg = true;
uint8_t j = i ? midx +1 : 0;
if ((ResponseAppend_P(PSTR("\"%d (%s)\""), j, AnyModuleName(midx).c_str()) > (LOGSZ - TOPSZ)) || (i == sizeof(kModuleNiceList))) {
ResponseAppend_P(PSTR("]}"));
MqttPublishPrefixTopic_P(RESULT_OR_STAT, type);
jsflg = false;
lines++;
}
}
mqtt_data[0] = '\0';
}
#ifndef USE_ADC_VCC
else if (CMND_ADC == command_code) {
if (ValidAdc() && (payload >= 0) && (payload < ADC0_END)) {
Settings.my_adc0 = payload;
restart_flag = 2;
}
Response_P(PSTR("{\"" D_CMND_ADC "0\":\"%d (%s)\"}"), Settings.my_adc0, GetTextIndexed(stemp1, sizeof(stemp1), Settings.my_adc0, kAdc0Names));
}
else if (CMND_ADCS == command_code) {
Response_P(PSTR("{\"" D_CMND_ADCS "\":["));
for (uint32_t i = 0; i < ADC0_END; i++) {
if (jsflg) {
ResponseAppend_P(PSTR(","));
}
jsflg = true;
ResponseAppend_P(PSTR("\"%d (%s)\""), i, GetTextIndexed(stemp1, sizeof(stemp1), i, kAdc0Names));
}
ResponseAppend_P(PSTR("]}"));
}
#endif // USE_ADC_VCC
else if ((CMND_GPIO == command_code) && (index < sizeof(Settings.my_gp))) {
myio cmodule;
ModuleGpios(&cmodule);
if (ValidGPIO(index, cmodule.io[index]) && (payload >= 0) && (payload < GPIO_SENSOR_END)) {
bool present = false;
for (uint32_t i = 0; i < sizeof(kGpioNiceList); i++) {
uint8_t midx = pgm_read_byte(kGpioNiceList + i);
if (midx == payload) { present = true; }
}
if (present) {
for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) {
if (ValidGPIO(i, cmodule.io[i]) && (Settings.my_gp.io[i] == payload)) {
Settings.my_gp.io[i] = GPIO_NONE;
}
}
Settings.my_gp.io[index] = payload;
restart_flag = 2;
}
}
Response_P(PSTR("{"));
for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) {
if (ValidGPIO(i, cmodule.io[i])) {
if (jsflg) { ResponseAppend_P(PSTR(",")); }
jsflg = true;
ResponseAppend_P(PSTR("\"" D_CMND_GPIO "%d\":\"%d (%s)\""), i, Settings.my_gp.io[i], GetTextIndexed(stemp1, sizeof(stemp1), Settings.my_gp.io[i], kSensorNames));
}
}
if (jsflg) {
ResponseJsonEnd();
} else {
Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_NOT_SUPPORTED);
}
}
else if (CMND_GPIOS == command_code) {
myio cmodule;
ModuleGpios(&cmodule);
uint8_t midx;
for (uint32_t i = 0; i < sizeof(kGpioNiceList); i++) {
midx = pgm_read_byte(kGpioNiceList + i);
if (!GetUsedInModule(midx, cmodule.io)) {
if (!jsflg) {
Response_P(PSTR("{\"" D_CMND_GPIOS "%d\":["), lines);
} else {
ResponseAppend_P(PSTR(","));
}
jsflg = true;
if ((ResponseAppend_P(PSTR("\"%d (%s)\""), midx, GetTextIndexed(stemp1, sizeof(stemp1), midx, kSensorNames)) > (LOGSZ - TOPSZ)) || (i == sizeof(kGpioNiceList) -1)) {
ResponseAppend_P(PSTR("]}"));
MqttPublishPrefixTopic_P(RESULT_OR_STAT, type);
jsflg = false;
lines++;
}
}
}
mqtt_data[0] = '\0';
}
else if (CMND_TEMPLATE == command_code) {
// {"NAME":"Generic","GPIO":[17,254,29,254,7,254,254,254,138,254,139,254,254],"FLAG":1,"BASE":255}
bool error = false;
if (strstr(dataBuf, "{") == nullptr) { // If no JSON it must be parameter
if ((payload > 0) && (payload <= MAXMODULE)) {
payload--;
if (ValidTemplateModule(payload)) {
ModuleDefault(payload); // Copy template module
if (USER_MODULE == Settings.module) { restart_flag = 2; }
}
}
else if (0 == payload) { // Copy current template to user template
if (Settings.module != USER_MODULE) {
ModuleDefault(Settings.module);
}
}
else if (255 == payload) { // Copy current module with user configured GPIO
if (Settings.module != USER_MODULE) {
ModuleDefault(Settings.module);
}
snprintf_P(Settings.user_template.name, sizeof(Settings.user_template.name), PSTR("Merged"));
uint8_t j = 0;
for (uint32_t i = 0; i < sizeof(mycfgio); i++) {
if (6 == i) { j = 9; }
if (8 == i) { j = 12; }
if (my_module.io[j] > GPIO_NONE) {
Settings.user_template.gp.io[i] = my_module.io[j];
}
j++;
}
}
}
else {
if (JsonTemplate(dataBuf)) { // Free 336 bytes StaticJsonBuffer stack space by moving code to function
if (USER_MODULE == Settings.module) { restart_flag = 2; }
} else {
Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_INVALID_JSON);
error = true;
}
}
if (!error) { TemplateJson(); }
}
else if ((CMND_PWM == command_code) && pwm_present && (index > 0) && (index <= MAX_PWMS)) {
if ((payload >= 0) && (payload <= Settings.pwm_range) && (pin[GPIO_PWM1 + index -1] < 99)) {
Settings.pwm_value[index -1] = payload;
analogWrite(pin[GPIO_PWM1 + index -1], bitRead(pwm_inverted, index -1) ? Settings.pwm_range - payload : payload);
}
Response_P(PSTR("{"));
MqttShowPWMState(); // Render the PWM status to MQTT
ResponseJsonEnd();
}
else if (CMND_PWMFREQUENCY == command_code) {
if ((1 == payload) || ((payload >= PWM_MIN) && (payload <= PWM_MAX))) {
Settings.pwm_frequency = (1 == payload) ? PWM_FREQ : payload;
analogWriteFreq(Settings.pwm_frequency); // Default is 1000 (core_esp8266_wiring_pwm.c)
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.pwm_frequency);
}
else if (CMND_PWMRANGE == command_code) {
if ((1 == payload) || ((payload > 254) && (payload < 1024))) {
Settings.pwm_range = (1 == payload) ? PWM_RANGE : payload;
for (uint32_t i = 0; i < MAX_PWMS; i++) {
if (Settings.pwm_value[i] > Settings.pwm_range) {
Settings.pwm_value[i] = Settings.pwm_range;
}
}
analogWriteRange(Settings.pwm_range); // Default is 1023 (Arduino.h)
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.pwm_range);
}
else if ((CMND_COUNTER == command_code) && (index > 0) && (index <= MAX_COUNTERS)) {
if ((data_len > 0) && (pin[GPIO_CNTR1 + index -1] < 99)) {
if ((dataBuf[0] == '-') || (dataBuf[0] == '+')) {
RtcSettings.pulse_counter[index -1] += payload32;
Settings.pulse_counter[index -1] += payload32;
} else {
RtcSettings.pulse_counter[index -1] = payload32;
Settings.pulse_counter[index -1] = payload32;
}
}
Response_P(S_JSON_COMMAND_INDEX_LVALUE, command, index, RtcSettings.pulse_counter[index -1]);
}
else if ((CMND_COUNTERTYPE == command_code) && (index > 0) && (index <= MAX_COUNTERS)) {
if ((payload >= 0) && (payload <= 1) && (pin[GPIO_CNTR1 + index -1] < 99)) {
bitWrite(Settings.pulse_counter_type, index -1, payload &1);
RtcSettings.pulse_counter[index -1] = 0;
Settings.pulse_counter[index -1] = 0;
}
Response_P(S_JSON_COMMAND_INDEX_NVALUE, command, index, bitRead(Settings.pulse_counter_type, index -1));
}
else if (CMND_COUNTERDEBOUNCE == command_code) {
if ((data_len > 0) && (payload16 < 32001)) {
Settings.pulse_counter_debounce = payload16;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.pulse_counter_debounce);
}
else if (CMND_BUTTONDEBOUNCE == command_code) {
if ((payload > 39) && (payload < 1001)) {
Settings.button_debounce = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.button_debounce);
}
else if (CMND_SWITCHDEBOUNCE == command_code) {
if ((payload > 39) && (payload < 1001)) {
Settings.switch_debounce = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.switch_debounce);
}
else if (CMND_BAUDRATE == command_code) {
if (payload32 > 1200) {
payload32 /= 1200; // Make it a valid baudrate
baudrate = (1 == payload) ? APP_BAUDRATE : payload32 * 1200;
SetSerialBaudrate(baudrate);
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.baudrate * 1200);
}
else if ((CMND_SERIALSEND == command_code) && (index > 0) && (index <= 5)) {
SetSeriallog(LOG_LEVEL_NONE);
Settings.flag.mqtt_serial = 1;
Settings.flag.mqtt_serial_raw = (index > 3) ? 1 : 0;
if (data_len > 0) {
if (1 == index) {
Serial.printf("%s\n", dataBuf); // "Hello Tiger\n"
}
else if (2 == index || 4 == index) {
for (uint32_t i = 0; i < data_len; i++) {
Serial.write(dataBuf[i]); // "Hello Tiger" or "A0"
}
}
else if (3 == index) {
uint16_t dat_len = data_len;
Serial.printf("%s", Unescape(dataBuf, &dat_len)); // "Hello\f"
}
else if (5 == index) {
SerialSendRaw(RemoveSpace(dataBuf)); // "AA004566" as hex values
}
Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_DONE);
}
}
else if (CMND_SERIALDELIMITER == command_code) {
if ((data_len > 0) && (payload < 256)) {
if (payload > 0) {
Settings.serial_delimiter = payload;
} else {
uint16_t dat_len = data_len;
Unescape(dataBuf, &dat_len);
Settings.serial_delimiter = dataBuf[0];
}
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.serial_delimiter);
}
else if (CMND_SYSLOG == command_code) {
if ((payload >= LOG_LEVEL_NONE) && (payload <= LOG_LEVEL_ALL)) {
SetSyslog(payload);
}
Response_P(S_JSON_COMMAND_NVALUE_ACTIVE_NVALUE, command, Settings.syslog_level, syslog_level);
}
else if (CMND_LOGHOST == command_code) {
if ((data_len > 0) && (data_len < sizeof(Settings.syslog_host))) {
strlcpy(Settings.syslog_host, (SC_DEFAULT == Shortcut(dataBuf)) ? SYS_LOG_HOST : dataBuf, sizeof(Settings.syslog_host));
}
Response_P(S_JSON_COMMAND_SVALUE, command, Settings.syslog_host);
}
else if (CMND_LOGPORT == command_code) {
if (payload16 > 0) {
Settings.syslog_port = (1 == payload16) ? SYS_LOG_PORT : payload16;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.syslog_port);
}
else if ((CMND_IPADDRESS == command_code) && (index > 0) && (index <= 4)) {
