Tasmota/tasmota/xnrg_01_hlw8012.ino

334 lines
11 KiB
C++

/*
xnrg_01_hlw8012.ino - HLW8012 (Sonoff Pow) energy sensor support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_HLW8012
/*********************************************************************************************\
* HLW8012, BL0937 or HJL-01 - Energy (Sonoff Pow, HuaFan, KMC70011, BlitzWolf)
*
* Based on Source: Shenzhen Heli Technology Co., Ltd
\*********************************************************************************************/
#define XNRG_01 1
// Energy model type 0 (GPIO_HLW_CF) - HLW8012 based (Sonoff Pow, KMC70011, HuaFan, AplicWDP303075)
#define HLW_PREF 10000 // 1000.0W
#define HLW_UREF 2200 // 220.0V
#define HLW_IREF 4545 // 4.545A
// Energy model type 1 (GPIO_HJL_CF) - HJL-01/BL0937 based (BlitzWolf, Homecube, Gosund, Teckin)
#define HJL_PREF 1362
#define HJL_UREF 822
#define HJL_IREF 3300
#define HLW_POWER_PROBE_TIME 10 // Number of seconds to probe for power before deciding none used (low power pulse can take up to 10 seconds)
#define HLW_SAMPLE_COUNT 10 // Max number of samples per cycle
//#define HLW_DEBUG
struct HLW {
#ifdef HLW_DEBUG
unsigned long debug[HLW_SAMPLE_COUNT];
#endif
unsigned long cf_pulse_length = 0;
unsigned long cf_pulse_last_time = 0;
unsigned long cf_power_pulse_length = 0;
unsigned long cf1_pulse_length = 0;
unsigned long cf1_pulse_last_time = 0;
unsigned long cf1_summed_pulse_length = 0;
unsigned long cf1_pulse_counter = 0;
unsigned long cf1_voltage_pulse_length = 0;
unsigned long cf1_current_pulse_length = 0;
unsigned long energy_period_counter = 0;
unsigned long power_ratio = 0;
unsigned long voltage_ratio = 0;
unsigned long current_ratio = 0;
uint8_t model_type = 0;
uint8_t cf1_timer = 0;
uint8_t power_retry = 0;
bool select_ui_flag = false;
bool ui_flag = true;
bool load_off = true;
} Hlw;
// Fix core 2.5.x ISR not in IRAM Exception
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception
void HlwCfInterrupt(void) ICACHE_RAM_ATTR;
void HlwCf1Interrupt(void) ICACHE_RAM_ATTR;
#endif // USE_WS2812_DMA
void HlwCfInterrupt(void) // Service Power
{
unsigned long us = micros();
if (Hlw.load_off) { // Restart plen measurement
Hlw.cf_pulse_last_time = us;
Hlw.load_off = false;
} else {
Hlw.cf_pulse_length = us - Hlw.cf_pulse_last_time;
Hlw.cf_pulse_last_time = us;
Hlw.energy_period_counter++;
}
Energy.data_valid[0] = 0;
}
void HlwCf1Interrupt(void) // Service Voltage and Current
{
unsigned long us = micros();
Hlw.cf1_pulse_length = us - Hlw.cf1_pulse_last_time;
Hlw.cf1_pulse_last_time = us;
if ((Hlw.cf1_timer > 2) && (Hlw.cf1_timer < 8)) { // Allow for 300 mSec set-up time and measure for up to 1 second
Hlw.cf1_summed_pulse_length += Hlw.cf1_pulse_length;
#ifdef HLW_DEBUG
Hlw.debug[Hlw.cf1_pulse_counter] = Hlw.cf1_pulse_length;
#endif
Hlw.cf1_pulse_counter++;
if (HLW_SAMPLE_COUNT == Hlw.cf1_pulse_counter) {
Hlw.cf1_timer = 8; // We need up to HLW_SAMPLE_COUNT samples within 1 second (low current could take up to 0.3 second)
}
}
Energy.data_valid[0] = 0;
