Tasmota/lib/IRremoteESP8266-2.6.4/test/IRsend_test.h

156 lines
4.0 KiB
C++

// Copyright 2017 David Conran
#ifndef TEST_IRSEND_TEST_H_
#define TEST_IRSEND_TEST_H_
#define __STDC_LIMIT_MACROS
#include <stdint.h>
#include <iostream>
#include <sstream>
#include <string>
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtimer.h"
#define OUTPUT_BUF 10000U
#define RAW_BUF 10000U
#ifdef UNIT_TEST
// Used to help simulate elapsed time in unit tests.
extern uint32_t _IRtimer_unittest_now;
#endif // UNIT_TEST
class IRsendTest : public IRsend {
public:
uint32_t output[OUTPUT_BUF];
uint32_t freq[OUTPUT_BUF];
uint8_t duty[OUTPUT_BUF];
uint16_t last;
uint16_t rawbuf[RAW_BUF];
decode_results capture;
explicit IRsendTest(uint16_t x, bool i = false, bool j = true)
: IRsend(x, i, j) {
reset();
}
void reset() {
last = 0;
for (uint16_t i = 0; i < OUTPUT_BUF; i++) output[i] = 0;
for (uint16_t i = 0; i < RAW_BUF; i++) rawbuf[i] = 0;
}
std::string outputStr() {
std::stringstream result;
uint8_t lastduty = UINT8_MAX; // An impossible duty cycle value.
uint32_t lastfreq = 0; // An impossible frequency value.
if (last == 0 && output[0] == 0) return "";
for (uint16_t i = 0; i <= last; i++) {
// Display the frequency only if it changes.
if (freq[i] != lastfreq) {
result << "f";
result << freq[i];
lastfreq = freq[i];
}
// Display the duty cycle only if it changes.
if (duty[i] != lastduty) {
result << "d";
result << static_cast<uint16_t>(duty[i]);
lastduty = duty[i];
}
if ((i & 1) != outputOff) // Odd XOR outputOff
result << "s";
else
result << "m";
result << output[i];
}
reset();
return result.str();
}
void makeDecodeResult(uint16_t offset = 0) {
capture.decode_type = UNKNOWN;
capture.bits = 0;
capture.rawlen = last + 2 - offset;
capture.overflow = (last - offset >= (int16_t)RAW_BUF);
capture.repeat = false;
capture.address = 0;
capture.command = 0;
capture.value = 0;
capture.rawbuf = rawbuf;
for (uint16_t i = 0; (i < RAW_BUF - 1) && (offset < OUTPUT_BUF);
i++, offset++)
if (output[offset] / kRawTick > UINT16_MAX)
rawbuf[i + 1] = UINT16_MAX;
else
rawbuf[i + 1] = output[offset] / kRawTick;
}
void dumpRawResult() {
std::cout << std::dec;
if (capture.rawlen == 0) return;
std::cout << "uint16_t rawbuf[" << capture.rawlen - 1 << "] = {";
for (uint16_t i = 1; i < capture.rawlen; i++) {
if (i % 8 == 1) std::cout << std::endl << " ";
std::cout << (capture.rawbuf[i] * kRawTick);
// std::cout << "(" << capture.rawbuf[i] << ")";
if (i < capture.rawlen - 1) std::cout << ", ";
}
std::cout << "};" << std::endl;
}
void addGap(uint32_t usecs) { space(usecs); }
uint16_t mark(uint16_t usec) {
IRtimer::add(usec);
if (last >= OUTPUT_BUF) return 0;
if (last & 1) // Is odd? (i.e. last call was a space())
output[++last] = usec;
else
output[last] += usec;
duty[last] = _dutycycle;
freq[last] = _freq_unittest;
return 0;
}
void space(uint32_t time) {
IRtimer::add(time);
if (last >= OUTPUT_BUF) return;
if (last & 1) { // Is odd? (i.e. last call was a space())
output[last] += time;
} else {
output[++last] = time;
}
duty[last] = _dutycycle;
freq[last] = _freq_unittest;
}
};
#ifdef UNIT_TEST
class IRsendLowLevelTest : public IRsend {
public:
std::string low_level_sequence;
explicit IRsendLowLevelTest(uint16_t x, bool i = false, bool j = true)
: IRsend(x, i, j) {
reset();
}
void reset() { low_level_sequence = ""; }
protected:
void _delayMicroseconds(uint32_t usec) {
_IRtimer_unittest_now += usec;
std::ostringstream Convert;
Convert << usec;
low_level_sequence += Convert.str() + "usecs";
}
void ledOff() { low_level_sequence += "[Off]"; }
void ledOn() { low_level_sequence += "[On]"; }
};
#endif // UNIT_TEST
#endif // TEST_IRSEND_TEST_H_