if (ParseIp(&address, dataBuf)) {
Settings.ip_address[index -1] = address;
// restart_flag = 2;
}
snprintf_P(stemp1, sizeof(stemp1), PSTR(" (%s)"), WiFi.localIP().toString().c_str());
Response_P(S_JSON_COMMAND_INDEX_SVALUE_SVALUE, command, index, IPAddress(Settings.ip_address[index -1]).toString().c_str(), (1 == index) ? stemp1:"");
}
else if ((CMND_NTPSERVER == command_code) && (index > 0) && (index <= 3)) {
if ((data_len > 0) && (data_len < sizeof(Settings.ntp_server[0]))) {
strlcpy(Settings.ntp_server[index -1], (SC_CLEAR == Shortcut(dataBuf)) ? "" : (SC_DEFAULT == Shortcut(dataBuf)) ? (1==index)?NTP_SERVER1:(2==index)?NTP_SERVER2:NTP_SERVER3 : dataBuf, sizeof(Settings.ntp_server[0]));
for (i = 0; i < strlen(Settings.ntp_server[index -1]); i++) {
if (Settings.ntp_server[index -1][i] == ',') Settings.ntp_server[index -1][i] = '.';
}
// restart_flag = 2; // Issue #3890
ntp_force_sync = true;
}
Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.ntp_server[index -1]);
}
else if (CMND_AP == command_code) {
if ((payload >= 0) && (payload <= 2)) {
switch (payload) {
case 0: // Toggle
Settings.sta_active ^= 1;
break;
case 1: // AP1
case 2: // AP2
Settings.sta_active = payload -1;
}
restart_flag = 2;
}
Response_P(S_JSON_COMMAND_NVALUE_SVALUE, command, Settings.sta_active +1, Settings.sta_ssid[Settings.sta_active]);
}
else if ((CMND_SSID == command_code) && (index > 0) && (index <= 2)) {
if ((data_len > 0) && (data_len < sizeof(Settings.sta_ssid[0]))) {
strlcpy(Settings.sta_ssid[index -1], (SC_CLEAR == Shortcut(dataBuf)) ? "" : (SC_DEFAULT == Shortcut(dataBuf)) ? (1 == index) ? STA_SSID1 : STA_SSID2 : dataBuf, sizeof(Settings.sta_ssid[0]));
Settings.sta_active = index -1;
restart_flag = 2;
}
Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.sta_ssid[index -1]);
}
else if ((CMND_PASSWORD == command_code) && (index > 0) && (index <= 2)) {
if ((data_len > 4 || SC_CLEAR == Shortcut(dataBuf) || SC_DEFAULT == Shortcut(dataBuf)) && (data_len < sizeof(Settings.sta_pwd[0]))) {
strlcpy(Settings.sta_pwd[index -1], (SC_CLEAR == Shortcut(dataBuf)) ? "" : (SC_DEFAULT == Shortcut(dataBuf)) ? (1 == index) ? STA_PASS1 : STA_PASS2 : dataBuf, sizeof(Settings.sta_pwd[0]));
Settings.sta_active = index -1;
restart_flag = 2;
Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.sta_pwd[index -1]);
} else {
Response_P(S_JSON_COMMAND_INDEX_ASTERISK, command, index);
}
}
else if (CMND_HOSTNAME == command_code) {
if (!grpflg && (data_len > 0) && (data_len < sizeof(Settings.hostname))) {
strlcpy(Settings.hostname, (SC_DEFAULT == Shortcut(dataBuf)) ? WIFI_HOSTNAME : dataBuf, sizeof(Settings.hostname));
if (strstr(Settings.hostname, "%") != nullptr) {
strlcpy(Settings.hostname, WIFI_HOSTNAME, sizeof(Settings.hostname));
}
restart_flag = 2;
}
Response_P(S_JSON_COMMAND_SVALUE, command, Settings.hostname);
}
else if (CMND_WIFICONFIG == command_code) {
if ((payload >= WIFI_RESTART) && (payload < MAX_WIFI_OPTION)) {
Settings.sta_config = payload;
wifi_state_flag = Settings.sta_config;
snprintf_P(stemp1, sizeof(stemp1), kWifiConfig[Settings.sta_config]);
Response_P(PSTR("{\"" D_CMND_WIFICONFIG "\":\"%s " D_JSON_SELECTED "\"}"), stemp1);
if (WifiState() > WIFI_RESTART) {
// ResponseAppend_P(PSTR(" after restart"));
restart_flag = 2;
}
} else {
snprintf_P(stemp1, sizeof(stemp1), kWifiConfig[Settings.sta_config]);
Response_P(S_JSON_COMMAND_NVALUE_SVALUE, command, Settings.sta_config, stemp1);
}
}
else if ((CMND_FRIENDLYNAME == command_code) && (index > 0) && (index <= MAX_FRIENDLYNAMES)) {
if ((data_len > 0) && (data_len < sizeof(Settings.friendlyname[0]))) {
if (1 == index) {
snprintf_P(stemp1, sizeof(stemp1), PSTR(FRIENDLY_NAME));
} else {
snprintf_P(stemp1, sizeof(stemp1), PSTR(FRIENDLY_NAME "%d"), index);
}
strlcpy(Settings.friendlyname[index -1], (SC_DEFAULT == Shortcut(dataBuf)) ? stemp1 : dataBuf, sizeof(Settings.friendlyname[index -1]));
}
Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, Settings.friendlyname[index -1]);
}
else if ((CMND_SWITCHMODE == command_code) && (index > 0) && (index <= MAX_SWITCHES)) {
if ((payload >= 0) && (payload < MAX_SWITCH_OPTION)) {
Settings.switchmode[index -1] = payload;
}
Response_P(S_JSON_COMMAND_INDEX_NVALUE, command, index, Settings.switchmode[index-1]);
}
else if (CMND_INTERLOCK == command_code) { // Interlock 0 - Off, Interlock 1 - On, Interlock 1,2 3,4 5,6,7
uint8_t max_relays = devices_present;
if (light_type) { max_relays--; }
if (max_relays > sizeof(Settings.interlock[0]) * 8) { max_relays = sizeof(Settings.interlock[0]) * 8; }
if (max_relays > 1) { // Only interlock with more than 1 relay
if (data_len > 0) {
if (strstr(dataBuf, ",") != nullptr) { // Interlock entry
for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) { Settings.interlock[i] = 0; } // Reset current interlocks
char *group;
char *q;
uint8_t group_index = 0;
power_t relay_mask = 0;
for (group = strtok_r(dataBuf, " ", &q); group && group_index < MAX_INTERLOCKS; group = strtok_r(nullptr, " ", &q)) {
char *str;
for (str = strtok_r(group, ",", &p); str; str = strtok_r(nullptr, ",", &p)) {
int pbit = atoi(str);
if ((pbit > 0) && (pbit <= max_relays)) { // Only valid relays
pbit--;
if (!bitRead(relay_mask, pbit)) { // Only relay once
bitSet(relay_mask, pbit);
bitSet(Settings.interlock[group_index], pbit);
}
}
}
group_index++;
}
for (uint32_t i = 0; i < group_index; i++) {
uint8_t minimal_bits = 0;
for (uint32_t j = 0; j < max_relays; j++) {
if (bitRead(Settings.interlock[i], j)) { minimal_bits++; }
}
if (minimal_bits < 2) { Settings.interlock[i] = 0; } // Discard single relay as interlock
}
} else {
Settings.flag.interlock = payload &1; // Enable/disable interlock
if (Settings.flag.interlock) {
SetDevicePower(power, SRC_IGNORE); // Remove multiple relays if set
}
}
}
Response_P(PSTR("{\"" D_CMND_INTERLOCK "\":\"%s\",\"" D_JSON_GROUPS "\":\""), GetStateText(Settings.flag.interlock));
uint8_t anygroup = 0;
for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) {
if (Settings.interlock[i]) {
anygroup++;
ResponseAppend_P(PSTR("%s"), (anygroup > 1) ? " " : "");
uint8_t anybit = 0;
power_t mask = 1;
for (uint32_t j = 0; j < max_relays; j++) {
if (Settings.interlock[i] & mask) {
anybit++;
ResponseAppend_P(PSTR("%s%d"), (anybit > 1) ? "," : "", j +1);
}
mask <<= 1;
}
}
}
if (!anygroup) {
for (uint32_t j = 1; j <= max_relays; j++) {
ResponseAppend_P(PSTR("%s%d"), (j > 1) ? "," : "", j);
}
}
ResponseAppend_P(PSTR("\"}"));
} else {
Settings.flag.interlock = 0;
Response_P(S_JSON_COMMAND_SVALUE, command, GetStateText(Settings.flag.interlock));
}
}
else if (CMND_TELEPERIOD == command_code) {
if ((payload >= 0) && (payload < 3601)) {
Settings.tele_period = (1 == payload) ? TELE_PERIOD : payload;
if ((Settings.tele_period > 0) && (Settings.tele_period < 10)) Settings.tele_period = 10; // Do not allow periods < 10 seconds
tele_period = Settings.tele_period;
}
Response_P(S_JSON_COMMAND_NVALUE_UNIT, command, Settings.tele_period, (Settings.flag.value_units) ? " " D_UNIT_SECOND : "");
}
else if (CMND_RESET == command_code) {
switch (payload) {
case 1:
restart_flag = 211;
Response_P(S_JSON_COMMAND_SVALUE, command , D_JSON_RESET_AND_RESTARTING);
break;
case 2 ... 6:
restart_flag = 210 + payload;
Response_P(PSTR("{\"" D_CMND_RESET "\":\"" D_JSON_ERASE ", " D_JSON_RESET_AND_RESTARTING "\"}"));
break;
default:
Response_P(S_JSON_COMMAND_SVALUE, command, D_JSON_ONE_TO_RESET);
}
}
else if (CMND_TIME == command_code) {
if (data_len > 0) {
RtcSetTime(payload32);
}
ResponseBeginTime();
ResponseJsonEnd();
}
else if (CMND_TIMEZONE == command_code) {
if ((data_len > 0) && (payload >= -13)) {
Settings.timezone = payload;
Settings.timezone_minutes = 0;
if (payload < 15) {
p = strtok (dataBuf, ":");
if (p) {
p = strtok (nullptr, ":");
if (p) {
Settings.timezone_minutes = strtol(p, nullptr, 10);
if (Settings.timezone_minutes > 59) { Settings.timezone_minutes = 59; }
}
}
} else {
Settings.timezone = 99;
}
ntp_force_sync = true;
}
if (99 == Settings.timezone) {
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.timezone);
} else {
snprintf_P(stemp1, sizeof(stemp1), PSTR("%+03d:%02d"), Settings.timezone, Settings.timezone_minutes);
Response_P(S_JSON_COMMAND_SVALUE, command, stemp1);
}
}
else if ((CMND_TIMESTD == command_code) || (CMND_TIMEDST == command_code)) {
// TimeStd 0/1, 0/1/2/3/4, 1..12, 1..7, 0..23, +/-780
uint8_t ts = 0;
if (CMND_TIMEDST == command_code) { ts = 1; }
if (data_len > 0) {
if (strstr(dataBuf, ",") != nullptr) { // Process parameter entry
uint8_t tpos = 0; // Parameter index
int value = 0;
p = dataBuf; // Parameters like "1, 2,3 , 4 ,5, -120" or ",,,,,+240"
char *q = p; // Value entered flag
while (p && (tpos < 7)) {
if (p > q) { // Any value entered
if (1 == tpos) { Settings.tflag[ts].hemis = value &1; }
if (2 == tpos) { Settings.tflag[ts].week = (value < 0) ? 0 : (value > 4) ? 4 : value; }