}
/********************************************************************************************/
void HlwEvery200ms(void)
{
unsigned long cf1_pulse_length = 0;
unsigned long hlw_w = 0;
unsigned long hlw_u = 0;
unsigned long hlw_i = 0;
if (micros() - Hlw.cf_pulse_last_time > (HLW_POWER_PROBE_TIME * 1000000)) {
Hlw.cf_pulse_length = 0; // No load for some time
Hlw.load_off = true;
}
Hlw.cf_power_pulse_length = Hlw.cf_pulse_length;
if (Hlw.cf_power_pulse_length && Energy.power_on && !Hlw.load_off) {
hlw_w = (Hlw.power_ratio * Settings.energy_power_calibration) / Hlw.cf_power_pulse_length ; // W *10
Energy.active_power[0] = (float)hlw_w / 10;
Hlw.power_retry = 1; // Workaround issue #5161
} else {
if (Hlw.power_retry) {
Hlw.power_retry--;
} else {
Energy.active_power[0] = 0;
}
}
if (PinUsed(GPIO_NRG_CF1)) {
Hlw.cf1_timer++;
if (Hlw.cf1_timer >= 8) {
Hlw.cf1_timer = 0;
Hlw.select_ui_flag = (Hlw.select_ui_flag) ? false : true;
DigitalWrite(GPIO_NRG_SEL, 0, Hlw.select_ui_flag);
if (Hlw.cf1_pulse_counter) {
cf1_pulse_length = Hlw.cf1_summed_pulse_length / Hlw.cf1_pulse_counter;
}
#ifdef HLW_DEBUG
// Debugging for calculating mean and median
char stemp[100];
stemp[0] = '\0';
for (uint32_t i = 0; i < Hlw.cf1_pulse_counter; i++) {
snprintf_P(stemp, sizeof(stemp), PSTR("%s %d"), stemp, Hlw.debug[i]);
}
for (uint32_t i = 0; i < Hlw.cf1_pulse_counter; i++) {
for (uint32_t j = i + 1; j < Hlw.cf1_pulse_counter; j++) {
if (Hlw.debug[i] > Hlw.debug[j]) { // Sort ascending
std::swap(Hlw.debug[i], Hlw.debug[j]);
}
}
}
unsigned long median = Hlw.debug[(Hlw.cf1_pulse_counter +1) / 2];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("NRG: power %d, ui %d, cnt %d, smpl%s, sum %d, mean %d, median %d"),
Hlw.cf_power_pulse_length , Hlw.select_ui_flag, Hlw.cf1_pulse_counter, stemp, Hlw.cf1_summed_pulse_length, cf1_pulse_length, median);
#endif
if (Hlw.select_ui_flag == Hlw.ui_flag) {
Hlw.cf1_voltage_pulse_length = cf1_pulse_length;
if (Hlw.cf1_voltage_pulse_length && Energy.power_on) { // If powered on always provide voltage
hlw_u = (Hlw.voltage_ratio * Settings.energy_voltage_calibration) / Hlw.cf1_voltage_pulse_length ; // V *10
Energy.voltage[0] = (float)hlw_u / 10;
} else {
Energy.voltage[0] = 0;
}
} else {
Hlw.cf1_current_pulse_length = cf1_pulse_length;
if (Hlw.cf1_current_pulse_length && Energy.active_power[0]) { // No current if no power being consumed
hlw_i = (Hlw.current_ratio * Settings.energy_current_calibration) / Hlw.cf1_current_pulse_length; // mA
Energy.current[0] = (float)hlw_i / 1000;
} else {
Energy.current[0] = 0;
}
}
Hlw.cf1_summed_pulse_length = 0;
Hlw.cf1_pulse_counter = 0;
}
}
}
void HlwEverySecond(void)
{
if (Energy.data_valid[0] > ENERGY_WATCHDOG) {
Hlw.cf1_voltage_pulse_length = 0;
Hlw.cf1_current_pulse_length = 0;
Hlw.cf_power_pulse_length = 0;
} else {
unsigned long hlw_len;
if (Hlw.energy_period_counter) {
hlw_len = 10000 / Hlw.energy_period_counter;
Hlw.energy_period_counter = 0;
if (hlw_len) {
