Tasmota/tasmota/xdrv_23_zigbee_3_devices.ino

876 lines
30 KiB
C++

/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
#include <vector>
#include <map>
#ifndef ZIGBEE_SAVE_DELAY_SECONDS
#define ZIGBEE_SAVE_DELAY_SECONDS 10; // wait for 10s before saving Zigbee info
#endif
const uint16_t kZigbeeSaveDelaySeconds = ZIGBEE_SAVE_DELAY_SECONDS; // wait for x seconds
typedef int32_t (*Z_DeviceTimer)(uint16_t shortaddr, uint16_t cluster, uint16_t endpoint, uint32_t value);
typedef struct Z_Device {
uint16_t shortaddr; // unique key if not null, or unspecified if null
uint64_t longaddr; // 0x00 means unspecified
uint32_t firstSeen; // date when the device was first seen
uint32_t lastSeen; // date when the device was last seen
String manufacturerId;
String modelId;
String friendlyName;
std::vector<uint32_t> endpoints; // encoded as high 16 bits is endpoint, low 16 bits is ProfileId
std::vector<uint32_t> clusters_in; // encoded as high 16 bits is endpoint, low 16 bits is cluster number
std::vector<uint32_t> clusters_out; // encoded as high 16 bits is endpoint, low 16 bits is cluster number
// below are per device timers, used for example to query the new state of the device
uint32_t timer; // millis() when to fire the timer, 0 if no timer
uint16_t cluster; // cluster to use for the timer
uint16_t endpoint; // endpoint to use for timer
uint32_t value; // any raw value to use for the timer
Z_DeviceTimer func; // function to call when timer occurs
// json buffer used for attribute reporting
DynamicJsonBuffer *json_buffer;
JsonObject *json;
} Z_Device;
// All devices are stored in a Vector
// Invariants:
// - shortaddr is unique if not null
// - longaddr is unique if not null
// - shortaddr and longaddr cannot be both null
// - clusters_in and clusters_out containt only endpoints listed in endpoints
class Z_Devices {
public:
Z_Devices() {};
// Probe the existence of device keys
// Results:
// - 0x0000 = not found
// - 0xFFFF = bad parameter
// - 0x<shortaddr> = the device's short address
uint16_t isKnownShortAddr(uint16_t shortaddr) const;
uint16_t isKnownLongAddr(uint64_t longaddr) const;
uint16_t isKnownIndex(uint32_t index) const;
uint16_t isKnownFriendlyName(const char * name) const;
uint64_t getDeviceLongAddr(uint16_t shortaddr) const;
// Add new device, provide ShortAddr and optional longAddr
// If it is already registered, update information, otherwise create the entry
void updateDevice(uint16_t shortaddr, uint64_t longaddr = 0);
// Add an endpoint to a device
void addEndoint(uint16_t shortaddr, uint8_t endpoint);
// Add endpoint profile
void addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId);
// Add cluster
void addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out);
uint8_t findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster);
void setManufId(uint16_t shortaddr, const char * str);
void setModelId(uint16_t shortaddr, const char * str);
void setFriendlyName(uint16_t shortaddr, const char * str);
const String * getFriendlyName(uint16_t) const;
// device just seen on the network, update the lastSeen field
void updateLastSeen(uint16_t shortaddr);
// Dump json
String dump(uint32_t dump_mode, uint16_t status_shortaddr = 0) const;
// Timers
void resetTimer(uint32_t shortaddr);
void setTimer(uint32_t shortaddr, uint32_t wait_ms, uint16_t cluster, uint16_t endpoint, uint32_t value, Z_DeviceTimer func);
void runTimer(void);
// Append or clear attributes Json structure
void jsonClear(uint16_t shortaddr);
void jsonAppend(uint16_t shortaddr, const JsonObject &values);
const JsonObject *jsonGet(uint16_t shortaddr);
void jsonPublishFlush(uint16_t shortaddr); // publish the json message and clear buffer
bool jsonIsConflict(uint16_t shortaddr, const JsonObject &values);
void jsonPublishNow(uint16_t shortaddr, JsonObject &values);
// Iterator
size_t devicesSize(void) const {
return _devices.size();
}
const Z_Device &devicesAt(size_t i) const {
return _devices.at(i);
}
// Remove device from list
bool removeDevice(uint16_t shortaddr);
// Mark data as 'dirty' and requiring to save in Flash
void dirty(void);
void clean(void); // avoid writing to flash the last changes
// Find device by name, can be short_addr, long_addr, number_in_array or name
uint16_t parseDeviceParam(const char * param, bool short_must_be_known = false) const;
private:
std::vector<Z_Device> _devices = {};
