Tasmota/sonoff/xnrg_01_hlw8012.ino

326 lines
11 KiB
C++

/*
xnrg_01_hlw8012.ino - HLW8012 (Sonoff Pow) energy sensor support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_HLW8012
/*********************************************************************************************\
* HLW8012, BL0937 or HJL-01 - Energy (Sonoff Pow, HuaFan, KMC70011, BlitzWolf)
*
* Based on Source: Shenzhen Heli Technology Co., Ltd
\*********************************************************************************************/
#define XNRG_01 1
// Energy model type 0 (GPIO_HLW_CF) - HLW8012 based (Sonoff Pow, KMC70011, HuaFan, AplicWDP303075)
#define HLW_PREF 10000 // 1000.0W
#define HLW_UREF 2200 // 220.0V
#define HLW_IREF 4545 // 4.545A
// Energy model type 1 (GPIO_HJL_CF) - HJL-01/BL0937 based (BlitzWolf, Homecube, Gosund, Teckin)
#define HJL_PREF 1362
#define HJL_UREF 822
#define HJL_IREF 3300
#define HLW_POWER_PROBE_TIME 10 // Number of seconds to probe for power before deciding none used (low power pulse can take up to 10 seconds)
#define HLW_SAMPLE_COUNT 10 // Max number of samples per cycle
//#define HLW_DEBUG
#ifdef HLW_DEBUG
unsigned long hlw_debug[HLW_SAMPLE_COUNT];
#endif
unsigned long hlw_cf_pulse_length = 0;
unsigned long hlw_cf_pulse_last_time = 0;
unsigned long hlw_cf_power_pulse_length = 0;
unsigned long hlw_cf1_pulse_length = 0;
unsigned long hlw_cf1_pulse_last_time = 0;
unsigned long hlw_cf1_summed_pulse_length = 0;
unsigned long hlw_cf1_pulse_counter = 0;
unsigned long hlw_cf1_voltage_pulse_length = 0;
unsigned long hlw_cf1_current_pulse_length = 0;
unsigned long hlw_energy_period_counter = 0;
unsigned long hlw_power_ratio = 0;
unsigned long hlw_voltage_ratio = 0;
unsigned long hlw_current_ratio = 0;
uint8_t hlw_select_ui_flag = 0;
uint8_t hlw_ui_flag = 1;
uint8_t hlw_model_type = 0;
uint8_t hlw_load_off = 1;
uint8_t hlw_cf1_timer = 0;
// Fix core 2.5.x ISR not in IRAM Exception
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception
void HlwCfInterrupt(void) ICACHE_RAM_ATTR;
void HlwCf1Interrupt(void) ICACHE_RAM_ATTR;
#endif // USE_WS2812_DMA
void HlwCfInterrupt(void) // Service Power
{
unsigned long us = micros();
if (hlw_load_off) { // Restart plen measurement
hlw_cf_pulse_last_time = us;
hlw_load_off = 0;
} else {
hlw_cf_pulse_length = us - hlw_cf_pulse_last_time;
hlw_cf_pulse_last_time = us;
hlw_energy_period_counter++;
}
}
void HlwCf1Interrupt(void) // Service Voltage and Current
{
unsigned long us = micros();
hlw_cf1_pulse_length = us - hlw_cf1_pulse_last_time;
hlw_cf1_pulse_last_time = us;
if ((hlw_cf1_timer > 2) && (hlw_cf1_timer < 8)) { // Allow for 300 mSec set-up time and measure for up to 1 second
hlw_cf1_summed_pulse_length += hlw_cf1_pulse_length;
#ifdef HLW_DEBUG
hlw_debug[hlw_cf1_pulse_counter] = hlw_cf1_pulse_length;
#endif
hlw_cf1_pulse_counter++;
if (HLW_SAMPLE_COUNT == hlw_cf1_pulse_counter) {
hlw_cf1_timer = 8; // We need up to HLW_SAMPLE_COUNT samples within 1 second (low current could take up to 0.3 second)
