Tasmota/lib/IRremoteESP8266-2.6.5/src/ir_Sharp.cpp

558 lines
19 KiB
C++
Executable File

// Copyright 2009 Ken Shirriff
// Copyright 2017, 2019 David Conran
// Sharp remote emulation
#include "ir_Sharp.h"
#include <algorithm>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRsend.h"
#include "IRutils.h"
// Equipment it seems compatible with:
// * Sharp LC-52D62U
// * <Add models (devices & remotes) you've gotten it working with here>
//
// Constants
// period time = 1/38000Hz = 26.316 microseconds.
// Ref:
// GlobalCache's IR Control Tower data.
// http://www.sbprojects.com/knowledge/ir/sharp.php
const uint16_t kSharpTick = 26;
const uint16_t kSharpBitMarkTicks = 10;
const uint16_t kSharpBitMark = kSharpBitMarkTicks * kSharpTick;
const uint16_t kSharpOneSpaceTicks = 70;
const uint16_t kSharpOneSpace = kSharpOneSpaceTicks * kSharpTick;
const uint16_t kSharpZeroSpaceTicks = 30;
const uint16_t kSharpZeroSpace = kSharpZeroSpaceTicks * kSharpTick;
const uint16_t kSharpGapTicks = 1677;
const uint16_t kSharpGap = kSharpGapTicks * kSharpTick;
// Address(5) + Command(8) + Expansion(1) + Check(1)
const uint64_t kSharpToggleMask =
((uint64_t)1 << (kSharpBits - kSharpAddressBits)) - 1;
const uint64_t kSharpAddressMask = ((uint64_t)1 << kSharpAddressBits) - 1;
const uint64_t kSharpCommandMask = ((uint64_t)1 << kSharpCommandBits) - 1;
using irutils::addBoolToString;
using irutils::addFanToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addTempToString;
#if (SEND_SHARP || SEND_DENON)
// Send a (raw) Sharp message
//
// Args:
// data: Contents of the message to be sent.
// nbits: Nr. of bits of data to be sent. Typically kSharpBits.
// repeat: Nr. of additional times the message is to be sent.
//
// Status: BETA / Previously working fine.
//
// Notes:
// This procedure handles the inversion of bits required per protocol.
// The protocol spec says to send the LSB first, but legacy code & usage
// has us sending the MSB first. Grrrr. Normal invocation of encodeSharp()
// handles this for you, assuming you are using the correct/standard values.
// e.g. sendSharpRaw(encodeSharp(address, command));
//
// Ref:
// http://www.sbprojects.com/knowledge/ir/sharp.htm
// http://lirc.sourceforge.net/remotes/sharp/GA538WJSA
// http://www.mwftr.com/ucF08/LEC14%20PIC%20IR.pdf
// http://www.hifi-remote.com/johnsfine/DecodeIR.html#Sharp
void IRsend::sendSharpRaw(const uint64_t data, const uint16_t nbits,
const uint16_t repeat) {
uint64_t tempdata = data;
for (uint16_t i = 0; i <= repeat; i++) {
// Protocol demands that the data be sent twice; once normally,
// then with all but the address bits inverted.
// Note: Previously this used to be performed 3 times (normal, inverted,
// normal), however all data points to that being incorrect.
for (uint8_t n = 0; n < 2; n++) {
sendGeneric(0, 0, // No Header
kSharpBitMark, kSharpOneSpace, kSharpBitMark, kSharpZeroSpace,
kSharpBitMark, kSharpGap, tempdata, nbits, 38, true,
0, // Repeats are handled already.
33);
// Invert the data per protocol. This is always called twice, so it's
// retured to original upon exiting the inner loop.
tempdata ^= kSharpToggleMask;
}
}
}
// Encode a (raw) Sharp message from it's components.
//
// Args:
// address: The value of the address to be sent.
// command: The value of the address to be sent. (8 bits)
// expansion: The value of the expansion bit to use. (0 or 1, typically 1)
// check: The value of the check bit to use. (0 or 1, typically 0)
// MSBfirst: Flag indicating MSB first or LSB first order. (Default: false)
// Returns:
// An uint32_t containing the raw Sharp message for sendSharpRaw().
