mirror of https://github.com/arendst/Tasmota.git
615 lines
22 KiB
C++
615 lines
22 KiB
C++
/*
|
|
esp8266_waveform - General purpose waveform generation and control,
|
|
supporting outputs on all pins in parallel.
|
|
|
|
Copyright (c) 2018 Earle F. Philhower, III. All rights reserved.
|
|
|
|
The core idea is to have a programmable waveform generator with a unique
|
|
high and low period (defined in microseconds or CPU clock cycles). TIMER1
|
|
is set to 1-shot mode and is always loaded with the time until the next
|
|
edge of any live waveforms.
|
|
|
|
Up to one waveform generator per pin supported.
|
|
|
|
Each waveform generator is synchronized to the ESP clock cycle counter, not
|
|
the timer. This allows for removing interrupt jitter and delay as the
|
|
counter always increments once per 80MHz clock. Changes to a waveform are
|
|
contiguous and only take effect on the next waveform transition,
|
|
allowing for smooth transitions.
|
|
|
|
This replaces older tone(), analogWrite(), and the Servo classes.
|
|
|
|
Everywhere in the code where "cycles" is used, it means ESP.getCycleCount()
|
|
clock cycle count, or an interval measured in CPU clock cycles, but not
|
|
TIMER1 cycles (which may be 2 CPU clock cycles @ 160MHz).
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifdef ESP8266
|
|
|
|
#include <Arduino.h>
|
|
#include "ets_sys.h"
|
|
#include "core_esp8266_waveform.h"
|
|
#include "user_interface.h"
|
|
extern "C" {
|
|
|
|
// Internal-only calls, not for applications
|
|
extern void _setPWMFreq(uint32_t freq);
|
|
extern bool _stopPWM(int pin);
|
|
extern bool _setPWM(int pin, uint32_t val, uint32_t range);
|
|
extern int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles);
|
|
|
|
// Maximum delay between IRQs
|
|
#define MAXIRQUS (10000)
|
|
|
|
// Waveform generator can create tones, PWM, and servos
|
|
typedef struct {
|
|
uint32_t nextServiceCycle; // ESP cycle timer when a transition required
|
|
uint32_t expiryCycle; // For time-limited waveform, the cycle when this waveform must stop
|
|
uint32_t timeHighCycles; // Actual running waveform period (adjusted using desiredCycles)
|
|
uint32_t timeLowCycles; //
|
|
uint32_t desiredHighCycles; // Ideal waveform period to drive the error signal
|
|
uint32_t desiredLowCycles; //
|
|
uint32_t lastEdge; // Cycle when this generator last changed
|
|
} Waveform;
|
|
|
|
class WVFState {
|
|
public:
|
|
Waveform waveform[17]; // State of all possible pins
|
|
uint32_t waveformState = 0; // Is the pin high or low, updated in NMI so no access outside the NMI code
|
|
uint32_t waveformEnabled = 0; // Is it actively running, updated in NMI so no access outside the NMI code
|
|
|
|
// Enable lock-free by only allowing updates to waveformState and waveformEnabled from IRQ service routine
|
|
uint32_t waveformToEnable = 0; // Message to the NMI handler to start a waveform on a inactive pin
|
|
uint32_t waveformToDisable = 0; // Message to the NMI handler to disable a pin from waveform generation
|
|
|
|
uint32_t waveformToChange = 0; // Mask of pin to change. One bit set in main app, cleared when effected in the NMI
|
|
uint32_t waveformNewHigh = 0;
|
|
uint32_t waveformNewLow = 0;
|
|
|
|
uint32_t (*timer1CB)() = NULL;
|
|
|
|
// Optimize the NMI inner loop by keeping track of the min and max GPIO that we
|
|
// are generating. In the common case (1 PWM) these may be the same pin and
|
|
// we can avoid looking at the other pins.