}
}
}
/********************************************************************************************/
void HlwEvery200ms(void)
{
unsigned long cf1_pulse_length = 0;
unsigned long hlw_w = 0;
unsigned long hlw_u = 0;
unsigned long hlw_i = 0;
if (micros() - hlw_cf_pulse_last_time > (HLW_POWER_PROBE_TIME * 1000000)) {
hlw_cf_pulse_length = 0; // No load for some time
hlw_load_off = 1;
}
hlw_cf_power_pulse_length = hlw_cf_pulse_length;
if (hlw_cf_power_pulse_length && energy_power_on && !hlw_load_off) {
hlw_w = (hlw_power_ratio * Settings.energy_power_calibration) / hlw_cf_power_pulse_length; // W *10
energy_active_power = (float)hlw_w / 10;
} else {
energy_active_power = 0;
}
if (pin[GPIO_NRG_CF1] < 99) {
hlw_cf1_timer++;
if (hlw_cf1_timer >= 8) {
hlw_cf1_timer = 0;
hlw_select_ui_flag = (hlw_select_ui_flag) ? 0 : 1;
if (pin[GPIO_NRG_SEL] < 99) {
digitalWrite(pin[GPIO_NRG_SEL], hlw_select_ui_flag);
}
if (hlw_cf1_pulse_counter) {
cf1_pulse_length = hlw_cf1_summed_pulse_length / hlw_cf1_pulse_counter;
}
#ifdef HLW_DEBUG
// Debugging for calculating mean and median
char stemp[100];
stemp[0] = '\0';
for (uint8_t i = 0; i < hlw_cf1_pulse_counter; i++) {
snprintf_P(stemp, sizeof(stemp), PSTR("%s %d"), stemp, hlw_debug[i]);
}
for (uint8_t i = 0; i < hlw_cf1_pulse_counter; i++) {
for (uint8_t j = i + 1; j < hlw_cf1_pulse_counter; j++) {
if (hlw_debug[i] > hlw_debug[j]) { // Sort ascending
std::swap(hlw_debug[i], hlw_debug[j]);
}
}
}
unsigned long median = hlw_debug[(hlw_cf1_pulse_counter +1) / 2];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("NRG: power %d, ui %d, cnt %d, smpl%s, sum %d, mean %d, median %d"),
hlw_cf_power_pulse_length, hlw_select_ui_flag, hlw_cf1_pulse_counter, stemp, hlw_cf1_summed_pulse_length, cf1_pulse_length, median);
#endif
if (hlw_select_ui_flag == hlw_ui_flag) {
hlw_cf1_voltage_pulse_length = cf1_pulse_length;
if (hlw_cf1_voltage_pulse_length && energy_power_on) { // If powered on always provide voltage
hlw_u = (hlw_voltage_ratio * Settings.energy_voltage_calibration) / hlw_cf1_voltage_pulse_length; // V *10
energy_voltage = (float)hlw_u / 10;
} else {
energy_voltage = 0;
}
} else {
hlw_cf1_current_pulse_length = cf1_pulse_length;
if (hlw_cf1_current_pulse_length && energy_active_power) { // No current if no power being consumed
hlw_i = (hlw_current_ratio * Settings.energy_current_calibration) / hlw_cf1_current_pulse_length; // mA
energy_current = (float)hlw_i / 1000;
} else {
energy_current = 0;
}
}
hlw_cf1_summed_pulse_length = 0;
hlw_cf1_pulse_counter = 0;
}
}
}
void HlwEverySecond(void)
{
unsigned long hlw_len;
if (hlw_energy_period_counter) {
hlw_len = 10000 / hlw_energy_period_counter;
hlw_energy_period_counter = 0;
if (hlw_len) {
energy_kWhtoday_delta += ((hlw_power_ratio * Settings.energy_power_calibration) / hlw_len) / 36;
EnergyUpdateToday();
}
}
}
void HlwSnsInit(void)
{
if (!Settings.energy_power_calibration || (4975 == Settings.energy_power_calibration)) {