if (3 == tpos) { Settings.tflag[ts].month = (value < 1) ? 1 : (value > 12) ? 12 : value; }
if (4 == tpos) { Settings.tflag[ts].dow = (value < 1) ? 1 : (value > 7) ? 7 : value; }
if (5 == tpos) { Settings.tflag[ts].hour = (value < 0) ? 0 : (value > 23) ? 23 : value; }
if (6 == tpos) { Settings.toffset[ts] = (value < -900) ? -900 : (value > 900) ? 900 : value; }
}
p = Trim(p); // Skip spaces
if (tpos && (*p == ',')) { p++; } // Skip separator
p = Trim(p); // Skip spaces
q = p; // Reset any value entered flag
value = strtol(p, &p, 10);
tpos++; // Next parameter
}
ntp_force_sync = true;
} else {
if (0 == payload) {
if (0 == ts) {
SettingsResetStd();
} else {
SettingsResetDst();
}
}
ntp_force_sync = true;
}
}
Response_P(PSTR("{\"%s\":{\"Hemisphere\":%d,\"Week\":%d,\"Month\":%d,\"Day\":%d,\"Hour\":%d,\"Offset\":%d}}"),
command, Settings.tflag[ts].hemis, Settings.tflag[ts].week, Settings.tflag[ts].month, Settings.tflag[ts].dow, Settings.tflag[ts].hour, Settings.toffset[ts]);
}
else if (CMND_ALTITUDE == command_code) {
if ((data_len > 0) && ((payload >= -30000) && (payload <= 30000))) {
Settings.altitude = payload;
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.altitude);
}
else if ((CMND_LEDPOWER == command_code) && (index > 0) && (index <= MAX_LEDS)) {
/*
if ((payload >= 0) && (payload <= 2)) {
Settings.ledstate &= 8;
switch (payload) {
case 0: // Off
case 1: // On
Settings.ledstate = payload << 3;
break;
case 2: // Toggle
Settings.ledstate ^= 8;
break;
}
blinks = 0;
SetLedPowerIdx(index -1, Settings.ledstate &8);
}
Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, GetStateText(bitRead(Settings.ledstate, 3)));
*/
/*
if (99 == pin[GPIO_LEDLNK]) {
if ((payload >= 0) && (payload <= 2)) {
Settings.ledstate &= 8;
switch (payload) {
case 0: // Off
case 1: // On
Settings.ledstate = payload << 3;
break;
case 2: // Toggle
Settings.ledstate ^= 8;
break;
}
blinks = 0;
SetLedPower(Settings.ledstate &8);
}
Response_P(S_JSON_COMMAND_SVALUE, command, GetStateText(bitRead(Settings.ledstate, 3)));
} else {
if ((payload >= 0) && (payload <= 2)) {
Settings.ledstate &= 8; // Disable power control
uint8_t mask = 1 << (index -1); // Led to control
switch (payload) {
case 0: // Off
led_power &= (0xFF ^ mask);
case 1: // On
led_power |= mask;
break;
case 2: // Toggle
led_power ^= mask;
break;
}
blinks = 0;
SetLedPowerIdx(index -1, (led_power & mask));
}
Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, GetStateText(bitRead(led_power, index -1)));
}
*/
if (99 == pin[GPIO_LEDLNK]) { index = 1; }
if ((payload >= 0) && (payload <= 2)) {
Settings.ledstate &= 8; // Disable power control
uint8_t mask = 1 << (index -1); // Led to control
switch (payload) {
case 0: // Off
led_power &= (0xFF ^ mask);
Settings.ledstate = 0;
break;
case 1: // On
led_power |= mask;
Settings.ledstate = 8;
break;
case 2: // Toggle
led_power ^= mask;
Settings.ledstate ^= 8;
break;
}
blinks = 0;
if (99 == pin[GPIO_LEDLNK]) {
SetLedPower(Settings.ledstate &8);
} else {
SetLedPowerIdx(index -1, (led_power & mask));
}
}
uint8_t state = bitRead(led_power, index -1);
if (99 == pin[GPIO_LEDLNK]) {
state = bitRead(Settings.ledstate, 3);
}
Response_P(S_JSON_COMMAND_INDEX_SVALUE, command, index, GetStateText(state));
}
else if (CMND_LEDSTATE == command_code) {
if ((payload >= 0) && (payload < MAX_LED_OPTION)) {
Settings.ledstate = payload;
if (!Settings.ledstate) {
SetLedPowerAll(0);
SetLedLink(0);
}
}
Response_P(S_JSON_COMMAND_NVALUE, command, Settings.ledstate);
}
else if (CMND_LEDMASK == command_code) {
if (data_len > 0) {
Settings.ledmask = payload16;
}
snprintf_P(stemp1, sizeof(stemp1), PSTR("%d (0x%04X)"), Settings.ledmask, Settings.ledmask);
Response_P(S_JSON_COMMAND_SVALUE, command, stemp1);
}
#ifdef USE_I2C
else if ((CMND_I2CSCAN == command_code) && i2c_flg) {
I2cScan(mqtt_data, sizeof(mqtt_data));
}
#endif // USE_I2C
else type = nullptr; // Unknown command
}
if (type == nullptr) {
blinks = 201;
snprintf_P(topicBuf, sizeof(topicBuf), PSTR(D_JSON_COMMAND));
Response_P(PSTR("{\"" D_JSON_COMMAND "\":\"" D_JSON_UNKNOWN "\"}"));
type = (char*)topicBuf;
}
if (mqtt_data[0] != '\0') {
MqttPublishPrefixTopic_P(RESULT_OR_STAT, type);
#ifdef USE_SCRIPT
XdrvRulesProcess();
#endif
}
fallback_topic_flag = false;
}
/********************************************************************************************/
bool SendKey(uint8_t key, uint8_t device, uint8_t state)
{
// key 0 = button_topic
// key 1 = switch_topic
// state 0 = off
// state 1 = on
// state 2 = toggle
// state 3 = hold
// state 9 = clear retain flag
char stopic[TOPSZ];
char scommand[CMDSZ];
char key_topic[sizeof(Settings.button_topic)];
bool result = false;
char *tmp = (key) ? Settings.switch_topic : Settings.button_topic;
Format(key_topic, tmp, sizeof(key_topic));
if (Settings.flag.mqtt_enabled && MqttIsConnected() && (strlen(key_topic) != 0) && strcmp(key_topic, "0")) {
if (!key && (device > devices_present)) { device = 1; } // Only allow number of buttons up to number of devices
GetTopic_P(stopic, CMND, key_topic,
GetPowerDevice(scommand, device, sizeof(scommand), (key + Settings.flag.device_index_enable))); // cmnd/switchtopic/POWERx
if (9 == state) {
mqtt_data[0] = '\0';
} else {
if ((Settings.flag3.button_switch_force_local || !strcmp(mqtt_topic, key_topic) || !strcmp(Settings.mqtt_grptopic, key_topic)) && (2 == state)) {
state = ~(power >> (device -1)) &1;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), GetStateText(state));
}
#ifdef USE_DOMOTICZ
if (!(DomoticzSendKey(key, device, state, strlen(mqtt_data)))) {
MqttPublishDirect(stopic, ((key) ? Settings.flag.mqtt_switch_retain : Settings.flag.mqtt_button_retain) && (state != 3 || !Settings.flag3.no_hold_retain));
}
#else
MqttPublishDirect(stopic, ((key) ? Settings.flag.mqtt_switch_retain : Settings.flag.mqtt_button_retain) && (state != 3 || !Settings.flag3.no_hold_retain));
#endif // USE_DOMOTICZ
result = !Settings.flag3.button_switch_force_local;
} else {
Response_P(PSTR("{\"%s%d\":{\"State\":%d}}"), (key) ? "Switch" : "Button", device, state);
result = XdrvRulesProcess();
}
#ifdef USE_KNX
KnxSendButtonPower(key, device, state);
#endif // USE_KNX
return result;
}
void ExecuteCommandPower(uint8_t device, uint8_t state, int source)
{
// device = Relay number 1 and up
// state 0 = Relay Off
// state 1 = Relay On (turn off after Settings.pulse_timer * 100 mSec if enabled)
// state 2 = Toggle relay
// state 3 = Blink relay
// state 4 = Stop blinking relay
// state 6 = Relay Off and no publishPowerState
// state 7 = Relay On and no publishPowerState
// state 9 = Show power state
// ShowSource(source);
if (IsModuleIfan()) {
blink_mask &= 1; // No blinking on the fan relays
Settings.flag.interlock = 0; // No interlock mode as it is already done by the microcontroller
Settings.pulse_timer[1] = 0; // No pulsetimers on the fan relays
Settings.pulse_timer[2] = 0;
Settings.pulse_timer[3] = 0;
}
uint8_t publish_power = 1;
if ((POWER_OFF_NO_STATE == state) || (POWER_ON_NO_STATE == state)) {
state &= 1;
publish_power = 0;
}
if ((device < 1) || (device > devices_present)) device = 1;
active_device = device;
if (device <= MAX_PULSETIMERS) { SetPulseTimer(device -1, 0); }
power_t mask = 1 << (device -1); // Device to control
if (state <= POWER_TOGGLE) {
if ((blink_mask & mask)) {
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(device);
}
if (Settings.flag.interlock && !interlock_mutex) { // Clear all but masked relay in interlock group
interlock_mutex = true;
for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) {
if (Settings.interlock[i] & mask) { // Find interlock group
for (uint32_t j = 0; j < devices_present; j++) {
power_t imask = 1 << j;
if ((Settings.interlock[i] & imask) && (power & imask) && (mask != imask)) {
ExecuteCommandPower(j +1, POWER_OFF, SRC_IGNORE);
delay(50); // Add some delay to make sure never have more than one relay on
}
}
break; // An interlocked relay is only present in one group so quit
}
}
interlock_mutex = false;
}
switch (state) {
case POWER_OFF: {
power &= (POWER_MASK ^ mask);
break; }
case POWER_ON:
power |= mask;
break;
case POWER_TOGGLE:
power ^= mask;
}
SetDevicePower(power, source);
#ifdef USE_DOMOTICZ
DomoticzUpdatePowerState(device);
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxUpdatePowerState(device, power);
#endif // USE_KNX
if (publish_power && Settings.flag3.hass_tele_on_power) { MqttPublishTeleState(); }
if (device <= MAX_PULSETIMERS) { // Restart PulseTime if powered On
SetPulseTimer(device -1, (((POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? ~power : power) & mask) ? Settings.pulse_timer[device -1] : 0);
}
}
else if (POWER_BLINK == state) {
if (!(blink_mask & mask)) {
blink_powersave = (blink_powersave & (POWER_MASK ^ mask)) | (power & mask); // Save state
blink_power = (power >> (device -1))&1; // Prep to Toggle
}
blink_timer = millis() + 100;