uint32_t _saveTimer = 0;
template < typename T>
static bool findInVector(const std::vector<T> & vecOfElements, const T & element);
template < typename T>
static int32_t findEndpointInVector(const std::vector<T> & vecOfElements, const T & element);
// find the first endpoint match for a cluster
static int32_t findClusterEndpoint(const std::vector<uint32_t> & vecOfElements, uint16_t element);
Z_Device & getShortAddr(uint16_t shortaddr); // find Device from shortAddr, creates it if does not exist
const Z_Device & getShortAddrConst(uint16_t shortaddr) const ; // find Device from shortAddr, creates it if does not exist
Z_Device & getLongAddr(uint64_t longaddr); // find Device from shortAddr, creates it if does not exist
int32_t findShortAddr(uint16_t shortaddr) const;
int32_t findLongAddr(uint64_t longaddr) const;
int32_t findFriendlyName(const char * name) const;
void _updateLastSeen(Z_Device &device) {
if (&device != nullptr) {
device.lastSeen = Rtc.utc_time;
}
};
// Create a new entry in the devices list - must be called if it is sure it does not already exist
Z_Device & createDeviceEntry(uint16_t shortaddr, uint64_t longaddr = 0);
};
Z_Devices zigbee_devices = Z_Devices();
// Local coordinator information
uint64_t localIEEEAddr = 0;
// https://thispointer.com/c-how-to-find-an-element-in-vector-and-get-its-index/
template < typename T>
bool Z_Devices::findInVector(const std::vector<T> & vecOfElements, const T & element) {
// Find given element in vector
auto it = std::find(vecOfElements.begin(), vecOfElements.end(), element);
if (it != vecOfElements.end()) {
return true;
} else {
return false;
}
}
template < typename T>
int32_t Z_Devices::findEndpointInVector(const std::vector<T> & vecOfElements, const T & element) {
// Find given element in vector
int32_t found = 0;
for (auto &elem : vecOfElements) {
if ((elem >> 16) & 0xFF == element) { return found; }
found++;
}
return -1;
}
//
// Find the first endpoint match for a cluster, whether in or out
// Clusters are stored in the format 0x00EECCCC (EE=endpoint, CCCC=cluster number)
// In:
// _devices.clusters_in or _devices.clusters_out
// cluster number looked for
// Out:
// Index of found Endpoint_Cluster number, or -1 if not found
//
int32_t Z_Devices::findClusterEndpoint(const std::vector<uint32_t> & vecOfElements, uint16_t cluster) {
int32_t found = 0;
for (auto &elem : vecOfElements) {
if ((elem & 0xFFFF) == cluster) { return found; }
found++;
}
return -1;
}
//
// Create a new Z_Device entry in _devices. Only to be called if you are sure that no
// entry with same shortaddr or longaddr exists.
//
Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) {
if (!shortaddr && !longaddr) { return *(Z_Device*) nullptr; } // it is not legal to create an enrty with both short/long addr null
Z_Device device = { shortaddr, longaddr,
Rtc.utc_time, Rtc.utc_time,
String(), // ManufId
String(), // DeviceId
String(), // FriendlyName
std::vector<uint32_t>(),
std::vector<uint32_t>(),
std::vector<uint32_t>(),
0,0,0,0,
nullptr,
nullptr, nullptr };
device.json_buffer = new DynamicJsonBuffer();
_devices.push_back(device);
dirty();
return _devices.back();
}
//
// Scan all devices to find a corresponding shortaddr
// Looks info device.shortaddr entry
// In:
// shortaddr (non null)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findShortAddr(uint16_t shortaddr) const {
if (!shortaddr) { return -1; } // does not make sense to look for 0x0000 shortaddr (localhost)
int32_t found = 0;
if (shortaddr) {
for (auto &elem : _devices) {
if (elem.shortaddr == shortaddr) { return found; }
found++;
}
}
return -1;
}
//
// Scan all devices to find a corresponding longaddr
// Looks info device.longaddr entry
// In:
// longaddr (non null)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findLongAddr(uint64_t longaddr) const {
if (!longaddr) { return -1; }
int32_t found = 0;
if (longaddr) {
for (auto &elem : _devices) {
if (elem.longaddr == longaddr) { return found; }
found++;
}
}
return -1;
}
//
// Scan all devices to find a corresponding friendlyNme
// Looks info device.friendlyName entry
// In:
// friendlyName (null terminated, should not be empty)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findFriendlyName(const char * name) const {
if (!name) { return -1; } // if pointer is null
size_t name_len = strlen(name);
int32_t found = 0;
if (name_len) {
for (auto &elem : _devices) {