//
// Status: BETA / Should work okay.
//
// Notes:
// Assumes the standard Sharp bit sizes.
// Historically sendSharp() sends address & command in
// MSB first order. This is actually incorrect. It should be sent in LSB
// order. The behaviour of sendSharp() hasn't been changed to maintain
// backward compatibility.
//
// Ref:
// http://www.sbprojects.com/knowledge/ir/sharp.htm
// http://lirc.sourceforge.net/remotes/sharp/GA538WJSA
// http://www.mwftr.com/ucF08/LEC14%20PIC%20IR.pdf
uint32_t IRsend::encodeSharp(const uint16_t address, const uint16_t command,
const uint16_t expansion, const uint16_t check,
const bool MSBfirst) {
// Mask any unexpected bits.
uint16_t tempaddress = address & ((1 << kSharpAddressBits) - 1);
uint16_t tempcommand = command & ((1 << kSharpCommandBits) - 1);
uint16_t tempexpansion = expansion & 1;
uint16_t tempcheck = check & 1;
if (!MSBfirst) { // Correct bit order if needed.
tempaddress = reverseBits(tempaddress, kSharpAddressBits);
tempcommand = reverseBits(tempcommand, kSharpCommandBits);
}
// Concatinate all the bits.
return (tempaddress << (kSharpCommandBits + 2)) | (tempcommand << 2) |
(tempexpansion << 1) | tempcheck;
}
// Send a Sharp message
//
// Args:
// address: Address value to be sent.
// command: Command value to be sent.
// nbits: Nr. of bits of data to be sent. Typically kSharpBits.
// repeat: Nr. of additional times the message is to be sent.
//
// Status: DEPRICATED / Previously working fine.
//
// Notes:
// This procedure has a non-standard invocation style compared to similar
// sendProtocol() routines. This is due to legacy, compatibility, & historic
// reasons. Normally the calling syntax version is like sendSharpRaw().
// This procedure transmits the address & command in MSB first order, which is
// incorrect. This behaviour is left as-is to maintain backward
// compatibility with legacy code.
// In short, you should use sendSharpRaw(), encodeSharp(), and the correct
// values of address & command instead of using this, & the wrong values.
//
// Ref:
// http://www.sbprojects.com/knowledge/ir/sharp.htm
// http://lirc.sourceforge.net/remotes/sharp/GA538WJSA
// http://www.mwftr.com/ucF08/LEC14%20PIC%20IR.pdf
void IRsend::sendSharp(const uint16_t address, uint16_t const command,
const uint16_t nbits, const uint16_t repeat) {
sendSharpRaw(encodeSharp(address, command, 1, 0, true), nbits, repeat);
}
#endif // (SEND_SHARP || SEND_DENON)
#if (DECODE_SHARP || DECODE_DENON)
// Decode the supplied Sharp message.
//
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// nbits: Nr. of data bits to expect. Typically kSharpBits.
// strict: Flag indicating if we should perform strict matching.
// expansion: Should we expect the expansion bit to be set. Default is true.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: STABLE / Working fine.
//
// Note:
// This procedure returns a value suitable for use in sendSharpRaw().
// TODO(crankyoldgit): Need to ensure capture of the inverted message as it can
// be missed due to the interrupt timeout used to detect an end of message.
// Several compliance checks are disabled until that is resolved.
// Ref:
// http://www.sbprojects.com/knowledge/ir/sharp.php
// http://www.mwftr.com/ucF08/LEC14%20PIC%20IR.pdf
// http://www.hifi-remote.com/johnsfine/DecodeIR.html#Sharp
bool IRrecv::decodeSharp(decode_results *results, const uint16_t nbits,
const bool strict, const bool expansion) {
if (results->rawlen < 2 * nbits + kFooter - 1)
return false; // Not enough entries to be a Sharp message.
// Compliance
if (strict) {
if (nbits != kSharpBits) return false; // Request is out of spec.