blink_counter = ((!Settings.blinkcount) ? 64000 : (Settings.blinkcount *2)) +1;
blink_mask |= mask; // Set device mask
MqttPublishPowerBlinkState(device);
return;
}
else if (POWER_BLINK_STOP == state) {
uint8_t flag = (blink_mask & mask);
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(device);
if (flag) ExecuteCommandPower(device, (blink_powersave >> (device -1))&1, SRC_IGNORE); // Restore state
return;
}
if (publish_power) MqttPublishPowerState(device);
}
void StopAllPowerBlink(void)
{
power_t mask;
for (uint32_t i = 1; i <= devices_present; i++) {
mask = 1 << (i -1);
if (blink_mask & mask) {
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(i);
ExecuteCommandPower(i, (blink_powersave >> (i -1))&1, SRC_IGNORE); // Restore state
}
}
}
void SetAllPower(uint8_t state, int source)
{
if ((POWER_ALL_OFF == state) || (POWER_ALL_ON == state)) {
power = 0;
if (POWER_ALL_ON == state) {
power = (1 << devices_present) -1;
}
SetDevicePower(power, source);
MqttPublishAllPowerState();
}
}
void ExecuteCommand(char *cmnd, int source)
{
char *start;
char *token;
#ifdef USE_DEBUG_DRIVER
ShowFreeMem(PSTR("ExecuteCommand"));
#endif
ShowSource(source);
token = strtok(cmnd, " ");
if (token != nullptr) {
start = strrchr(token, '/'); // Skip possible cmnd/sonoff/ preamble
if (start) { token = start +1; }
}
uint16_t size = (token != nullptr) ? strlen(token) : 0;
char stopic[size +2]; // / + \0
snprintf_P(stopic, sizeof(stopic), PSTR("/%s"), (token == nullptr) ? "" : token);
token = strtok(nullptr, "");
size = (token != nullptr) ? strlen(token) : 0;
char svalue[size +1];
strlcpy(svalue, (token == nullptr) ? "" : token, sizeof(svalue)); // Fixed 5.8.0b
MqttDataHandler(stopic, (uint8_t*)svalue, strlen(svalue));
}
void PublishStatus(uint8_t payload)
{
uint8_t option = STAT;
char stemp[MAX_FRIENDLYNAMES * (sizeof(Settings.friendlyname[0]) +MAX_FRIENDLYNAMES)];
char stemp2[100];
// Workaround MQTT - TCP/IP stack queueing when SUB_PREFIX = PUB_PREFIX
if (!strcmp(Settings.mqtt_prefix[0],Settings.mqtt_prefix[1]) && (!payload)) { option++; } // TELE
if ((!Settings.flag.mqtt_enabled) && (6 == payload)) { payload = 99; }
if (!energy_flg && (9 == payload)) { payload = 99; }
if ((0 == payload) || (99 == payload)) {
uint8_t maxfn = (devices_present > MAX_FRIENDLYNAMES) ? MAX_FRIENDLYNAMES : (!devices_present) ? 1 : devices_present;
if (IsModuleIfan()) { maxfn = 1; }
stemp[0] = '\0';
for (uint32_t i = 0; i < maxfn; i++) {
snprintf_P(stemp, sizeof(stemp), PSTR("%s%s\"%s\"" ), stemp, (i > 0 ? "," : ""), Settings.friendlyname[i]);
}
stemp2[0] = '\0';
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
snprintf_P(stemp2, sizeof(stemp2), PSTR("%s%s%d" ), stemp2, (i > 0 ? "," : ""), Settings.switchmode[i]);
}
Response_P(PSTR("{\"" D_CMND_STATUS "\":{\"" D_CMND_MODULE "\":%d,\"" D_CMND_FRIENDLYNAME "\":[%s],\"" D_CMND_TOPIC "\":\"%s\",\"" D_CMND_BUTTONTOPIC "\":\"%s\",\"" D_CMND_POWER "\":%d,\"" D_CMND_POWERONSTATE "\":%d,\"" D_CMND_LEDSTATE "\":%d,\"" D_CMND_LEDMASK "\":\"%04X\",\"" D_CMND_SAVEDATA "\":%d,\"" D_JSON_SAVESTATE "\":%d,\"" D_CMND_SWITCHTOPIC "\":\"%s\",\"" D_CMND_SWITCHMODE "\":[%s],\"" D_CMND_BUTTONRETAIN "\":%d,\"" D_CMND_SWITCHRETAIN "\":%d,\"" D_CMND_SENSORRETAIN "\":%d,\"" D_CMND_POWERRETAIN "\":%d}}"),
ModuleNr(), stemp, mqtt_topic, Settings.button_topic, power, Settings.poweronstate, Settings.ledstate, Settings.ledmask, Settings.save_data, Settings.flag.save_state, Settings.switch_topic, stemp2, Settings.flag.mqtt_button_retain, Settings.flag.mqtt_switch_retain, Settings.flag.mqtt_sensor_retain, Settings.flag.mqtt_power_retain);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS));
}
if ((0 == payload) || (1 == payload)) {
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS1_PARAMETER "\":{\"" D_JSON_BAUDRATE "\":%d,\"" D_CMND_GROUPTOPIC "\":\"%s\",\"" D_CMND_OTAURL "\":\"%s\",\"" D_JSON_RESTARTREASON "\":\"%s\",\"" D_JSON_UPTIME "\":\"%s\",\"" D_JSON_STARTUPUTC "\":\"%s\",\"" D_CMND_SLEEP "\":%d,\"" D_JSON_CONFIG_HOLDER "\":%d,\"" D_JSON_BOOTCOUNT "\":%d,\"" D_JSON_SAVECOUNT "\":%d,\"" D_JSON_SAVEADDRESS "\":\"%X\"}}"),
baudrate, Settings.mqtt_grptopic, Settings.ota_url, GetResetReason().c_str(), GetUptime().c_str(), GetDateAndTime(DT_RESTART).c_str(), Settings.sleep, Settings.cfg_holder, Settings.bootcount, Settings.save_flag, GetSettingsAddress());
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "1"));
}
if ((0 == payload) || (2 == payload)) {
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS2_FIRMWARE "\":{\"" D_JSON_VERSION "\":\"%s%s\",\"" D_JSON_BUILDDATETIME "\":\"%s\",\"" D_JSON_BOOTVERSION "\":%d,\"" D_JSON_COREVERSION "\":\"" ARDUINO_ESP8266_RELEASE "\",\"" D_JSON_SDKVERSION "\":\"%s\"}}"),
my_version, my_image, GetBuildDateAndTime().c_str(), ESP.getBootVersion(), ESP.getSdkVersion());
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "2"));
}
if ((0 == payload) || (3 == payload)) {
stemp2[0] = '\0';
for (uint32_t i = 0; i < PARAM8_SIZE; i++) {
snprintf_P(stemp2, sizeof(stemp2), PSTR("%s%02X"), stemp2, Settings.param[i]);
}
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS3_LOGGING "\":{\"" D_CMND_SERIALLOG "\":%d,\"" D_CMND_WEBLOG "\":%d,\"" D_CMND_SYSLOG "\":%d,\"" D_CMND_LOGHOST "\":\"%s\",\"" D_CMND_LOGPORT "\":%d,\"" D_CMND_SSID "\":[\"%s\",\"%s\"],\"" D_CMND_TELEPERIOD "\":%d,\"" D_JSON_RESOLUTION "\":\"%08X\",\"" D_CMND_SETOPTION "\":[\"%08X\",\"%s\",\"%08X\"]}}"),
Settings.seriallog_level, Settings.weblog_level, Settings.syslog_level, Settings.syslog_host, Settings.syslog_port, Settings.sta_ssid[0], Settings.sta_ssid[1], Settings.tele_period, Settings.flag2.data, Settings.flag.data, stemp2, Settings.flag3.data);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "3"));
}
if ((0 == payload) || (4 == payload)) {
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS4_MEMORY "\":{\"" D_JSON_PROGRAMSIZE "\":%d,\"" D_JSON_FREEMEMORY "\":%d,\"" D_JSON_HEAPSIZE "\":%d,\"" D_JSON_PROGRAMFLASHSIZE "\":%d,\"" D_JSON_FLASHSIZE "\":%d,\"" D_JSON_FLASHCHIPID "\":\"%06X\",\"" D_JSON_FLASHMODE "\":%d,\"" D_JSON_FEATURES "\":[\"%08X\",\"%08X\",\"%08X\",\"%08X\",\"%08X\"]}}"),
ESP.getSketchSize()/1024, ESP.getFreeSketchSpace()/1024, ESP.getFreeHeap()/1024, ESP.getFlashChipSize()/1024, ESP.getFlashChipRealSize()/1024, ESP.getFlashChipId(), ESP.getFlashChipMode(), LANGUAGE_LCID, feature_drv1, feature_drv2, feature_sns1, feature_sns2);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "4"));
}
if ((0 == payload) || (5 == payload)) {
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS5_NETWORK "\":{\"" D_CMND_HOSTNAME "\":\"%s\",\"" D_CMND_IPADDRESS "\":\"%s\",\"" D_JSON_GATEWAY "\":\"%s\",\"" D_JSON_SUBNETMASK "\":\"%s\",\"" D_JSON_DNSSERVER "\":\"%s\",\"" D_JSON_MAC "\":\"%s\",\"" D_CMND_WEBSERVER "\":%d,\"" D_CMND_WIFICONFIG "\":%d}}"),
my_hostname, WiFi.localIP().toString().c_str(), IPAddress(Settings.ip_address[1]).toString().c_str(), IPAddress(Settings.ip_address[2]).toString().c_str(), IPAddress(Settings.ip_address[3]).toString().c_str(),
WiFi.macAddress().c_str(), Settings.webserver, Settings.sta_config);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "5"));
}
if (((0 == payload) || (6 == payload)) && Settings.flag.mqtt_enabled) {
#ifdef USE_MQTT_AWS_IOT
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS6_MQTT "\":{\"" D_CMND_MQTTHOST "\":\"%s%s\",\"" D_CMND_MQTTPORT "\":%d,\"" D_CMND_MQTTCLIENT D_JSON_MASK "\":\"%s\",\"" D_CMND_MQTTCLIENT "\":\"%s\",\"" D_JSON_MQTT_COUNT "\":%d,\"MAX_PACKET_SIZE\":%d,\"KEEPALIVE\":%d}}"),
Settings.mqtt_user, Settings.mqtt_host, Settings.mqtt_port, Settings.mqtt_client, mqtt_client, MqttConnectCount(), MQTT_MAX_PACKET_SIZE, MQTT_KEEPALIVE);
#else
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS6_MQTT "\":{\"" D_CMND_MQTTHOST "\":\"%s\",\"" D_CMND_MQTTPORT "\":%d,\"" D_CMND_MQTTCLIENT D_JSON_MASK "\":\"%s\",\"" D_CMND_MQTTCLIENT "\":\"%s\",\"" D_CMND_MQTTUSER "\":\"%s\",\"" D_JSON_MQTT_COUNT "\":%d,\"MAX_PACKET_SIZE\":%d,\"KEEPALIVE\":%d}}"),
Settings.mqtt_host, Settings.mqtt_port, Settings.mqtt_client, mqtt_client, Settings.mqtt_user, MqttConnectCount(), MQTT_MAX_PACKET_SIZE, MQTT_KEEPALIVE);
#endif
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "6"));
}
if ((0 == payload) || (7 == payload)) {
if (99 == Settings.timezone) {
snprintf_P(stemp, sizeof(stemp), PSTR("%d" ), Settings.timezone);
} else {
snprintf_P(stemp, sizeof(stemp), PSTR("\"%s\"" ), GetTimeZone().c_str());
}
#if defined(USE_TIMERS) && defined(USE_SUNRISE)
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS7_TIME "\":{\"" D_JSON_UTC_TIME "\":\"%s\",\"" D_JSON_LOCAL_TIME "\":\"%s\",\"" D_JSON_STARTDST "\":\"%s\",\"" D_JSON_ENDDST "\":\"%s\",\"" D_CMND_TIMEZONE "\":%s,\"" D_JSON_SUNRISE "\":\"%s\",\"" D_JSON_SUNSET "\":\"%s\"}}"),
GetTime(0).c_str(), GetTime(1).c_str(), GetTime(2).c_str(), GetTime(3).c_str(), stemp, GetSun(0).c_str(), GetSun(1).c_str());
