mirror of https://github.com/arendst/Tasmota.git
439 lines
14 KiB
C++
439 lines
14 KiB
C++
/*
|
|
xsns_02_analog.ino - ESP8266 ADC support for Tasmota
|
|
|
|
Copyright (C) 2020 Theo Arends
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef USE_ADC_VCC
|
|
/*********************************************************************************************\
|
|
* ADC support
|
|
\*********************************************************************************************/
|
|
|
|
#define XSNS_02 2
|
|
|
|
#define TO_CELSIUS(x) ((x) - 273.15)
|
|
#define TO_KELVIN(x) ((x) + 273.15)
|
|
|
|
// Parameters for equation
|
|
#define ANALOG_V33 3.3 // ESP8266 Analog voltage
|
|
#define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celcius in Kelvin (= 298.15)
|
|
|
|
// Shelly 2.5 NTC Thermistor
|
|
// 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd
|
|
// |
|
|
// ADC0
|
|
#define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor
|
|
#define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance
|
|
#define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient
|
|
|
|
// LDR parameters
|
|
// 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd
|
|
// |
|
|
// ADC0
|
|
#define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor
|
|
#define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental
|
|
#define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental
|
|
|
|
// CT Based Apparrent Power Measurement Parameters
|
|
// 3V3 --- R1 ----v--- R1 --- Gnd
|
|
// |
|
|
// CT+ CT-
|
|
// |
|
|
// ADC0
|
|
// Default settings for a 20A/1V Current Transformer.
|
|
// Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER
|
|
#define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use
|
|
#define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..1023 to RMS current in Amps. Value of 100000 corresponds to 1
|
|
#define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V
|
|
|
|
#define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total
|
|
|
|
struct {
|
|
float temperature = 0;
|
|
float current = 0;
|
|
float energy = 0;
|
|
uint32_t previous_millis = 0;
|
|
uint16_t last_value = 0;
|
|
} Adc;
|
|
|
|
void AdcInit(void)
|
|
{
|
|
if ((Settings.adc_param_type != my_adc0) || (Settings.adc_param1 > 1000000)) {
|
|
if (ADC0_TEMP == my_adc0) {
|
|
// Default Shelly 2.5 and 1PM parameters
|
|
Settings.adc_param_type = ADC0_TEMP;
|
|
Settings.adc_param1 = ANALOG_NTC_BRIDGE_RESISTANCE;
|
|
Settings.adc_param2 = ANALOG_NTC_RESISTANCE;
|
|
Settings.adc_param3 = ANALOG_NTC_B_COEFFICIENT * 10000;
|
|
}
|
|
else if (ADC0_LIGHT == my_adc0) {
|
|
Settings.adc_param_type = ADC0_LIGHT;
|
|
Settings.adc_param1 = ANALOG_LDR_BRIDGE_RESISTANCE;
|
|
Settings.adc_param2 = ANALOG_LDR_LUX_CALC_SCALAR;
|
|
Settings.adc_param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000;
|
|
}
|
|
else if (ADC0_RANGE == my_adc0) {
|
|
Settings.adc_param_type = ADC0_RANGE;
|
|
Settings.adc_param1 = 0;
|
|
Settings.adc_param2 = 1023;
|
|
Settings.adc_param3 = 0;
|
|
Settings.adc_param4 = 100;
|
|
}
|
|
else if (ADC0_CT_POWER == my_adc0) {
|
|
Settings.adc_param_type = ADC0_CT_POWER;
|
|
Settings.adc_param1 = ANALOG_CT_FLAGS; //(uint32_t) 0
|
|
Settings.adc_param2 = ANALOG_CT_MULTIPLIER; //(uint32_t) 100000
|
|
Settings.adc_param3 = ANALOG_CT_VOLTAGE; //(int) 10
|
|
}
|
|
}
|
|
}
|
|
|
|
uint16_t AdcRead(uint8_t factor)
|
|
{
|
|
// factor 1 = 2 samples
|
|