|
|
uint16_t startPin = 0;
|
|
uint16_t endPin = 0;
|
|
};
|
|
static WVFState wvfState;
|
|
|
|
|
|
// Ensure everything is read/written to RAM
|
|
#define MEMBARRIER() { __asm__ volatile("" ::: "memory"); }
|
|
|
|
// Non-speed critical bits
|
|
#pragma GCC optimize ("Os")
|
|
|
|
// Interrupt on/off control
|
|
static ICACHE_RAM_ATTR void timer1Interrupt();
|
|
static bool timerRunning = false;
|
|
|
|
static __attribute__((noinline)) void initTimer() {
|
|
if (!timerRunning) {
|
|
timer1_disable();
|
|
ETS_FRC_TIMER1_INTR_ATTACH(NULL, NULL);
|
|
ETS_FRC_TIMER1_NMI_INTR_ATTACH(timer1Interrupt);
|
|
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_SINGLE);
|
|
timerRunning = true;
|
|
timer1_write(microsecondsToClockCycles(10));
|
|
}
|
|
}
|
|
|
|
static ICACHE_RAM_ATTR void forceTimerInterrupt() {
|
|
if (T1L > microsecondsToClockCycles(10)) {
|
|
T1L = microsecondsToClockCycles(10);
|
|
}
|
|
}
|
|
|
|
// PWM implementation using special purpose state machine
|
|
//
|
|
// Keep an ordered list of pins with the delta in cycles between each
|
|
// element, with a terminal entry making up the remainder of the PWM
|
|
// period. With this method sum(all deltas) == PWM period clock cycles.
|
|
//
|
|
// At t=0 set all pins high and set the timeout for the 1st edge.
|
|
// On interrupt, if we're at the last element reset to t=0 state
|
|
// Otherwise, clear that pin down and set delay for next element
|
|
// and so forth.
|
|
|
|
constexpr int maxPWMs = 8;
|
|
|
|
// PWM machine state
|
|
typedef struct PWMState {
|
|
uint32_t mask; // Bitmask of active pins
|
|
uint32_t cnt; // How many entries
|
|
uint32_t idx; // Where the state machine is along the list
|
|
uint8_t pin[maxPWMs + 1];
|
|
uint32_t delta[maxPWMs + 1];
|
|
uint32_t nextServiceCycle; // Clock cycle for next step
|
|
struct PWMState *pwmUpdate; // Set by main code, cleared by ISR
|
|
} PWMState;
|
|
|
|
static PWMState pwmState;
|
|
static uint32_t _pwmPeriod = microsecondsToClockCycles(1000000UL) / 1000;
|
|
|
|
|
|
// If there are no more scheduled activities, shut down Timer 1.
|
|
// Otherwise, do nothing.
|
|
static ICACHE_RAM_ATTR void disableIdleTimer() {
|
|
if (timerRunning && !wvfState.waveformEnabled && !pwmState.cnt && !wvfState.timer1CB) {
|
|
ETS_FRC_TIMER1_NMI_INTR_ATTACH(NULL);
|
|
timer1_disable();
|
|
timer1_isr_init();
|
|
timerRunning = false;
|
|
}
|
|
}
|
|
|
|
// Notify the NMI that a new PWM state is available through the mailbox.