#else
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS7_TIME "\":{\"" D_JSON_UTC_TIME "\":\"%s\",\"" D_JSON_LOCAL_TIME "\":\"%s\",\"" D_JSON_STARTDST "\":\"%s\",\"" D_JSON_ENDDST "\":\"%s\",\"" D_CMND_TIMEZONE "\":%s}}"),
GetTime(0).c_str(), GetTime(1).c_str(), GetTime(2).c_str(), GetTime(3).c_str(), stemp);
#endif // USE_TIMERS and USE_SUNRISE
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "7"));
}
if (energy_flg) {
if ((0 == payload) || (9 == payload)) {
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS9_MARGIN "\":{\"" D_CMND_POWERDELTA "\":%d,\"" D_CMND_POWERLOW "\":%d,\"" D_CMND_POWERHIGH "\":%d,\"" D_CMND_VOLTAGELOW "\":%d,\"" D_CMND_VOLTAGEHIGH "\":%d,\"" D_CMND_CURRENTLOW "\":%d,\"" D_CMND_CURRENTHIGH "\":%d}}"),
Settings.energy_power_delta, Settings.energy_min_power, Settings.energy_max_power, Settings.energy_min_voltage, Settings.energy_max_voltage, Settings.energy_min_current, Settings.energy_max_current);
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "9"));
}
}
if ((0 == payload) || (8 == payload) || (10 == payload)) {
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS10_SENSOR "\":"));
MqttShowSensor();
ResponseJsonEnd();
if (8 == payload) {
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "8"));
} else {
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "10"));
}
}
if ((0 == payload) || (11 == payload)) {
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS11_STATUS "\":"));
MqttShowState();
ResponseJsonEnd();
MqttPublishPrefixTopic_P(option, PSTR(D_CMND_STATUS "11"));
}
}
void MqttShowPWMState(void)
{
ResponseAppend_P(PSTR("\"" D_CMND_PWM "\":{"));
bool first = true;
for (uint32_t i = 0; i < MAX_PWMS; i++) {
if (pin[GPIO_PWM1 + i] < 99) {
ResponseAppend_P(PSTR("%s\"" D_CMND_PWM "%d\":%d"), first ? "" : ",", i+1, Settings.pwm_value[i]);
first = false;
}
}
ResponseJsonEnd();
}
void MqttShowState(void)
{
char stemp1[33];
ResponseAppendTime();
ResponseAppend_P(PSTR(",\"" D_JSON_UPTIME "\":\"%s\",\"UptimeSec\":%u"), GetUptime().c_str(), UpTime());
#ifdef USE_ADC_VCC
dtostrfd((double)ESP.getVcc()/1000, 3, stemp1);
ResponseAppend_P(PSTR(",\"" D_JSON_VCC "\":%s"), stemp1);
#endif
ResponseAppend_P(PSTR(",\"" D_JSON_HEAPSIZE "\":%d,\"SleepMode\":\"%s\",\"Sleep\":%u,\"LoadAvg\":%u"),
ESP.getFreeHeap()/1024, GetTextIndexed(stemp1, sizeof(stemp1), Settings.flag3.sleep_normal, kSleepMode), sleep, loop_load_avg);
for (uint32_t i = 0; i < devices_present; i++) {
#ifdef USE_LIGHT
if (i == light_device -1) {
LightState(1);
} else {
#endif
ResponseAppend_P(PSTR(",\"%s\":\"%s\""), GetPowerDevice(stemp1, i +1, sizeof(stemp1), Settings.flag.device_index_enable), GetStateText(bitRead(power, i)));
if (IsModuleIfan()) {
ResponseAppend_P(PSTR(",\"" D_CMND_FANSPEED "\":%d"), GetFanspeed());
break;
}
#ifdef USE_LIGHT
}
#endif
}
if (pwm_present) {
ResponseAppend_P(PSTR(","));
MqttShowPWMState();
}
ResponseAppend_P(PSTR(",\"" D_JSON_WIFI "\":{\"" D_JSON_AP "\":%d,\"" D_JSON_SSID "\":\"%s\",\"" D_JSON_BSSID "\":\"%s\",\"" D_JSON_CHANNEL "\":%d,\"" D_JSON_RSSI "\":%d,\"" D_JSON_LINK_COUNT "\":%d,\"" D_JSON_DOWNTIME "\":\"%s\"}}"),
Settings.sta_active +1, Settings.sta_ssid[Settings.sta_active], WiFi.BSSIDstr().c_str(), WiFi.channel(), WifiGetRssiAsQuality(WiFi.RSSI()), WifiLinkCount(), WifiDowntime().c_str());
}
void MqttPublishTeleState(void)
{
mqtt_data[0] = '\0';
MqttShowState();
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), MQTT_TELE_RETAIN);
#ifdef USE_SCRIPT
RulesTeleperiod(); // Allow rule based HA messages
#endif // USE_SCRIPT
}
bool MqttShowSensor(void)
{
ResponseAppendTime();
int json_data_start = strlen(mqtt_data);
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
#ifdef USE_TM1638
if ((pin[GPIO_SWT1 +i] < 99) || ((pin[GPIO_TM16CLK] < 99) && (pin[GPIO_TM16DIO] < 99) && (pin[GPIO_TM16STB] < 99))) {
#else
if (pin[GPIO_SWT1 +i] < 99) {
#endif // USE_TM1638
bool swm = ((FOLLOW_INV == Settings.switchmode[i]) || (PUSHBUTTON_INV == Settings.switchmode[i]) || (PUSHBUTTONHOLD_INV == Settings.switchmode[i]));
ResponseAppend_P(PSTR(",\"" D_JSON_SWITCH "%d\":\"%s\""), i +1, GetStateText(swm ^ SwitchLastState(i)));
}
}
XsnsCall(FUNC_JSON_APPEND);
bool json_data_available = (strlen(mqtt_data) - json_data_start);
if (strstr_P(mqtt_data, PSTR(D_JSON_PRESSURE)) != nullptr) {
ResponseAppend_P(PSTR(",\"" D_JSON_PRESSURE_UNIT "\":\"%s\""), PressureUnit().c_str());
}
if (strstr_P(mqtt_data, PSTR(D_JSON_TEMPERATURE)) != nullptr) {
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE_UNIT "\":\"%c\""), TempUnit());
}
ResponseJsonEnd();
if (json_data_available) { XdrvCall(FUNC_SHOW_SENSOR); }
return json_data_available;
}
/********************************************************************************************/
void PerformEverySecond(void)
{
uptime++;
if (ntp_synced_message) {
// Moved here to fix syslog UDP exception 9 during RtcSecond
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("NTP: Drift %d, (" D_UTC_TIME ") %s, (" D_DST_TIME ") %s, (" D_STD_TIME ") %s"),
DriftTime(), GetTime(0).c_str(), GetTime(2).c_str(), GetTime(3).c_str());
ntp_synced_message = false;
}
if (BOOT_LOOP_TIME == uptime) {
RtcReboot.fast_reboot_count = 0;
RtcRebootSave();
Settings.bootcount++; // Moved to here to stop flash writes during start-up
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_BOOT_COUNT " %d"), Settings.bootcount);
}
if ((4 == uptime) && (SONOFF_IFAN02 == my_module_type)) { // Microcontroller needs 3 seconds before accepting commands
SetDevicePower(1, SRC_RETRY); // Sync with default power on state microcontroller being Light ON and Fan OFF
SetDevicePower(power, SRC_RETRY); // Set required power on state
}
if (seriallog_timer) {
seriallog_timer--;
if (!seriallog_timer) {
if (seriallog_level) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SERIAL_LOGGING_DISABLED));
}
seriallog_level = 0;
}
}
if (syslog_timer) { // Restore syslog level
syslog_timer--;
if (!syslog_timer) {
syslog_level = Settings.syslog_level;
if (Settings.syslog_level) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_LOGGING_REENABLED)); // Might trigger disable again (on purpose)
}
}
}
ResetGlobalValues();
if (Settings.tele_period) {
tele_period++;
if (tele_period == Settings.tele_period -1) {
XsnsCall(FUNC_PREP_BEFORE_TELEPERIOD);
}
if (tele_period >= Settings.tele_period) {
tele_period = 0;
MqttPublishTeleState();
mqtt_data[0] = '\0';
if (MqttShowSensor()) {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
#if defined(USE_RULES) || defined(USE_SCRIPT)
RulesTeleperiod(); // Allow rule based HA messages
#endif // USE_RULES
}
}
}
XdrvCall(FUNC_EVERY_SECOND);
XsnsCall(FUNC_EVERY_SECOND);
}
/*********************************************************************************************\
* State loops
\*********************************************************************************************/
/*-------------------------------------------------------------------------------------------*\
* Every 0.1 second
\*-------------------------------------------------------------------------------------------*/
void Every100mSeconds(void)
{
// As the max amount of sleep = 250 mSec this loop will shift in time...
power_t power_now;
if (latching_relay_pulse) {
latching_relay_pulse--;
if (!latching_relay_pulse) SetLatchingRelay(0, 0);
}
for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) {
if (pulse_timer[i] != 0L) { // Timer active?
if (TimeReached(pulse_timer[i])) { // Timer finished?
pulse_timer[i] = 0L; // Turn off this timer
ExecuteCommandPower(i +1, (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? POWER_ON : POWER_OFF, SRC_PULSETIMER);
}
}
}
if (blink_mask) {
if (TimeReached(blink_timer)) {
SetNextTimeInterval(blink_timer, 100 * Settings.blinktime);
blink_counter--;
if (!blink_counter) {
StopAllPowerBlink();
} else {
blink_power ^= 1;
power_now = (power & (POWER_MASK ^ blink_mask)) | ((blink_power) ? blink_mask : 0);
SetDevicePower(power_now, SRC_IGNORE);
}
}
}
// Backlog
if (TimeReached(backlog_delay)) {
if ((backlog_pointer != backlog_index) && !backlog_mutex) {
backlog_mutex = true;
ExecuteCommand((char*)backlog[backlog_pointer].c_str(), SRC_BACKLOG);
backlog_mutex = false;
backlog_pointer++;
if (backlog_pointer >= MAX_BACKLOG) { backlog_pointer = 0; }
}
}
if ((pin[GPIO_BUZZER] < 99) && (Settings.flag3.buzzer_enable)) {
if (buzzer_count) {
buzzer_count--;
uint8_t state = buzzer_count & 1;
digitalWrite(pin[GPIO_BUZZER], (buzzer_inverted) ? !state : state);
}
} else {
buzzer_count = 0;
}
}
/*-------------------------------------------------------------------------------------------*\
* Every 0.25 second
\*-------------------------------------------------------------------------------------------*/
void Every250mSeconds(void)
{
// As the max amount of sleep = 250 mSec this loop should always be taken...