Settings.energy_power_calibration = HLW_PREF_PULSE;
Settings.energy_voltage_calibration = HLW_UREF_PULSE;
Settings.energy_current_calibration = HLW_IREF_PULSE;
}
if (hlw_model_type) {
hlw_power_ratio = HJL_PREF;
hlw_voltage_ratio = HJL_UREF;
hlw_current_ratio = HJL_IREF;
} else {
hlw_power_ratio = HLW_PREF;
hlw_voltage_ratio = HLW_UREF;
hlw_current_ratio = HLW_IREF;
}
if (pin[GPIO_NRG_SEL] < 99) {
pinMode(pin[GPIO_NRG_SEL], OUTPUT);
digitalWrite(pin[GPIO_NRG_SEL], hlw_select_ui_flag);
}
if (pin[GPIO_NRG_CF1] < 99) {
pinMode(pin[GPIO_NRG_CF1], INPUT_PULLUP);
attachInterrupt(pin[GPIO_NRG_CF1], HlwCf1Interrupt, FALLING);
}
pinMode(pin[GPIO_HLW_CF], INPUT_PULLUP);
attachInterrupt(pin[GPIO_HLW_CF], HlwCfInterrupt, FALLING);
}
void HlwDrvInit(void)
{
if (!energy_flg) {
hlw_model_type = 0; // HLW8012
if (pin[GPIO_HJL_CF] < 99) {
pin[GPIO_HLW_CF] = pin[GPIO_HJL_CF];
pin[GPIO_HJL_CF] = 99;
hlw_model_type = 1; // HJL-01/BL0937
}
if (pin[GPIO_HLW_CF] < 99) { // HLW8012 or HJL-01 based device Power monitor
hlw_ui_flag = 1; // Voltage on high
if (pin[GPIO_NRG_SEL_INV] < 99) {
pin[GPIO_NRG_SEL] = pin[GPIO_NRG_SEL_INV];
pin[GPIO_NRG_SEL_INV] = 99;
hlw_ui_flag = 0; // Voltage on low
}
if (pin[GPIO_NRG_CF1] < 99) { // Voltage and/or Current monitor
if (99 == pin[GPIO_NRG_SEL]) { // Voltage and/or Current selector
energy_current_available = false; // Assume Voltage
}
} else {
energy_current_available = false;
energy_voltage_available = false;
}
energy_flg = XNRG_01;
}
}
}
bool HlwCommand(void)
{
bool serviced = true;
if ((CMND_POWERCAL == energy_command_code) || (CMND_VOLTAGECAL == energy_command_code) || (CMND_CURRENTCAL == energy_command_code)) {
// Service in xdrv_03_energy.ino
}
else if (CMND_POWERSET == energy_command_code) {
if (XdrvMailbox.data_len && hlw_cf_power_pulse_length) {
Settings.energy_power_calibration = ((unsigned long)(CharToDouble(XdrvMailbox.data) * 10) * hlw_cf_power_pulse_length) / hlw_power_ratio;
}
}
else if (CMND_VOLTAGESET == energy_command_code) {
if (XdrvMailbox.data_len && hlw_cf1_voltage_pulse_length) {
Settings.energy_voltage_calibration = ((unsigned long)(CharToDouble(XdrvMailbox.data) * 10) * hlw_cf1_voltage_pulse_length) / hlw_voltage_ratio;
}
}
else if (CMND_CURRENTSET == energy_command_code) {
if (XdrvMailbox.data_len && hlw_cf1_current_pulse_length) {
Settings.energy_current_calibration = ((unsigned long)(CharToDouble(XdrvMailbox.data)) * hlw_cf1_current_pulse_length) / hlw_current_ratio;
}
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
int Xnrg01(uint8_t function)
{
int result = 0;
if (FUNC_PRE_INIT == function) {
HlwDrvInit();
}
else if (XNRG_01 == energy_flg) {
switch (function) {
case FUNC_INIT:
HlwSnsInit();
break;
case FUNC_ENERGY_EVERY_SECOND:
HlwEverySecond();
break;
case FUNC_EVERY_200_MSECOND:
HlwEvery200ms();
break;
case FUNC_COMMAND:
result = HlwCommand();
break;
}
}
return result;
}
#endif // USE_HLW8012
#endif // USE_ENERGY_SENSOR