|
|
// Wait for mailbox to be emptied (either busy or delay() as needed)
|
|
static ICACHE_RAM_ATTR void _notifyPWM(PWMState *p, bool idle) {
|
|
p->pwmUpdate = nullptr;
|
|
pwmState.pwmUpdate = p;
|
|
MEMBARRIER();
|
|
forceTimerInterrupt();
|
|
while (pwmState.pwmUpdate) {
|
|
if (idle) {
|
|
delay(0);
|
|
}
|
|
MEMBARRIER();
|
|
}
|
|
}
|
|
|
|
static void _addPWMtoList(PWMState &p, int pin, uint32_t val, uint32_t range);
|
|
|
|
// Called when analogWriteFreq() changed to update the PWM total period
|
|
void _setPWMFreq(uint32_t freq) {
|
|
// Convert frequency into clock cycles
|
|
uint32_t cc = microsecondsToClockCycles(1000000UL) / freq;
|
|
|
|
// Simple static adjustment to bring period closer to requested due to overhead
|
|
#if F_CPU == 80000000
|
|
cc -= microsecondsToClockCycles(2);
|
|
#else
|
|
cc -= microsecondsToClockCycles(1);
|
|
#endif
|
|
|
|
if (cc == _pwmPeriod) {
|
|
return; // No change
|
|
}
|
|
|
|
_pwmPeriod = cc;
|
|
|
|
if (pwmState.cnt) {
|
|
PWMState p; // The working copy since we can't edit the one in use
|
|
p.cnt = 0;
|
|
for (uint32_t i = 0; i < pwmState.cnt; i++) {
|
|
auto pin = pwmState.pin[i];
|
|
_addPWMtoList(p, pin, wvfState.waveform[pin].desiredHighCycles, wvfState.waveform[pin].desiredLowCycles);
|
|
}
|
|
// Update and wait for mailbox to be emptied
|
|
initTimer();
|
|
_notifyPWM(&p, true);
|
|
disableIdleTimer();
|
|
}
|
|
}
|
|
|
|
// Helper routine to remove an entry from the state machine
|
|
// and clean up any marked-off entries
|
|
static void _cleanAndRemovePWM(PWMState *p, int pin) {
|
|
uint32_t leftover = 0;
|
|
uint32_t in, out;
|
|
for (in = 0, out = 0; in < p->cnt; in++) {
|
|
if ((p->pin[in] != pin) && (p->mask & (1<<p->pin[in]))) {
|
|
p->pin[out] = p->pin[in];
|
|
p->delta[out] = p->delta[in] + leftover;
|
|
leftover = 0;
|
|
out++;
|
|
} else {
|
|
leftover += p->delta[in];
|
|
p->mask &= ~(1<<p->pin[in]);
|
|
}
|
|
}
|
|
p->cnt = out;
|
|
// Final pin is never used: p->pin[out] = 0xff;
|
|
p->delta[out] = p->delta[in] + leftover;
|
|
}
|
|
|
|
|
|
// Disable PWM on a specific pin (i.e. when a digitalWrite or analogWrite(0%/100%))
|
|
ICACHE_RAM_ATTR bool _stopPWM(int pin) {
|
|
if (!((1<<pin) & pwmState.mask)) {
|
|
return false; // Pin not actually active
|
|
}
|
|
|
|
PWMState p; // The working copy since we can't edit the one in use
|
|
p = pwmState;
|
|
|
|
// In _stopPWM we just clear the mask but keep everything else
|
|
// untouched to save IRAM. The main startPWM will handle cleanup.
|
|
p.mask &= ~(1<<pin);
|
|
if (!p.mask) {
|
|
// If all have been stopped, then turn PWM off completely
|
|
p.cnt = 0;
|
|
}
|
|
|
|
// Update and wait for mailbox to be emptied, no delay (could be in ISR)
|
|
_notifyPWM(&p, false);
|
|
// Possibly shut down the timer completely if we're done
|
|
disableIdleTimer();
|
|
return true;
|
|
}
|
|
|
|
static void _addPWMtoList(PWMState &p, int pin, uint32_t val, uint32_t range) {
|
|
// Stash the val and range so we can re-evaluate the fraction
|
|
// should the user change PWM frequency. This allows us to
|
|
// give as great a precision as possible. We know by construction
|
|
// that the waveform for this pin will be inactive so we can borrow
|
|
// memory from that structure.