uint8_t blinkinterval = 1;
state_250mS++;
state_250mS &= 0x3;
if (mqtt_cmnd_publish) mqtt_cmnd_publish--; // Clean up
if (!Settings.flag.global_state) { // Problem blinkyblinky enabled
if (global_state.data) { // Any problem
if (global_state.mqtt_down) { blinkinterval = 7; } // MQTT problem so blink every 2 seconds (slowest)
if (global_state.wifi_down) { blinkinterval = 3; } // Wifi problem so blink every second (slow)
blinks = 201; // Allow only a single blink in case the problem is solved
}
}
if (blinks || restart_flag || ota_state_flag) {
if (restart_flag || ota_state_flag) { // Overrule blinks and keep led lit
blinkstate = true; // Stay lit
} else {
blinkspeed--;
if (!blinkspeed) {
blinkspeed = blinkinterval; // Set interval to 0.2 (default), 1 or 2 seconds
blinkstate ^= 1; // Blink
}
}
if ((!(Settings.ledstate &0x08)) && ((Settings.ledstate &0x06) || (blinks > 200) || (blinkstate))) {
SetLedLink(blinkstate); // Set led on or off
}
if (!blinkstate) {
blinks--;
if (200 == blinks) blinks = 0; // Disable blink
}
}
else if (Settings.ledstate &1) {
bool tstate = power & Settings.ledmask;
if ((SONOFF_TOUCH == my_module_type) || (SONOFF_T11 == my_module_type) || (SONOFF_T12 == my_module_type) || (SONOFF_T13 == my_module_type)) {
tstate = (!power) ? 1 : 0; // As requested invert signal for Touch devices to find them in the dark
}
SetLedPower(tstate);
}
/*-------------------------------------------------------------------------------------------*\
* Every second at 0.25 second interval
\*-------------------------------------------------------------------------------------------*/
switch (state_250mS) {
case 0: // Every x.0 second
PerformEverySecond();
if (ota_state_flag && (backlog_pointer == backlog_index)) {
ota_state_flag--;
if (2 == ota_state_flag) {
ota_url = Settings.ota_url;
RtcSettings.ota_loader = 0; // Try requested image first
ota_retry_counter = OTA_ATTEMPTS;
ESPhttpUpdate.rebootOnUpdate(false);
SettingsSave(1); // Free flash for OTA update
}
if (ota_state_flag <= 0) {
#ifdef USE_WEBSERVER
if (Settings.webserver) StopWebserver();
#endif // USE_WEBSERVER
#ifdef USE_ARILUX_RF
AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine
#endif // USE_ARILUX_RF
ota_state_flag = 92;
ota_result = 0;
ota_retry_counter--;
if (ota_retry_counter) {
strlcpy(mqtt_data, GetOtaUrl(log_data, sizeof(log_data)), sizeof(mqtt_data));
#ifndef FIRMWARE_MINIMAL
if (RtcSettings.ota_loader) {
char *bch = strrchr(mqtt_data, '/'); // Only consider filename after last backslash prevent change of urls having "-" in it
char *pch = strrchr((bch != nullptr) ? bch : mqtt_data, '-'); // Change from filename-DE.bin into filename-minimal.bin
char *ech = strrchr((bch != nullptr) ? bch : mqtt_data, '.'); // Change from filename.bin into filename-minimal.bin
if (!pch) { pch = ech; }
if (pch) {
mqtt_data[pch - mqtt_data] = '\0';
char *ech = strrchr(Settings.ota_url, '.'); // Change from filename.bin into filename-minimal.bin
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s-" D_JSON_MINIMAL "%s"), mqtt_data, ech); // Minimal filename must be filename-minimal
}
}
#endif // FIRMWARE_MINIMAL
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_UPLOAD "%s"), mqtt_data);
#if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2)
ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(mqtt_data));
#else
// If using core stage or 2.5.0+ the syntax has changed
WiFiClient OTAclient;
ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(OTAclient, mqtt_data));
#endif
if (!ota_result) {
#ifndef FIRMWARE_MINIMAL
int ota_error = ESPhttpUpdate.getLastError();
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_UPLOAD "Ota error %d"), ota_error);
if ((HTTP_UE_TOO_LESS_SPACE == ota_error) || (HTTP_UE_BIN_FOR_WRONG_FLASH == ota_error)) {
RtcSettings.ota_loader = 1; // Try minimal image next
}
#endif // FIRMWARE_MINIMAL
ota_state_flag = 2; // Upgrade failed - retry
}
}
}
if (90 == ota_state_flag) { // Allow MQTT to reconnect
ota_state_flag = 0;
if (ota_result) {
// SetFlashModeDout(); // Force DOUT for both ESP8266 and ESP8285
Response_P(PSTR(D_JSON_SUCCESSFUL ". " D_JSON_RESTARTING));
} else {
Response_P(PSTR(D_JSON_FAILED " %s"), ESPhttpUpdate.getLastErrorString().c_str());
}
restart_flag = 2; // Restart anyway to keep memory clean webserver
MqttPublishPrefixTopic_P(STAT, PSTR(D_CMND_UPGRADE));
}
}
break;
case 1: // Every x.25 second
if (MidnightNow()) {
XsnsCall(FUNC_SAVE_AT_MIDNIGHT);
}
if (save_data_counter && (backlog_pointer == backlog_index)) {
save_data_counter--;
if (save_data_counter <= 0) {
if (Settings.flag.save_state) {
power_t mask = POWER_MASK;
for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) {
if ((Settings.pulse_timer[i] > 0) && (Settings.pulse_timer[i] < 30)) { // 3 seconds
mask &= ~(1 << i);
}
}
if (!((Settings.power &mask) == (power &mask))) {
Settings.power = power;
}
} else {
Settings.power = 0;
}
SettingsSave(0);
save_data_counter = Settings.save_data;
}
}
if (restart_flag && (backlog_pointer == backlog_index)) {
if ((214 == restart_flag) || (215 == restart_flag) || (216 == restart_flag)) {
char storage_wifi[sizeof(Settings.sta_ssid) +
sizeof(Settings.sta_pwd)];
char storage_mqtt[sizeof(Settings.mqtt_host) +
sizeof(Settings.mqtt_port) +
sizeof(Settings.mqtt_client) +
sizeof(Settings.mqtt_user) +
sizeof(Settings.mqtt_pwd) +
sizeof(Settings.mqtt_topic)];
memcpy(storage_wifi, Settings.sta_ssid, sizeof(storage_wifi)); // Backup current SSIDs and Passwords
if (216 == restart_flag) {
memcpy(storage_mqtt, Settings.mqtt_host, sizeof(storage_mqtt)); // Backup mqtt host, port, client, username and password
}
if ((215 == restart_flag) || (216 == restart_flag)) {
SettingsErase(0); // Erase all flash from program end to end of physical flash
}
SettingsDefault();
memcpy(Settings.sta_ssid, storage_wifi, sizeof(storage_wifi)); // Restore current SSIDs and Passwords
if (216 == restart_flag) {
memcpy(Settings.mqtt_host, storage_mqtt, sizeof(storage_mqtt)); // Restore the mqtt host, port, client, username and password
strlcpy(Settings.mqtt_client, MQTT_CLIENT_ID, sizeof(Settings.mqtt_client)); // Set client to default
}
restart_flag = 2;
}
else if (213 == restart_flag) {
SettingsSdkErase(); // Erase flash SDK parameters
restart_flag = 2;
}
else if (212 == restart_flag) {
SettingsErase(0); // Erase all flash from program end to end of physical flash
restart_flag = 211;
}
if (211 == restart_flag) {
SettingsDefault();
restart_flag = 2;
}
if (2 == restart_flag) {
SettingsSaveAll();
}
restart_flag--;
if (restart_flag <= 0) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_RESTARTING));
EspRestart();
}
}
break;
case 2: // Every x.5 second
WifiCheck(wifi_state_flag);
wifi_state_flag = WIFI_RESTART;
break;
case 3: // Every x.75 second
if (!global_state.wifi_down) { MqttCheck(); }
break;
}
}
#ifdef USE_ARDUINO_OTA
/*********************************************************************************************\
* Allow updating via the Arduino OTA-protocol.
*
* - Once started disables current wifi clients and udp
* - Perform restart when done to re-init wifi clients
\*********************************************************************************************/
bool arduino_ota_triggered = false;
uint16_t arduino_ota_progress_dot_count = 0;
void ArduinoOTAInit(void)
{
ArduinoOTA.setPort(8266);
ArduinoOTA.setHostname(my_hostname);
if (Settings.web_password[0] !=0) { ArduinoOTA.setPassword(Settings.web_password); }
ArduinoOTA.onStart([]()
{
SettingsSave(1); // Free flash for OTA update
#ifdef USE_WEBSERVER
if (Settings.webserver) { StopWebserver(); }
#endif // USE_WEBSERVER
#ifdef USE_ARILUX_RF
AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine
#endif // USE_ARILUX_RF
if (Settings.flag.mqtt_enabled) { MqttDisconnect(); }
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_UPLOAD_STARTED));
arduino_ota_triggered = true;
arduino_ota_progress_dot_count = 0;
delay(100); // Allow time for message xfer
});
ArduinoOTA.onProgress([](unsigned int progress, unsigned int total)
{
if ((LOG_LEVEL_DEBUG <= seriallog_level)) {
arduino_ota_progress_dot_count++;
Serial.printf(".");
if (!(arduino_ota_progress_dot_count % 80)) { Serial.println(); }
}
});
ArduinoOTA.onError([](ota_error_t error)
{
/*
From ArduinoOTA.h:
typedef enum { OTA_AUTH_ERROR, OTA_BEGIN_ERROR, OTA_CONNECT_ERROR, OTA_RECEIVE_ERROR, OTA_END_ERROR } ota_error_t;
*/
char error_str[100];
if ((LOG_LEVEL_DEBUG <= seriallog_level) && arduino_ota_progress_dot_count) { Serial.println(); }
switch (error) {
case OTA_BEGIN_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_2), sizeof(error_str)); break;
case OTA_RECEIVE_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_5), sizeof(error_str)); break;
case OTA_END_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_7), sizeof(error_str)); break;
default:
snprintf_P(error_str, sizeof(error_str), PSTR(D_UPLOAD_ERROR_CODE " %d"), error);
}
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA %s. " D_RESTARTING), error_str);
EspRestart();
});
ArduinoOTA.onEnd([]()
{
if ((LOG_LEVEL_DEBUG <= seriallog_level)) { Serial.println(); }
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_SUCCESSFUL ". " D_RESTARTING));
EspRestart();
});
ArduinoOTA.begin();
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_ENABLED " " D_PORT " 8266"));
}
#endif // USE_ARDUINO_OTA
/********************************************************************************************/
void SerialInput(void)
{
while (Serial.available()) {
// yield();
delay(0);
serial_in_byte = Serial.read();
/*-------------------------------------------------------------------------------------------*\
* Sonoff dual and ch4 19200 baud serial interface
\*-------------------------------------------------------------------------------------------*/
if ((SONOFF_DUAL == my_module_type) || (CH4 == my_module_type)) {
serial_in_byte = ButtonSerial(serial_in_byte);
}
/*-------------------------------------------------------------------------------------------*/
if (XdrvCall(FUNC_SERIAL)) {
serial_in_byte_counter = 0;
Serial.flush();
return;
}
/*-------------------------------------------------------------------------------------------*/
if (serial_in_byte > 127 && !Settings.flag.mqtt_serial_raw) { // Discard binary data above 127 if no raw reception allowed
serial_in_byte_counter = 0;
Serial.flush();
return;
}
if (!Settings.flag.mqtt_serial) { // SerialSend active
if (isprint(serial_in_byte)) { // Any char between 32 and 127
if (serial_in_byte_counter < INPUT_BUFFER_SIZE -1) { // Add char to string if it still fits
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
} else {
serial_in_byte_counter = 0;
}
}
} else {
if (serial_in_byte || Settings.flag.mqtt_serial_raw) { // Any char between 1 and 127 or any char (0 - 255)
if ((serial_in_byte_counter < INPUT_BUFFER_SIZE -1) && // Add char to string if it still fits and ...