// factor 2 = 4 samples
|
|
// factor 3 = 8 samples
|
|
// factor 4 = 16 samples
|
|
// factor 5 = 32 samples
|
|
uint8_t samples = 1 << factor;
|
|
uint16_t analog = 0;
|
|
for (uint32_t i = 0; i < samples; i++) {
|
|
analog += analogRead(A0);
|
|
delay(1);
|
|
}
|
|
analog >>= factor;
|
|
return analog;
|
|
}
|
|
|
|
#ifdef USE_RULES
|
|
void AdcEvery250ms(void)
|
|
{
|
|
if (ADC0_INPUT == my_adc0) {
|
|
uint16_t new_value = AdcRead(5);
|
|
if ((new_value < Adc.last_value -10) || (new_value > Adc.last_value +10)) {
|
|
Adc.last_value = new_value;
|
|
uint16_t value = Adc.last_value / 10;
|
|
Response_P(PSTR("{\"ANALOG\":{\"A0div10\":%d}}"), (value > 99) ? 100 : value);
|
|
XdrvRulesProcess();
|
|
}
|
|
}
|
|
}
|
|
#endif // USE_RULES
|
|
|
|
uint16_t AdcGetLux(void)
|
|
{
|
|
int adc = AdcRead(2);
|
|
// Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
|
|
double resistorVoltage = ((double)adc / 1023) * ANALOG_V33;
|
|
double ldrVoltage = ANALOG_V33 - resistorVoltage;
|
|
double ldrResistance = ldrVoltage / resistorVoltage * (double)Settings.adc_param1;
|
|
double ldrLux = (double)Settings.adc_param2 * FastPrecisePow(ldrResistance, (double)Settings.adc_param3 / 10000);
|
|
|
|
return (uint16_t)ldrLux;
|
|
}
|
|
|
|
uint16_t AdcGetRange(void)
|
|
{
|
|
// formula for calibration: value, fromLow, fromHigh, toLow, toHigh
|
|
// Example: 514, 632, 236, 0, 100
|
|
// int( ((<param2> - <analog-value>) / (<param2> - <param1>) ) * (<param3> - <param4>) ) + <param4> )
|
|
int adc = AdcRead(2);
|
|
double adcrange = ( ((double)Settings.adc_param2 - (double)adc) / ( ((double)Settings.adc_param2 - (double)Settings.adc_param1)) * ((double)Settings.adc_param3 - (double)Settings.adc_param4) + (double)Settings.adc_param4 );
|
|
return (uint16_t)adcrange;
|
|
}
|
|
|
|
void AdcGetCurrentPower(uint8_t factor)
|
|
{
|
|
// factor 1 = 2 samples
|
|
// factor 2 = 4 samples
|
|
// factor 3 = 8 samples
|
|
// factor 4 = 16 samples
|
|
// factor 5 = 32 samples
|
|
uint8_t samples = 1 << factor;
|
|
uint16_t analog = 0;
|
|
uint16_t analog_min = 1023;
|
|
uint16_t analog_max = 0;
|
|
for (uint32_t i = 0; i < samples; i++) {
|
|
analog = analogRead(A0);
|
|
if (analog < analog_min) {
|
|
analog_min = analog;
|
|
}
|
|
if (analog > analog_max) {
|
|
analog_max = analog;
|
|
}
|
|
delay(1);
|
|
}
|
|
|
|
Adc.current = (float)(analog_max-analog_min) * ((float)(Settings.adc_param2) / 100000);
|
|
float power = Adc.current * (float)(Settings.adc_param3) / 10;
|
|
uint32_t current_millis = millis();
|
|
Adc.energy = Adc.energy + ((power * (current_millis - Adc.previous_millis)) / 3600000000);
|
|
Adc.previous_millis = current_millis;
|
|
}
|
|
|
|
void AdcEverySecond(void)
|
|
{
|
|
if (ADC0_TEMP == my_adc0) {
|
|
int adc = AdcRead(2);
|
|
// Steinhart-Hart equation for thermistor as temperature sensor
|
|
double Rt = (adc * Settings.adc_param1) / (1024.0 * ANALOG_V33 - (double)adc);
|
|
double BC = (double)Settings.adc_param3 / 10000;
|
|
double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Settings.adc_param2));
|
|
Adc.temperature = ConvertTemp(TO_CELSIUS(T));
|
|
}
|
|
else if (ADC0_CT_POWER == my_adc0) {
|
|
AdcGetCurrentPower(5);
|
|
}
|
|
}
|
|
|
|
void AdcShow(bool json)
|
|
{
|
|
if (ADC0_INPUT == my_adc0) {
|
|
uint16_t analog = AdcRead(5);
|
|
|
|
if (json) {
|
|
ResponseAppend_P(PSTR(",\"ANALOG\":{\"A0\":%d}"), analog);