|
|
wvfState.waveform[pin].desiredHighCycles = val; // Numerator == high
|
|
wvfState.waveform[pin].desiredLowCycles = range; // Denominator == low
|
|
|
|
uint32_t cc = (_pwmPeriod * val) / range;
|
|
|
|
if (cc == 0) {
|
|
_stopPWM(pin);
|
|
digitalWrite(pin, LOW);
|
|
return;
|
|
} else if (cc >= _pwmPeriod) {
|
|
_stopPWM(pin);
|
|
digitalWrite(pin, HIGH);
|
|
return;
|
|
}
|
|
|
|
if (p.cnt == 0) {
|
|
// Starting up from scratch, special case 1st element and PWM period
|
|
p.pin[0] = pin;
|
|
p.delta[0] = cc;
|
|
// Final pin is never used: p.pin[1] = 0xff;
|
|
p.delta[1] = _pwmPeriod - cc;
|
|
} else {
|
|
uint32_t ttl = 0;
|
|
uint32_t i;
|
|
// Skip along until we're at the spot to insert
|
|
for (i=0; (i <= p.cnt) && (ttl + p.delta[i] < cc); i++) {
|
|
ttl += p.delta[i];
|
|
}
|
|
// Shift everything out by one to make space for new edge
|
|
for (int32_t j = p.cnt; j >= (int)i; j--) {
|
|
p.pin[j + 1] = p.pin[j];
|
|
p.delta[j + 1] = p.delta[j];
|
|
}
|
|
int off = cc - ttl; // The delta from the last edge to the one we're inserting
|
|
p.pin[i] = pin;
|
|
p.delta[i] = off; // Add the delta to this new pin
|
|
p.delta[i + 1] -= off; // And subtract it from the follower to keep sum(deltas) constant
|
|
}
|
|
p.cnt++;
|
|
p.mask |= 1<<pin;
|
|
}
|
|
|
|
// Called by analogWrite(1...99%) to set the PWM duty in clock cycles
|
|
bool _setPWM(int pin, uint32_t val, uint32_t range) {
|
|
stopWaveform(pin);
|
|
PWMState p; // Working copy
|
|
p = pwmState;
|
|
// Get rid of any entries for this pin
|
|
_cleanAndRemovePWM(&p, pin);
|
|
// And add it to the list, in order
|
|
if (p.cnt >= maxPWMs) {
|
|
return false; // No space left
|
|
}
|
|
|
|
_addPWMtoList(p, pin, val, range);
|
|
|
|
// Set mailbox and wait for ISR to copy it over
|
|
initTimer();
|
|
_notifyPWM(&p, true);
|
|
disableIdleTimer();
|
|
return true;
|
|
}
|
|
|
|
// Start up a waveform on a pin, or change the current one. Will change to the new
|
|
// waveform smoothly on next low->high transition. For immediate change, stopWaveform()
|
|
// first, then it will immediately begin.
|
|
int startWaveform(uint8_t pin, uint32_t timeHighUS, uint32_t timeLowUS, uint32_t runTimeUS) {
|
|
return startWaveformClockCycles(pin, microsecondsToClockCycles(timeHighUS), microsecondsToClockCycles(timeLowUS), microsecondsToClockCycles(runTimeUS));
|
|
}
|
|
|
|
int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles) {
|
|
if ((pin > 16) || isFlashInterfacePin(pin)) {
|
|
return false;
|
|
}
|
|
Waveform *wave = &wvfState.waveform[pin];
|
|
wave->expiryCycle = runTimeCycles ? ESP.getCycleCount() + runTimeCycles : 0;
|
|
if (runTimeCycles && !wave->expiryCycle) {
|
|
wave->expiryCycle = 1; // expiryCycle==0 means no timeout, so avoid setting it
|
|
}
|
|
|
|
_stopPWM(pin); // Make sure there's no PWM live here
|
|
|
|
uint32_t mask = 1<<pin;
|
|
MEMBARRIER();
|
|
if (wvfState.waveformEnabled & mask) {
|
|
// Make sure no waveform changes are waiting to be applied
|
|
while (wvfState.waveformToChange) {
|
|
delay(0); // Wait for waveform to update
|
|