// DISABLED - See TODO
#ifdef UNIT_TEST
// An in spec message has the data sent normally, then inverted. So we
// expect twice as many entries than to just get the results.
if (results->rawlen < 2 * (2 * nbits + kFooter)) return false;
#endif
}
uint64_t data = 0;
uint16_t offset = kStartOffset;
// Match Data + Footer
uint16_t used;
used = matchGeneric(results->rawbuf + offset, &data,
results->rawlen - offset, nbits,
0, 0, // No Header
kSharpBitMark, kSharpOneSpace,
kSharpBitMark, kSharpZeroSpace,
kSharpBitMark, kSharpGap, true, 35);
if (!used) return false;
offset += used;
// Compliance
if (strict) {
// Check the state of the expansion bit is what we expect.
if ((data & 0b10) >> 1 != expansion) return false;
// The check bit should be cleared in a normal message.
if (data & 0b1) return false;
// DISABLED - See TODO
#ifdef UNIT_TEST
// Grab the second copy of the data (i.e. inverted)
uint64_t second_data = 0;
// Match Data + Footer
if (!matchGeneric(results->rawbuf + offset, &second_data,
results->rawlen - offset, nbits,
0, 0,
kSharpBitMark, kSharpOneSpace,
kSharpBitMark, kSharpZeroSpace,
kSharpBitMark, kSharpGap, true, 35)) return false;
// Check that second_data has been inverted correctly.
if (data != (second_data ^ kSharpToggleMask)) return false;
#endif // UNIT_TEST
}
// Success
results->decode_type = SHARP;
results->bits = nbits;
results->value = data;
// Address & command are actually transmitted in LSB first order.
results->address = reverseBits(data, nbits) & kSharpAddressMask;
results->command =
reverseBits((data >> 2) & kSharpCommandMask, kSharpCommandBits);
return true;
}
#endif // (DECODE_SHARP || DECODE_DENON)
#if SEND_SHARP_AC
// Send a Sharp A/C message.
//
// Args:
// data: An array of kSharpAcStateLength bytes containing the IR command.
// nbytes: Nr. of bytes of data to send. i.e. length of `data`.
// repeat: Nr. of times the message should be repeated.
//
// Status: Alpha / Untested.
//
// Ref:
// https://github.com/crankyoldgit/IRremoteESP8266/issues/638
// https://github.com/ToniA/arduino-heatpumpir/blob/master/SharpHeatpumpIR.cpp
void IRsend::sendSharpAc(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat) {
if (nbytes < kSharpAcStateLength)
return; // Not enough bytes to send a proper message.
sendGeneric(kSharpAcHdrMark, kSharpAcHdrSpace,
kSharpAcBitMark, kSharpAcOneSpace,
kSharpAcBitMark, kSharpAcZeroSpace,
kSharpAcBitMark, kSharpAcGap,
data, nbytes, 38000, false, repeat, 50);
}
#endif // SEND_SHARP_AC
IRSharpAc::IRSharpAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { this->stateReset(); }
void IRSharpAc::begin(void) { _irsend.begin(); }
#if SEND_SHARP_AC
void IRSharpAc::send(const uint16_t repeat) {
this->checksum();
_irsend.sendSharpAc(remote, kSharpAcStateLength, repeat);
}
#endif // SEND_SHARP_AC
// Calculate the checksum for a given state.
// Args:
// state: The array to verify the checksums of.
// length: The size of the state.
// Returns:
// The 4 bit checksum.
uint8_t IRSharpAc::calcChecksum(uint8_t state[], const uint16_t length) {
uint8_t xorsum = xorBytes(state, length - 1);
xorsum ^= (state[length - 1] & 0xF);
xorsum ^= xorsum >> 4;
return xorsum & 0xF;
}
// Verify the checksums are valid for a given state.
// Args:
// state: The array to verify the checksums of.
// length: The size of the state.