((isprint(serial_in_byte) && (128 == Settings.serial_delimiter)) || // Any char between 32 and 127
((serial_in_byte != Settings.serial_delimiter) && (128 != Settings.serial_delimiter)) || // Any char between 1 and 127 and not being delimiter
Settings.flag.mqtt_serial_raw)) { // Any char between 0 and 255
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
serial_polling_window = millis();
} else {
serial_polling_window = 0; // Reception done - send mqtt
break;
}
}
}
/*-------------------------------------------------------------------------------------------*\
* Sonoff SC 19200 baud serial interface
\*-------------------------------------------------------------------------------------------*/
if (SONOFF_SC == my_module_type) {
if (serial_in_byte == '\x1B') { // Sonoff SC status from ATMEGA328P
serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed
SonoffScSerialInput(serial_in_buffer);
serial_in_byte_counter = 0;
Serial.flush();
return;
}
}
/*-------------------------------------------------------------------------------------------*/
else if (!Settings.flag.mqtt_serial && (serial_in_byte == '\n')) {
serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed
seriallog_level = (Settings.seriallog_level < LOG_LEVEL_INFO) ? (uint8_t)LOG_LEVEL_INFO : Settings.seriallog_level;
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_COMMAND "%s"), serial_in_buffer);
ExecuteCommand(serial_in_buffer, SRC_SERIAL);
serial_in_byte_counter = 0;
serial_polling_window = 0;
Serial.flush();
return;
}
}
if (Settings.flag.mqtt_serial && serial_in_byte_counter && (millis() > (serial_polling_window + SERIAL_POLLING))) {
serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed
if (!Settings.flag.mqtt_serial_raw) {
Response_P(PSTR("{\"" D_JSON_SERIALRECEIVED "\":\"%s\"}"), serial_in_buffer);
} else {
Response_P(PSTR("{\"" D_JSON_SERIALRECEIVED "\":\""));
for (uint32_t i = 0; i < serial_in_byte_counter; i++) {
ResponseAppend_P(PSTR("%02x"), serial_in_buffer[i]);
}
ResponseAppend_P(PSTR("\"}"));
}
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_SERIALRECEIVED));
XdrvRulesProcess();
serial_in_byte_counter = 0;
}
}
/********************************************************************************************/
void GpioInit(void)
{
uint8_t mpin;
if (!ValidModule(Settings.module)) {
uint8_t module = MODULE;
if (!ValidModule(MODULE)) { module = SONOFF_BASIC; }
Settings.module = module;
Settings.last_module = module;
}
SetModuleType();
if (Settings.module != Settings.last_module) {
baudrate = APP_BAUDRATE;
}
for (uint32_t i = 0; i < sizeof(Settings.user_template.gp); i++) {
if ((Settings.user_template.gp.io[i] >= GPIO_SENSOR_END) && (Settings.user_template.gp.io[i] < GPIO_USER)) {
Settings.user_template.gp.io[i] = GPIO_USER; // Fix not supported sensor ids in template
}
}
myio def_gp;
ModuleGpios(&def_gp);
for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) {
if ((Settings.my_gp.io[i] >= GPIO_SENSOR_END) && (Settings.my_gp.io[i] < GPIO_USER)) {
Settings.my_gp.io[i] = GPIO_NONE; // Fix not supported sensor ids in module
}
else if (Settings.my_gp.io[i] > GPIO_NONE) {
my_module.io[i] = Settings.my_gp.io[i]; // Set User selected Module sensors
}
if ((def_gp.io[i] > GPIO_NONE) && (def_gp.io[i] < GPIO_USER)) {
my_module.io[i] = def_gp.io[i]; // Force Template override
}
}
if ((Settings.my_adc0 >= ADC0_END) && (Settings.my_adc0 < ADC0_USER)) {
Settings.my_adc0 = ADC0_NONE; // Fix not supported sensor ids in module
}
else if (Settings.my_adc0 > ADC0_NONE) {
my_adc0 = Settings.my_adc0; // Set User selected Module sensors
}
my_module_flag = ModuleFlag();
uint8_t template_adc0 = my_module_flag.data &15;
if ((template_adc0 > ADC0_NONE) && (template_adc0 < ADC0_USER)) {
my_adc0 = template_adc0; // Force Template override
}
for (uint32_t i = 0; i < GPIO_MAX; i++) {
pin[i] = 99;
}
for (uint32_t i = 0; i < sizeof(my_module.io); i++) {
mpin = ValidPin(i, my_module.io[i]);
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("DBG: gpio pin %d, mpin %d"), i, mpin);
if (mpin) {
if ((mpin >= GPIO_SWT1_NP) && (mpin < (GPIO_SWT1_NP + MAX_SWITCHES))) {
SwitchPullupFlag(mpin - GPIO_SWT1_NP);
mpin -= (GPIO_SWT1_NP - GPIO_SWT1);
}
else if ((mpin >= GPIO_KEY1_NP) && (mpin < (GPIO_KEY1_NP + MAX_KEYS))) {
ButtonPullupFlag(mpin - GPIO_KEY1_NP); // 0 .. 3
mpin -= (GPIO_KEY1_NP - GPIO_KEY1);
}
else if ((mpin >= GPIO_KEY1_INV) && (mpin < (GPIO_KEY1_INV + MAX_KEYS))) {
ButtonInvertFlag(mpin - GPIO_KEY1_INV); // 0 .. 3
mpin -= (GPIO_KEY1_INV - GPIO_KEY1);
}
else if ((mpin >= GPIO_KEY1_INV_NP) && (mpin < (GPIO_KEY1_INV_NP + MAX_KEYS))) {
ButtonPullupFlag(mpin - GPIO_KEY1_INV_NP); // 0 .. 3
ButtonInvertFlag(mpin - GPIO_KEY1_INV_NP); // 0 .. 3
mpin -= (GPIO_KEY1_INV_NP - GPIO_KEY1);
}
else if ((mpin >= GPIO_REL1_INV) && (mpin < (GPIO_REL1_INV + MAX_RELAYS))) {
bitSet(rel_inverted, mpin - GPIO_REL1_INV);
mpin -= (GPIO_REL1_INV - GPIO_REL1);
}
else if ((mpin >= GPIO_LED1_INV) && (mpin < (GPIO_LED1_INV + MAX_LEDS))) {
bitSet(led_inverted, mpin - GPIO_LED1_INV);
mpin -= (GPIO_LED1_INV - GPIO_LED1);
}
else if (mpin == GPIO_LEDLNK_INV) {
ledlnk_inverted = 1;
mpin -= (GPIO_LEDLNK_INV - GPIO_LEDLNK);
}
else if (mpin == GPIO_BUZZER_INV) {
buzzer_inverted = 1;
mpin -= (GPIO_BUZZER_INV - GPIO_BUZZER);
}
else if ((mpin >= GPIO_PWM1_INV) && (mpin < (GPIO_PWM1_INV + MAX_PWMS))) {
bitSet(pwm_inverted, mpin - GPIO_PWM1_INV);
mpin -= (GPIO_PWM1_INV - GPIO_PWM1);
}
else if ((mpin >= GPIO_CNTR1_NP) && (mpin < (GPIO_CNTR1_NP + MAX_COUNTERS))) {
bitSet(counter_no_pullup, mpin - GPIO_CNTR1_NP);
mpin -= (GPIO_CNTR1_NP - GPIO_CNTR1);
}
#ifdef USE_DHT
else if ((mpin >= GPIO_DHT11) && (mpin <= GPIO_SI7021)) {
if (DhtSetup(i, mpin)) {
dht_flg = true;
mpin = GPIO_DHT11;
} else {
mpin = 0;
}
}
#endif // USE_DHT
}
if (mpin) pin[mpin] = i;
}
if ((2 == pin[GPIO_TXD]) || (H801 == my_module_type)) { Serial.set_tx(2); }
analogWriteRange(Settings.pwm_range); // Default is 1023 (Arduino.h)
analogWriteFreq(Settings.pwm_frequency); // Default is 1000 (core_esp8266_wiring_pwm.c)
#ifdef USE_SPI
spi_flg = ((((pin[GPIO_SPI_CS] < 99) && (pin[GPIO_SPI_CS] > 14)) || (pin[GPIO_SPI_CS] < 12)) || (((pin[GPIO_SPI_DC] < 99) && (pin[GPIO_SPI_DC] > 14)) || (pin[GPIO_SPI_DC] < 12)));
if (spi_flg) {
for (uint32_t i = 0; i < GPIO_MAX; i++) {
if ((pin[i] >= 12) && (pin[i] <=14)) pin[i] = 99;
}
my_module.io[12] = GPIO_SPI_MISO;
pin[GPIO_SPI_MISO] = 12;
my_module.io[13] = GPIO_SPI_MOSI;
pin[GPIO_SPI_MOSI] = 13;
my_module.io[14] = GPIO_SPI_CLK;
pin[GPIO_SPI_CLK] = 14;
}
soft_spi_flg = ((pin[GPIO_SSPI_CS] < 99) && (pin[GPIO_SSPI_SCLK] < 99) && ((pin[GPIO_SSPI_MOSI] < 99) || (pin[GPIO_SSPI_MOSI] < 99)));
#endif // USE_SPI
#ifdef USE_I2C
i2c_flg = ((pin[GPIO_I2C_SCL] < 99) && (pin[GPIO_I2C_SDA] < 99));
if (i2c_flg) { Wire.begin(pin[GPIO_I2C_SDA], pin[GPIO_I2C_SCL]); }
#endif // USE_I2C
devices_present = 1;
light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0
#ifdef USE_LIGHT
if (Settings.flag.pwm_control) {
for (uint32_t i = 0; i < MAX_PWMS; i++) {
if (pin[GPIO_PWM1 +i] < 99) { light_type++; } // Use Dimmer/Color control for all PWM as SetOption15 = 1
}
}
#endif // USE_LIGHT
if (SONOFF_BRIDGE == my_module_type) {
Settings.flag.mqtt_serial = 0;
baudrate = 19200;
}
if (XdrvCall(FUNC_MODULE_INIT)) {
// Serviced
}
else if (YTF_IR_BRIDGE == my_module_type) {
ClaimSerial(); // Stop serial loopback mode
}
else if (SONOFF_DUAL == my_module_type) {
Settings.flag.mqtt_serial = 0;
devices_present = 2;
baudrate = 19200;
}
else if (CH4 == my_module_type) {
Settings.flag.mqtt_serial = 0;
devices_present = 4;
baudrate = 19200;
}
else if (SONOFF_SC == my_module_type) {
Settings.flag.mqtt_serial = 0;
devices_present = 0;
baudrate = 19200;
}
#ifdef USE_LIGHT
else if (SONOFF_BN == my_module_type) { // PWM Single color led (White)
light_type = LT_PWM1;
}
else if (SONOFF_LED == my_module_type) { // PWM Dual color led (White warm and cold)
light_type = LT_PWM2;
}
else if (AILIGHT == my_module_type) { // RGBW led
light_type = LT_RGBW;
}
else if (SONOFF_B1 == my_module_type) { // RGBWC led
light_type = LT_RGBWC;
}
#endif // USE_LIGHT
else {
if (!light_type) { devices_present = 0; }
for (uint32_t i = 0; i < MAX_RELAYS; i++) {
if (pin[GPIO_REL1 +i] < 99) {
pinMode(pin[GPIO_REL1 +i], OUTPUT);
devices_present++;
if (EXS_RELAY == my_module_type) {
digitalWrite(pin[GPIO_REL1 +i], bitRead(rel_inverted, i) ? 1 : 0);
if (i &1) { devices_present--; }
}
}
}
}
for (uint32_t i = 0; i < MAX_LEDS; i++) {
if (pin[GPIO_LED1 +i] < 99) {
#ifdef USE_ARILUX_RF
if ((3 == i) && (leds_present < 2) && (99 == pin[GPIO_ARIRFSEL])) {