// No mem barrier here, the call to a global function implies global state updated
|
|
}
|
|
wvfState.waveformNewHigh = timeHighCycles;
|
|
wvfState.waveformNewLow = timeLowCycles;
|
|
MEMBARRIER();
|
|
wvfState.waveformToChange = mask;
|
|
// The waveform will be updated some time in the future on the next period for the signal
|
|
} else { // if (!(wvfState.waveformEnabled & mask)) {
|
|
wave->timeHighCycles = timeHighCycles;
|
|
wave->desiredHighCycles = timeHighCycles;
|
|
wave->timeLowCycles = timeLowCycles;
|
|
wave->desiredLowCycles = timeLowCycles;
|
|
wave->lastEdge = 0;
|
|
wave->nextServiceCycle = ESP.getCycleCount() + microsecondsToClockCycles(1);
|
|
wvfState.waveformToEnable |= mask;
|
|
MEMBARRIER();
|
|
initTimer();
|
|
forceTimerInterrupt();
|
|
while (wvfState.waveformToEnable) {
|
|
delay(0); // Wait for waveform to update
|
|
// No mem barrier here, the call to a global function implies global state updated
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// Set a callback. Pass in NULL to stop it
|
|
void setTimer1Callback(uint32_t (*fn)()) {
|
|
wvfState.timer1CB = fn;
|
|
if (fn) {
|
|
initTimer();
|
|
forceTimerInterrupt();
|
|
}
|
|
disableIdleTimer();
|
|
}
|
|
|
|
|
|
// Speed critical bits
|
|
#pragma GCC optimize ("O2")
|
|
|
|
// Normally would not want two copies like this, but due to different
|
|
// optimization levels the inline attribute gets lost if we try the
|
|
// other version.
|
|
static inline ICACHE_RAM_ATTR uint32_t GetCycleCountIRQ() {
|
|
uint32_t ccount;
|
|
__asm__ __volatile__("rsr %0,ccount":"=a"(ccount));
|
|
return ccount;
|
|
}
|
|
|
|
static inline ICACHE_RAM_ATTR uint32_t min_u32(uint32_t a, uint32_t b) {
|
|
if (a < b) {
|
|
return a;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
// Stops a waveform on a pin
|
|
int ICACHE_RAM_ATTR stopWaveform(uint8_t pin) {
|
|
// Can't possibly need to stop anything if there is no timer active
|
|
if (!timerRunning) {
|
|
return false;
|
|
}
|
|
// If user sends in a pin >16 but <32, this will always point to a 0 bit
|
|
// If they send >=32, then the shift will result in 0 and it will also return false
|
|
uint32_t mask = 1<<pin;
|
|
if (wvfState.waveformEnabled & mask) {
|
|
wvfState.waveformToDisable = mask;
|
|
// Cancel any pending updates for this waveform, too.
|
|
if (wvfState.waveformToChange & mask) {
|
|
wvfState.waveformToChange = 0;
|
|
}
|
|
forceTimerInterrupt();
|
|
while (wvfState.waveformToDisable) {
|
|
MEMBARRIER(); // If it wasn't written yet, it has to be by now
|
|
/* no-op */ // Can't delay() since stopWaveform may be called from an IRQ
|
|
}
|
|
}
|
|
disableIdleTimer();
|
|
return true;
|
|
}
|
|
|
|
// The SDK and hardware take some time to actually get to our NMI code, so
|
|
// decrement the next IRQ's timer value by a bit so we can actually catch the
|
|
// real CPU cycle counter we want for the waveforms.
|
|
|
|
// The SDK also sometimes is running at a different speed the the Arduino core
|
|
// so the ESP cycle counter is actually running at a variable speed.
|
|
// adjust(x) takes care of adjusting a delta clock cycle amount accordingly.