// Returns:
// A boolean.
bool IRSharpAc::validChecksum(uint8_t state[], const uint16_t length) {
return (state[length - 1] >> 4) == IRSharpAc::calcChecksum(state, length);
}
// Calculate and set the checksum values for the internal state.
void IRSharpAc::checksum(void) {
remote[kSharpAcStateLength - 1] &= 0x0F;
remote[kSharpAcStateLength - 1] |= this->calcChecksum(remote) << 4;
}
void IRSharpAc::stateReset(void) {
static const uint8_t reset[kSharpAcStateLength] = {
0xAA, 0x5A, 0xCF, 0x10, 0x00, 0x01, 0x00, 0x00, 0x08, 0x80, 0x00, 0xE0,
0x01};
for (uint8_t i = 0; i < kSharpAcStateLength; i++) remote[i] = reset[i];
}
uint8_t *IRSharpAc::getRaw(void) {
this->checksum(); // Ensure correct settings before sending.
return remote;
}
void IRSharpAc::setRaw(const uint8_t new_code[], const uint16_t length) {
for (uint8_t i = 0; i < length && i < kSharpAcStateLength; i++)
remote[i] = new_code[i];
}
void IRSharpAc::on(void) { remote[kSharpAcBytePower] |= kSharpAcBitPower; }
void IRSharpAc::off(void) { remote[kSharpAcBytePower] &= ~kSharpAcBitPower; }
void IRSharpAc::setPower(const bool on) {
if (on)
this->on();
else
this->off();
}
bool IRSharpAc::getPower(void) {
return remote[kSharpAcBytePower] & kSharpAcBitPower;
}
// Set the temp in deg C
void IRSharpAc::setTemp(const uint8_t temp) {
switch (this->getMode()) {
// Auto & Dry don't allow temp changes and have a special temp.
case kSharpAcAuto:
case kSharpAcDry:
remote[kSharpAcByteTemp] = 0;
remote[kSharpAcByteManual] = 0; // When in Dry/Auto this byte is 0.
return;
default:
remote[kSharpAcByteTemp] = 0xC0;
remote[kSharpAcByteManual] |= kSharpAcBitTempManual;
}
uint8_t degrees = std::max(temp, kSharpAcMinTemp);
degrees = std::min(degrees, kSharpAcMaxTemp);
remote[kSharpAcByteTemp] &= ~kSharpAcMaskTemp;
remote[kSharpAcByteTemp] |= (degrees - kSharpAcMinTemp);
}
uint8_t IRSharpAc::getTemp(void) {
return (remote[kSharpAcByteTemp] & kSharpAcMaskTemp) + kSharpAcMinTemp;
}
uint8_t IRSharpAc::getMode(void) {
return remote[kSharpAcByteMode] & kSharpAcMaskMode;
}
void IRSharpAc::setMode(const uint8_t mode) {
const uint8_t special = 0x20; // Non-auto modes have this bit set.
remote[kSharpAcBytePower] |= special;
switch (mode) {
case kSharpAcAuto:
remote[kSharpAcBytePower] &= ~special; // Auto has this bit cleared.
// FALLTHRU
case kSharpAcDry:
this->setTemp(0); // Dry/Auto have no temp setting.
// FALLTHRU
case kSharpAcCool:
case kSharpAcHeat:
remote[kSharpAcByteMode] &= ~kSharpAcMaskMode;
remote[kSharpAcByteMode] |= mode;
break;
default:
this->setMode(kSharpAcAuto);
}
}
// Set the speed of the fan
void IRSharpAc::setFan(const uint8_t speed) {
remote[kSharpAcByteManual] |= kSharpAcBitFanManual; // Manual fan mode.
switch (speed) {
case kSharpAcFanAuto:
// Clear the manual fan bit.
remote[kSharpAcByteManual] &= ~kSharpAcBitFanManual;
// FALLTHRU
case kSharpAcFanMin:
case kSharpAcFanMed:
case kSharpAcFanHigh:
case kSharpAcFanMax:
remote[kSharpAcByteFan] &= ~kSharpAcMaskFan;
remote[kSharpAcByteFan] |= (speed << 4);
break;
default:
this->setFan(kSharpAcFanAuto);
}
}
uint8_t IRSharpAc::getFan(void) {
return (remote[kSharpAcByteFan] & kSharpAcMaskFan) >> 4;
}
// Convert a standard A/C mode into its native mode.
uint8_t IRSharpAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool:
return kSharpAcCool;
case stdAc::opmode_t::kHeat:
return kSharpAcHeat;
case stdAc::opmode_t::kDry:
return kSharpAcDry;
// No Fan mode.