pin[GPIO_ARIRFSEL] = pin[GPIO_LED4]; // Legacy support where LED4 was Arilux RF enable
pin[GPIO_LED4] = 99;
} else {
#endif
pinMode(pin[GPIO_LED1 +i], OUTPUT);
leds_present++;
digitalWrite(pin[GPIO_LED1 +i], bitRead(led_inverted, i));
#ifdef USE_ARILUX_RF
}
#endif
}
}
if (pin[GPIO_LEDLNK] < 99) {
pinMode(pin[GPIO_LEDLNK], OUTPUT);
digitalWrite(pin[GPIO_LEDLNK], ledlnk_inverted);
}
if (pin[GPIO_BUZZER] < 99) {
pinMode(pin[GPIO_BUZZER], OUTPUT);
digitalWrite(pin[GPIO_BUZZER], buzzer_inverted); // Buzzer Off
}
ButtonInit();
SwitchInit();
#ifdef ROTARY_V1
RotaryInit();
#endif
#ifdef USE_LIGHT
#ifdef USE_WS2812
if (!light_type && (pin[GPIO_WS2812] < 99)) { // RGB led
devices_present++;
light_type = LT_WS2812;
}
#endif // USE_WS2812
#ifdef USE_SM16716
if (SM16716_ModuleSelected()) {
light_type += 3;
light_type |= LT_SM16716;
}
#endif // USE_SM16716
#endif // USE_LIGHT
if (!light_type) {
for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only
if (pin[GPIO_PWM1 +i] < 99) {
pwm_present = true;
pinMode(pin[GPIO_PWM1 +i], OUTPUT);
analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - Settings.pwm_value[i] : Settings.pwm_value[i]);
}
}
}
SetLedPower(Settings.ledstate &8);
SetLedLink(Settings.ledstate &8);
XdrvCall(FUNC_PRE_INIT);
}
extern "C" {
extern struct rst_info resetInfo;
}
void setup(void)
{
global_state.data = 3; // Init global state (wifi_down, mqtt_down) to solve possible network issues
RtcRebootLoad();
if (!RtcRebootValid()) { RtcReboot.fast_reboot_count = 0; }
RtcReboot.fast_reboot_count++;
RtcRebootSave();
Serial.begin(baudrate);
delay(10);
Serial.println();
seriallog_level = LOG_LEVEL_INFO; // Allow specific serial messages until config loaded
snprintf_P(my_version, sizeof(my_version), PSTR("%d.%d.%d"), VERSION >> 24 & 0xff, VERSION >> 16 & 0xff, VERSION >> 8 & 0xff); // Release version 6.3.0
if (VERSION & 0xff) { // Development or patched version 6.3.0.10
snprintf_P(my_version, sizeof(my_version), PSTR("%s.%d"), my_version, VERSION & 0xff);
}
char code_image[20];
snprintf_P(my_image, sizeof(my_image), PSTR("(%s)"), GetTextIndexed(code_image, sizeof(code_image), CODE_IMAGE, kCodeImage));
SettingsLoad();
SettingsDelta();
OsWatchInit();
GetFeatures();
if (1 == RtcReboot.fast_reboot_count) { // Allow setting override only when all is well
XdrvCall(FUNC_SETTINGS_OVERRIDE);
}
baudrate = Settings.baudrate * 1200;
// mdns_delayed_start = Settings.param[P_MDNS_DELAYED_START];
seriallog_level = Settings.seriallog_level;
seriallog_timer = SERIALLOG_TIMER;
syslog_level = Settings.syslog_level;
stop_flash_rotate = Settings.flag.stop_flash_rotate;
save_data_counter = Settings.save_data;
sleep = Settings.sleep;
#ifndef USE_EMULATION
Settings.flag2.emulation = 0;
#else
#ifndef USE_EMULATION_WEMO
if (EMUL_WEMO == Settings.flag2.emulation) { Settings.flag2.emulation = 0; }
#endif
#ifndef USE_EMULATION_HUE
if (EMUL_HUE == Settings.flag2.emulation) { Settings.flag2.emulation = 0; }
#endif
#endif // USE_EMULATION
if (Settings.param[P_BOOT_LOOP_OFFSET]) {
// Disable functionality as possible cause of fast restart within BOOT_LOOP_TIME seconds (Exception, WDT or restarts)
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET]) { // Restart twice
Settings.flag3.user_esp8285_enable = 0; // Disable ESP8285 Generic GPIOs interfering with flash SPI
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +1) { // Restart 3 times
for (uint32_t i = 0; i < MAX_RULE_SETS; i++) {
if (bitRead(Settings.rule_stop, i)) {
bitWrite(Settings.rule_enabled, i, 0); // Disable rules causing boot loop
}
}
}
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +2) { // Restarted 4 times
Settings.rule_enabled = 0; // Disable all rules
}
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +3) { // Restarted 5 times
for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) {
Settings.my_gp.io[i] = GPIO_NONE; // Reset user defined GPIO disabling sensors
}
Settings.my_adc0 = ADC0_NONE; // Reset user defined ADC0 disabling sensors
}
if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +4) { // Restarted 6 times
Settings.module = SONOFF_BASIC; // Reset module to Sonoff Basic
// Settings.last_module = SONOFF_BASIC;
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_LOG_SOME_SETTINGS_RESET " (%d)"), RtcReboot.fast_reboot_count);
}
}
Format(mqtt_client, Settings.mqtt_client, sizeof(mqtt_client));
Format(mqtt_topic, Settings.mqtt_topic, sizeof(mqtt_topic));
if (strstr(Settings.hostname, "%") != nullptr) {
strlcpy(Settings.hostname, WIFI_HOSTNAME, sizeof(Settings.hostname));
snprintf_P(my_hostname, sizeof(my_hostname)-1, Settings.hostname, mqtt_topic, ESP.getChipId() & 0x1FFF);
} else {
snprintf_P(my_hostname, sizeof(my_hostname)-1, Settings.hostname);
}
GpioInit();
SetSerialBaudrate(baudrate);
WifiConnect();
if (MOTOR == my_module_type) { Settings.poweronstate = POWER_ALL_ON; } // Needs always on else in limbo!
if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) {
SetDevicePower(1, SRC_RESTART);
} else {
if ((resetInfo.reason == REASON_DEFAULT_RST) || (resetInfo.reason == REASON_EXT_SYS_RST)) {
switch (Settings.poweronstate) {
case POWER_ALL_OFF:
case POWER_ALL_OFF_PULSETIME_ON:
power = 0;
SetDevicePower(power, SRC_RESTART);
break;
case POWER_ALL_ON: // All on
power = (1 << devices_present) -1;
SetDevicePower(power, SRC_RESTART);
break;
case POWER_ALL_SAVED_TOGGLE:
power = (Settings.power & ((1 << devices_present) -1)) ^ POWER_MASK;
if (Settings.flag.save_state) {
SetDevicePower(power, SRC_RESTART);
}
break;
case POWER_ALL_SAVED:
power = Settings.power & ((1 << devices_present) -1);
if (Settings.flag.save_state) {
SetDevicePower(power, SRC_RESTART);
}
break;
}
} else {
power = Settings.power & ((1 << devices_present) -1);
if (Settings.flag.save_state) {
SetDevicePower(power, SRC_RESTART);
}
}
}
// Issue #526 and #909
for (uint32_t i = 0; i < devices_present; i++) {
if (!Settings.flag3.no_power_feedback) { // #5594 and #5663
if ((i < MAX_RELAYS) && (pin[GPIO_REL1 +i] < 99)) {
bitWrite(power, i, digitalRead(pin[GPIO_REL1 +i]) ^ bitRead(rel_inverted, i));
}
}
if ((i < MAX_PULSETIMERS) && (bitRead(power, i) || (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate))) {
SetPulseTimer(i, Settings.pulse_timer[i]);
}
}
blink_powersave = power;
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_PROJECT " %s %s " D_VERSION " %s%s-" ARDUINO_ESP8266_RELEASE), PROJECT, Settings.friendlyname[0], my_version, my_image);
#ifdef FIRMWARE_MINIMAL
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_WARNING_MINIMAL_VERSION));
#endif // FIRMWARE_MINIMAL
RtcInit();
#ifdef USE_ARDUINO_OTA
ArduinoOTAInit();
#endif // USE_ARDUINO_OTA
XdrvCall(FUNC_INIT);
XsnsCall(FUNC_INIT);
}
uint32_t _counter = 0;
void loop(void)
{
uint32_t my_sleep = millis();
XdrvCall(FUNC_LOOP);
XsnsCall(FUNC_LOOP);
OsWatchLoop();
ButtonLoop();
SwitchLoop();
#ifdef ROTARY_V1
RotaryLoop();
#endif
if (TimeReached(state_50msecond)) {
SetNextTimeInterval(state_50msecond, 50);
XdrvCall(FUNC_EVERY_50_MSECOND);
XsnsCall(FUNC_EVERY_50_MSECOND);
}
if (TimeReached(state_100msecond)) {
SetNextTimeInterval(state_100msecond, 100);
Every100mSeconds();
XdrvCall(FUNC_EVERY_100_MSECOND);
XsnsCall(FUNC_EVERY_100_MSECOND);
}
if (TimeReached(state_250msecond)) {
SetNextTimeInterval(state_250msecond, 250);
Every250mSeconds();
XdrvCall(FUNC_EVERY_250_MSECOND);
XsnsCall(FUNC_EVERY_250_MSECOND);
}
if (!serial_local) { SerialInput(); }
#ifdef USE_ARDUINO_OTA
MDNS.update();
ArduinoOTA.handle();
// Once OTA is triggered, only handle that and dont do other stuff. (otherwise it fails)
while (arduino_ota_triggered) ArduinoOTA.handle();
#endif // USE_ARDUINO_OTA
uint32_t my_activity = millis() - my_sleep;
if (Settings.flag3.sleep_normal) {
// yield(); // yield == delay(0), delay contains yield, auto yield in loop
delay(sleep); // https://github.com/esp8266/Arduino/issues/2021
} else {
if (my_activity < (uint32_t)sleep) {
delay((uint32_t)sleep - my_activity); // Provide time for background tasks like wifi
} else {
if (global_state.wifi_down) {
delay(my_activity /2); // If wifi down and my_activity > setoption36 then force loop delay to 1/3 of my_activity period
}
}
}
if (!my_activity) { my_activity++; } // We cannot divide by 0
uint32_t loop_delay = sleep;
if (!loop_delay) { loop_delay++; } // We cannot divide by 0
uint32_t loops_per_second = 1000 / loop_delay; // We need to keep track of this many loops per second
uint32_t this_cycle_ratio = 100 * my_activity / loop_delay;
loop_load_avg = loop_load_avg - (loop_load_avg / loops_per_second) + (this_cycle_ratio / loops_per_second); // Take away one loop average away and add the new one
}