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_ANALOG, "", 0, analog);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
}
|
|
|
|
else if (ADC0_TEMP == my_adc0) {
|
|
char temperature[33];
|
|
dtostrfd(Adc.temperature, Settings.flag2.temperature_resolution, temperature);
|
|
|
|
if (json) {
|
|
ResponseAppend_P(JSON_SNS_TEMP, "ANALOG", temperature);
|
|
#ifdef USE_DOMOTICZ
|
|
if (0 == tele_period) {
|
|
DomoticzSensor(DZ_TEMP, temperature);
|
|
}
|
|
#endif // USE_DOMOTICZ
|
|
#ifdef USE_KNX
|
|
if (0 == tele_period) {
|
|
KnxSensor(KNX_TEMPERATURE, Adc.temperature);
|
|
}
|
|
#endif // USE_KNX
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_TEMP, "", temperature, TempUnit());
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
}
|
|
|
|
else if (ADC0_LIGHT == my_adc0) {
|
|
uint16_t adc_light = AdcGetLux();
|
|
|
|
if (json) {
|
|
ResponseAppend_P(JSON_SNS_ILLUMINANCE, "ANALOG", adc_light);
|
|
#ifdef USE_DOMOTICZ
|
|
if (0 == tele_period) {
|
|
DomoticzSensor(DZ_ILLUMINANCE, adc_light);
|
|
}
|
|
#endif // USE_DOMOTICZ
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, "", adc_light);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
}
|
|
|
|
else if (ADC0_RANGE == my_adc0) {
|
|
uint16_t adc_range = AdcGetRange();
|
|
|
|
if (json) {
|
|
ResponseAppend_P(JSON_SNS_RANGE, "ANALOG", adc_range);
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_RANGE, "", adc_range);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
}
|
|
|
|
else if (ADC0_CT_POWER == my_adc0) {
|
|
AdcGetCurrentPower(5);
|
|
|
|
float voltage = (float)(Settings.adc_param3) / 10;
|
|
char voltage_chr[FLOATSZ];
|
|
dtostrfd(voltage, Settings.flag2.voltage_resolution, voltage_chr);
|
|
char current_chr[FLOATSZ];
|
|
dtostrfd(Adc.current, Settings.flag2.current_resolution, current_chr);
|
|
char power_chr[FLOATSZ];
|
|
dtostrfd(voltage * Adc.current, Settings.flag2.wattage_resolution, power_chr);
|
|
char energy_chr[FLOATSZ];
|
|
dtostrfd(Adc.energy, Settings.flag2.energy_resolution, energy_chr);
|
|
|
|
if (json) {
|
|
ResponseAppend_P(PSTR(",\"ANALOG\":{\"" D_JSON_ENERGY "\":%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"),
|
|
energy_chr, power_chr, voltage_chr, current_chr);
|
|
#ifdef USE_DOMOTICZ
|
|
if (0 == tele_period) {
|
|
DomoticzSensor(DZ_POWER_ENERGY, power_chr);
|
|
DomoticzSensor(DZ_VOLTAGE, voltage_chr);
|
|
DomoticzSensor(DZ_CURRENT, current_chr);
|
|
}
|
|
#endif // USE_DOMOTICZ
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_VOLTAGE, voltage_chr);
|
|
WSContentSend_PD(HTTP_SNS_CURRENT, current_chr);
|
|
WSContentSend_PD(HTTP_SNS_POWER, power_chr);
|
|
WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, energy_chr);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Commands
|
|
\*********************************************************************************************/
|
|
|
|
const char kAdcCommands[] PROGMEM = "|" // No prefix
|
|
D_CMND_ADC "|" D_CMND_ADCS "|" D_CMND_ADCPARAM;
|
|
|
|
void (* const AdcCommand[])(void) PROGMEM = {
|
|
&CmndAdc, &CmndAdcs, &CmndAdcParam };
|
|
|
|
void CmndAdc(void)
|
|
{
|
|
if (ValidAdc() && (XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < ADC0_END)) {
|
|
Settings.my_adc0 = XdrvMailbox.payload;
|
|
restart_flag = 2;
|
|
}
|
|
char stemp1[TOPSZ];
|
|
Response_P(PSTR("{\"" D_CMND_ADC "0\":{\"%d\":\"%s\"}}"), Settings.my_adc0, GetTextIndexed(stemp1, sizeof(stemp1), Settings.my_adc0, kAdc0Names));
|
|
}
|
|
|
|
void CmndAdcs(void)
|
|
{
|