default:
return kSharpAcAuto;
}
}
// Convert a standard A/C Fan speed into its native fan speed.
uint8_t IRSharpAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow:
return kSharpAcFanMin;
case stdAc::fanspeed_t::kMedium:
return kSharpAcFanMed;
case stdAc::fanspeed_t::kHigh:
return kSharpAcFanHigh;
case stdAc::fanspeed_t::kMax:
return kSharpAcFanMax;
default:
return kSharpAcFanAuto;
}
}
// Convert a native mode to it's common equivalent.
stdAc::opmode_t IRSharpAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kSharpAcCool: return stdAc::opmode_t::kCool;
case kSharpAcHeat: return stdAc::opmode_t::kHeat;
case kSharpAcDry: return stdAc::opmode_t::kDry;
default: return stdAc::opmode_t::kAuto;
}
}
// Convert a native fan speed to it's common equivalent.
stdAc::fanspeed_t IRSharpAc::toCommonFanSpeed(const uint8_t speed) {
switch (speed) {
case kSharpAcFanMax: return stdAc::fanspeed_t::kMax;
case kSharpAcFanHigh: return stdAc::fanspeed_t::kHigh;
case kSharpAcFanMed: return stdAc::fanspeed_t::kMedium;
case kSharpAcFanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
// Convert the A/C state to it's common equivalent.
stdAc::state_t IRSharpAc::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::SHARP_AC;
result.model = -1; // Not supported.
result.power = this->getPower();
result.mode = this->toCommonMode(this->getMode());
result.celsius = true;
result.degrees = this->getTemp();
result.fanspeed = this->toCommonFanSpeed(this->getFan());
// Not supported.
result.swingv = stdAc::swingv_t::kOff;
result.swingh = stdAc::swingh_t::kOff;
result.quiet = false;
result.turbo = false;
result.clean = false;
result.beep = false;
result.econo = false;
result.filter = false;
result.light = false;
result.sleep = -1;
result.clock = -1;
return result;
}
// Convert the internal state into a human readable string.
String IRSharpAc::toString(void) {
String result = "";
result.reserve(60); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(getPower(), F("Power"), false);
result += addModeToString(getMode(), kSharpAcAuto, kSharpAcCool, kSharpAcHeat,
kSharpAcDry, kSharpAcAuto);
result += addTempToString(getTemp());
result += addFanToString(getFan(), kSharpAcFanMax, kSharpAcFanMin,
kSharpAcFanAuto, kSharpAcFanAuto, kSharpAcFanMed);
return result;
}
#if DECODE_SHARP_AC
// Decode the supplied Sharp A/C message.
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// nbits: Nr. of bits to expect in the data portion. (kSharpAcBits)
// strict: Flag to indicate if we strictly adhere to the specification.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: BETA / Should be working.
//
// Ref:
// https://github.com/crankyoldgit/IRremoteESP8266/issues/638
// https://github.com/ToniA/arduino-heatpumpir/blob/master/SharpHeatpumpIR.cpp
bool IRrecv::decodeSharpAc(decode_results *results, const uint16_t nbits,
const bool strict) {
// Is there enough data to match successfully?
if (results->rawlen < 2 * nbits + kHeader + kFooter - 1)
return false;
// Compliance
if (strict && nbits != kSharpAcBits) return false;
uint16_t offset = kStartOffset;
// Match Header + Data + Footer
uint16_t used;
used = matchGeneric(results->rawbuf + offset, results->state,
results->rawlen - offset, nbits,
kSharpAcHdrMark, kSharpAcHdrSpace,
kSharpAcBitMark, kSharpAcOneSpace,
kSharpAcBitMark, kSharpAcZeroSpace,
kSharpAcBitMark, kSharpAcGap, true,
_tolerance, kMarkExcess, false);
if (used == 0) return false;
offset += used;
// Compliance
if (strict) {
if (!IRSharpAc::validChecksum(results->state)) return false;
}
// Success
results->decode_type = SHARP_AC;
results->bits = nbits;
// No need to record the state as we stored it as we decoded it.
// As we use result->state, we don't record value, address, or command as it
// is a union data type.
return true;
}
#endif // DECODE_SHARP_AC