|
|
#if F_CPU == 80000000
|
|
#define DELTAIRQ (microsecondsToClockCycles(3))
|
|
#define adjust(x) ((x) << (turbo ? 1 : 0))
|
|
#else
|
|
#define DELTAIRQ (microsecondsToClockCycles(2))
|
|
#define adjust(x) ((x) >> (turbo ? 0 : 1))
|
|
#endif
|
|
|
|
|
|
static ICACHE_RAM_ATTR void timer1Interrupt() {
|
|
// Flag if the core is at 160 MHz, for use by adjust()
|
|
bool turbo = (*(uint32_t*)0x3FF00014) & 1 ? true : false;
|
|
|
|
uint32_t nextEventCycles = microsecondsToClockCycles(MAXIRQUS);
|
|
uint32_t timeoutCycle = GetCycleCountIRQ() + microsecondsToClockCycles(14);
|
|
|
|
if (wvfState.waveformToEnable || wvfState.waveformToDisable) {
|
|
// Handle enable/disable requests from main app
|
|
wvfState.waveformEnabled = (wvfState.waveformEnabled & ~wvfState.waveformToDisable) | wvfState.waveformToEnable; // Set the requested waveforms on/off
|
|
wvfState.waveformState &= ~wvfState.waveformToEnable; // And clear the state of any just started
|
|
wvfState.waveformToEnable = 0;
|
|
wvfState.waveformToDisable = 0;
|
|
// No mem barrier. Globals must be written to RAM on ISR exit.
|
|
// Find the first GPIO being generated by checking GCC's find-first-set (returns 1 + the bit of the first 1 in an int32_t)
|
|
wvfState.startPin = __builtin_ffs(wvfState.waveformEnabled) - 1;
|
|
// Find the last bit by subtracting off GCC's count-leading-zeros (no offset in this one)
|
|
wvfState.endPin = 32 - __builtin_clz(wvfState.waveformEnabled);
|
|
} else if (!pwmState.cnt && pwmState.pwmUpdate) {
|
|
// Start up the PWM generator by copying from the mailbox
|
|
pwmState.cnt = 1;
|
|
pwmState.idx = 1; // Ensure copy this cycle, cause it to start at t=0
|
|
pwmState.nextServiceCycle = GetCycleCountIRQ(); // Do it this loop!
|
|
// No need for mem barrier here. Global must be written by IRQ exit
|
|
}
|
|
|
|
bool done = false;
|
|
if (wvfState.waveformEnabled || pwmState.cnt) {
|
|
do {
|
|
nextEventCycles = microsecondsToClockCycles(MAXIRQUS);
|
|
|
|
// PWM state machine implementation
|
|
if (pwmState.cnt) {
|
|
int32_t cyclesToGo = pwmState.nextServiceCycle - GetCycleCountIRQ();
|
|
if (cyclesToGo < 0) {
|
|
if (pwmState.idx == pwmState.cnt) { // Start of pulses, possibly copy new
|
|
if (pwmState.pwmUpdate) {
|
|
// Do the memory copy from temp to global and clear mailbox
|
|
pwmState = *(PWMState*)pwmState.pwmUpdate;
|
|
}
|
|
GPOS = pwmState.mask; // Set all active pins high
|
|
if (pwmState.mask & (1<<16)) {
|
|
GP16O = 1;
|
|
}
|
|
pwmState.idx = 0;
|
|
} else {
|
|
do {
|
|
// Drop the pin at this edge
|
|
if (pwmState.mask & (1<<pwmState.pin[pwmState.idx])) {
|
|
GPOC = 1<<pwmState.pin[pwmState.idx];
|
|
if (pwmState.pin[pwmState.idx] == 16) {
|
|
GP16O = 0;
|
|
}
|
|
}
|
|
pwmState.idx++;
|
|
// Any other pins at this same PWM value will have delta==0, drop them too.
|
|
} while (pwmState.delta[pwmState.idx] == 0);
|
|
}
|
|
// Preserve duty cycle over PWM period by using now+xxx instead of += delta
|
|
cyclesToGo = adjust(pwmState.delta[pwmState.idx]);
|
|
pwmState.nextServiceCycle = GetCycleCountIRQ() + cyclesToGo;
|
|
}
|
|
nextEventCycles = min_u32(nextEventCycles, cyclesToGo);
|
|
}
|
|
|
|
for (auto i = wvfState.startPin; i <= wvfState.endPin; i++) {
|
|
uint32_t mask = 1<<i;
|
|
|
|
// If it's not on, ignore!