|
Response_P(PSTR("{\"" D_CMND_ADCS "\":{"));
|
|
bool jsflg = false;
|
|
char stemp1[TOPSZ];
|
|
for (uint32_t i = 0; i < ADC0_END; i++) {
|
|
if (jsflg) {
|
|
ResponseAppend_P(PSTR(","));
|
|
}
|
|
jsflg = true;
|
|
ResponseAppend_P(PSTR("\"%d\":\"%s\""), i, GetTextIndexed(stemp1, sizeof(stemp1), i, kAdc0Names));
|
|
}
|
|
ResponseJsonEndEnd();
|
|
}
|
|
|
|
void CmndAdcParam(void)
|
|
{
|
|
if (XdrvMailbox.data_len) {
|
|
if ((ADC0_TEMP == XdrvMailbox.payload) ||
|
|
(ADC0_LIGHT == XdrvMailbox.payload) ||
|
|
(ADC0_RANGE == XdrvMailbox.payload) ||
|
|
(ADC0_CT_POWER == XdrvMailbox.payload)) {
|
|
if (strstr(XdrvMailbox.data, ",") != nullptr) { // Process parameter entry
|
|
char sub_string[XdrvMailbox.data_len +1];
|
|
// AdcParam 2, 32000, 10000, 3350
|
|
// AdcParam 3, 10000, 12518931, -1.405
|
|
// AdcParam 6, 0, 1023, 0, 100
|
|
Settings.adc_param_type = XdrvMailbox.payload;
|
|
Settings.adc_param1 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
|
|
Settings.adc_param2 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 3), nullptr, 10);
|
|
if (ADC0_RANGE == XdrvMailbox.payload) {
|
|
Settings.adc_param3 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 4), nullptr, 10));
|
|
Settings.adc_param4 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 5), nullptr, 10));
|
|
} else {
|
|
Settings.adc_param3 = (int)(CharToFloat(subStr(sub_string, XdrvMailbox.data, ",", 4)) * 10000);
|
|
}
|
|
if (ADC0_CT_POWER == XdrvMailbox.payload) {
|
|
if ((Settings.adc_param1 & CT_FLAG_ENERGY_RESET) > 0) {
|
|
Adc.energy = 0;
|
|
Settings.adc_param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag
|
|
}
|
|
}
|
|
} else { // Set default values based on current adc type
|
|
// AdcParam 2
|
|
// AdcParam 3
|
|
// AdcParam 6
|
|
// AdcParam 7
|
|
Settings.adc_param_type = 0;
|
|
AdcInit();
|
|
}
|
|
}
|
|
}
|
|
|
|
// AdcParam
|
|
Response_P(PSTR("{\"" D_CMND_ADCPARAM "\":[%d,%d,%d"), Settings.adc_param_type, Settings.adc_param1, Settings.adc_param2);
|
|
if (ADC0_RANGE == my_adc0) {
|
|
ResponseAppend_P(PSTR(",%d,%d"), Settings.adc_param3, Settings.adc_param4);
|
|
} else {
|
|
int value = Settings.adc_param3;
|
|
uint8_t precision;
|
|
for (precision = 4; precision > 0; precision--) {
|
|
if (value % 10) { break; }
|
|
value /= 10;
|
|
}
|
|
char param3[33];
|
|
dtostrfd(((double)Settings.adc_param3)/10000, precision, param3);
|
|
ResponseAppend_P(PSTR(",%s"), param3);
|
|
}
|
|
ResponseAppend_P(PSTR("]}"));
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Interface
|
|
\*********************************************************************************************/
|
|
|
|
bool Xsns02(uint8_t function)
|
|
{
|
|
bool result = false;
|
|
|
|
switch (function) {
|
|
case FUNC_COMMAND:
|
|
result = DecodeCommand(kAdcCommands, AdcCommand);
|
|
break;
|
|
default:
|
|
if ((ADC0_INPUT == my_adc0) ||
|
|
(ADC0_TEMP == my_adc0) ||
|
|
(ADC0_LIGHT == my_adc0) ||
|
|
(ADC0_RANGE == my_adc0) ||
|
|
(ADC0_CT_POWER == my_adc0)) {
|
|
switch (function) {
|
|
#ifdef USE_RULES
|
|
case FUNC_EVERY_250_MSECOND:
|
|
AdcEvery250ms();
|
|
break;
|
|
#endif // USE_RULES
|
|
case FUNC_EVERY_SECOND:
|
|
AdcEverySecond();
|
|
break;
|
|
case FUNC_INIT:
|
|
AdcInit();
|
|
break;
|
|
case FUNC_JSON_APPEND:
|
|
AdcShow(1);
|
|
break;
|
|
#ifdef USE_WEBSERVER
|
|
case FUNC_WEB_SENSOR:
|
|
AdcShow(0);
|
|
break;
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif // USE_ADC_VCC
|