Energy.kWhtoday_delta += ((Hlw.power_ratio * Settings.energy_power_calibration) / hlw_len) / 36;
EnergyUpdateToday();
}
}
}
}
void HlwSnsInit(void)
{
if (!Settings.energy_power_calibration || (4975 == Settings.energy_power_calibration)) {
Settings.energy_power_calibration = HLW_PREF_PULSE;
Settings.energy_voltage_calibration = HLW_UREF_PULSE;
Settings.energy_current_calibration = HLW_IREF_PULSE;
}
if (Hlw.model_type) {
Hlw.power_ratio = HJL_PREF;
Hlw.voltage_ratio = HJL_UREF;
Hlw.current_ratio = HJL_IREF;
} else {
Hlw.power_ratio = HLW_PREF;
Hlw.voltage_ratio = HLW_UREF;
Hlw.current_ratio = HLW_IREF;
}
if (PinUsed(GPIO_NRG_SEL)) {
pinMode(Pin(GPIO_NRG_SEL), OUTPUT);
digitalWrite(Pin(GPIO_NRG_SEL), Hlw.select_ui_flag);
}
if (PinUsed(GPIO_NRG_CF1)) {
pinMode(Pin(GPIO_NRG_CF1), INPUT_PULLUP);
attachInterrupt(Pin(GPIO_NRG_CF1), HlwCf1Interrupt, FALLING);
}
pinMode(Pin(GPIO_HLW_CF), INPUT_PULLUP);
attachInterrupt(Pin(GPIO_HLW_CF), HlwCfInterrupt, FALLING);
}
void HlwDrvInit(void)
{
Hlw.model_type = 0; // HLW8012
if (PinUsed(GPIO_HJL_CF)) {
SetPin(Pin(GPIO_HJL_CF), GPIO_HLW_CF);
Hlw.model_type = 1; // HJL-01/BL0937
}
if (PinUsed(GPIO_HLW_CF)) { // HLW8012 or HJL-01 based device Power monitor
Hlw.ui_flag = true; // Voltage on high
if (PinUsed(GPIO_NRG_SEL_INV)) {
SetPin(Pin(GPIO_NRG_SEL_INV), GPIO_NRG_SEL);
Hlw.ui_flag = false; // Voltage on low
}
if (PinUsed(GPIO_NRG_CF1)) { // Voltage and/or Current monitor
if (!PinUsed(GPIO_NRG_SEL)) { // Voltage and/or Current selector
Energy.current_available = false; // Assume Voltage
}
} else {
Energy.current_available = false;
Energy.voltage_available = false;
}
energy_flg = XNRG_01;
}
}
bool HlwCommand(void)
{
bool serviced = true;
if ((CMND_POWERCAL == Energy.command_code) || (CMND_VOLTAGECAL == Energy.command_code) || (CMND_CURRENTCAL == Energy.command_code)) {
// Service in xdrv_03_energy.ino
}
else if (CMND_POWERSET == Energy.command_code) {
if (XdrvMailbox.data_len && Hlw.cf_power_pulse_length ) {
Settings.energy_power_calibration = ((unsigned long)(CharToFloat(XdrvMailbox.data) * 10) * Hlw.cf_power_pulse_length ) / Hlw.power_ratio;
}
}
else if (CMND_VOLTAGESET == Energy.command_code) {
if (XdrvMailbox.data_len && Hlw.cf1_voltage_pulse_length ) {
Settings.energy_voltage_calibration = ((unsigned long)(CharToFloat(XdrvMailbox.data) * 10) * Hlw.cf1_voltage_pulse_length ) / Hlw.voltage_ratio;
}
}
else if (CMND_CURRENTSET == Energy.command_code) {
if (XdrvMailbox.data_len && Hlw.cf1_current_pulse_length) {
Settings.energy_current_calibration = ((unsigned long)(CharToFloat(XdrvMailbox.data)) * Hlw.cf1_current_pulse_length) / Hlw.current_ratio;
}
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg01(uint8_t function)
{
bool result = false;
switch (function) {
case FUNC_EVERY_200_MSECOND:
HlwEvery200ms();
break;
case FUNC_ENERGY_EVERY_SECOND:
HlwEverySecond();
break;
case FUNC_COMMAND:
result = HlwCommand();
break;
case FUNC_INIT:
HlwSnsInit();
break;
case FUNC_PRE_INIT:
HlwDrvInit();
break;
}
return result;
}
#endif // USE_HLW8012
#endif // USE_ENERGY_SENSOR