|
|
if (!(wvfState.waveformEnabled & mask)) {
|
|
continue;
|
|
}
|
|
|
|
Waveform *wave = &wvfState.waveform[i];
|
|
uint32_t now = GetCycleCountIRQ();
|
|
|
|
// Disable any waveforms that are done
|
|
if (wave->expiryCycle) {
|
|
int32_t expiryToGo = wave->expiryCycle - now;
|
|
if (expiryToGo < 0) {
|
|
// Done, remove!
|
|
if (i == 16) {
|
|
GP16O = 0;
|
|
}
|
|
GPOC = mask;
|
|
wvfState.waveformEnabled &= ~mask;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Check for toggles
|
|
int32_t cyclesToGo = wave->nextServiceCycle - now;
|
|
if (cyclesToGo < 0) {
|
|
uint32_t nextEdgeCycles;
|
|
uint32_t desired = 0;
|
|
uint32_t *timeToUpdate;
|
|
wvfState.waveformState ^= mask;
|
|
if (wvfState.waveformState & mask) {
|
|
if (i == 16) {
|
|
GP16O = 1;
|
|
}
|
|
GPOS = mask;
|
|
|
|
if (wvfState.waveformToChange & mask) {
|
|
// Copy over next full-cycle timings
|
|
wave->timeHighCycles = wvfState.waveformNewHigh;
|
|
wave->desiredHighCycles = wvfState.waveformNewHigh;
|
|
wave->timeLowCycles = wvfState.waveformNewLow;
|
|
wave->desiredLowCycles = wvfState.waveformNewLow;
|
|
wave->lastEdge = 0;
|
|
wvfState.waveformToChange = 0;
|
|
}
|
|
if (wave->lastEdge) {
|
|
desired = wave->desiredLowCycles;
|
|
timeToUpdate = &wave->timeLowCycles;
|
|
}
|
|
nextEdgeCycles = wave->timeHighCycles;
|
|
} else {
|
|
if (i == 16) {
|
|
GP16O = 0;
|
|
}
|
|
GPOC = mask;
|
|
desired = wave->desiredHighCycles;
|
|
timeToUpdate = &wave->timeHighCycles;
|
|
nextEdgeCycles = wave->timeLowCycles;
|
|
}
|
|
if (desired) {
|
|
desired = adjust(desired);
|
|
int32_t err = desired - (now - wave->lastEdge);
|
|
if (abs(err) < desired) { // If we've lost > the entire phase, ignore this error signal
|
|
err /= 2;
|
|
*timeToUpdate += err;
|
|
}
|
|
}
|
|
nextEdgeCycles = adjust(nextEdgeCycles);
|
|
wave->nextServiceCycle = now + nextEdgeCycles;
|
|
nextEventCycles = min_u32(nextEventCycles, nextEdgeCycles);
|
|
wave->lastEdge = now;
|
|
} else {
|
|
uint32_t deltaCycles = wave->nextServiceCycle - now;
|
|
nextEventCycles = min_u32(nextEventCycles, deltaCycles);
|
|
}
|
|
}
|
|
|
|
// Exit the loop if we've hit the fixed runtime limit or the next event is known to be after that timeout would occur
|
|
uint32_t now = GetCycleCountIRQ();
|
|
int32_t cycleDeltaNextEvent = timeoutCycle - (now + nextEventCycles);
|
|
int32_t cyclesLeftTimeout = timeoutCycle - now;
|
|
done = (cycleDeltaNextEvent < 0) || (cyclesLeftTimeout < 0);
|
|
} while (!done);
|
|
} // if (wvfState.waveformEnabled)
|
|
|
|
if (wvfState.timer1CB) {
|
|
nextEventCycles = min_u32(nextEventCycles, wvfState.timer1CB());
|
|
}
|
|
|
|
if (nextEventCycles < microsecondsToClockCycles(5)) {
|
|
nextEventCycles = microsecondsToClockCycles(5);
|
|
}
|
|
nextEventCycles -= DELTAIRQ;
|
|
|
|
// Do it here instead of global function to save time and because we know it's edge-IRQ
|
|
T1L = nextEventCycles >> (turbo ? 1 : 0);
|
|
}
|
|
|
|
};
|
|
|
|
#endif // ESP8266
|