if (elem.friendlyName == name) { return found; }
found++;
}
}
return -1;
}
// Probe if device is already known but don't create any entry
uint16_t Z_Devices::isKnownShortAddr(uint16_t shortaddr) const {
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
return shortaddr;
} else {
return 0; // unknown
}
}
uint16_t Z_Devices::isKnownLongAddr(uint64_t longaddr) const {
int32_t found = findLongAddr(longaddr);
if (found >= 0) {
const Z_Device & device = devicesAt(found);
return device.shortaddr; // can be zero, if not yet registered
} else {
return 0;
}
}
uint16_t Z_Devices::isKnownIndex(uint32_t index) const {
if (index < devicesSize()) {
const Z_Device & device = devicesAt(index);
return device.shortaddr;
} else {
return 0;
}
}
uint16_t Z_Devices::isKnownFriendlyName(const char * name) const {
if ((!name) || (0 == strlen(name))) { return 0xFFFF; } // Error
int32_t found = findFriendlyName(name);
if (found >= 0) {
const Z_Device & device = devicesAt(found);
return device.shortaddr; // can be zero, if not yet registered
} else {
return 0;
}
}
uint64_t Z_Devices::getDeviceLongAddr(uint16_t shortaddr) const {
const Z_Device & device = getShortAddrConst(shortaddr);
return device.longaddr;
}
//
// We have a seen a shortaddr on the network, get the corresponding
//
Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) {
if (!shortaddr) { return *(Z_Device*) nullptr; } // this is not legal
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
return _devices[found];
}
//Serial.printf("Device entry created for shortaddr = 0x%02X, found = %d\n", shortaddr, found);
return createDeviceEntry(shortaddr, 0);
}
// Same version but Const
const Z_Device & Z_Devices::getShortAddrConst(uint16_t shortaddr) const {
if (!shortaddr) { return *(Z_Device*) nullptr; } // this is not legal
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
return _devices[found];
}
return *((Z_Device*)nullptr);
}
// find the Device object by its longaddr (unique key if not null)
Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) {
if (!longaddr) { return *(Z_Device*) nullptr; }
int32_t found = findLongAddr(longaddr);
if (found > 0) {
return _devices[found];
}
return createDeviceEntry(0, longaddr);
}
// Remove device from list, return true if it was known, false if it was not recorded
bool Z_Devices::removeDevice(uint16_t shortaddr) {
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
_devices.erase(_devices.begin() + found);
dirty();
return true;
}
return false;
}
//
// We have just seen a device on the network, update the info based on short/long addr
// In:
// shortaddr
// longaddr (both can't be null at the same time)
void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) {
int32_t s_found = findShortAddr(shortaddr); // is there already a shortaddr entry
int32_t l_found = findLongAddr(longaddr); // is there already a longaddr entry
if ((s_found >= 0) && (l_found >= 0)) { // both shortaddr and longaddr are already registered
if (s_found == l_found) {
updateLastSeen(shortaddr); // short/long addr match, all good
} else { // they don't match
// the device with longaddr got a new shortaddr
_devices[l_found].shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr
// erase the previous shortaddr
_devices.erase(_devices.begin() + s_found);
updateLastSeen(shortaddr);
dirty();
}
} else if (s_found >= 0) {
// shortaddr already exists but longaddr not
// add the longaddr to the entry
_devices[s_found].longaddr = longaddr;
updateLastSeen(shortaddr);
dirty();
} else if (l_found >= 0) {
// longaddr entry exists, update shortaddr
_devices[l_found].shortaddr = shortaddr;
dirty();
} else {
// neither short/lonf addr are found.
if (shortaddr || longaddr) {
createDeviceEntry(shortaddr, longaddr);
}
}
}
//
// Add an endpoint to a shortaddr
//
void Z_Devices::addEndoint(uint16_t shortaddr, uint8_t endpoint) {
if (!shortaddr) { return; }
uint32_t ep_profile = (endpoint << 16);
Z_Device &device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
if (findEndpointInVector(device.endpoints, ep_profile) < 0) {
device.endpoints.push_back(ep_profile);
dirty();
}
}
void Z_Devices::addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId) {
if (!shortaddr) { return; }
uint32_t ep_profile = (endpoint << 16) | profileId;
Z_Device &device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
int32_t found = findEndpointInVector(device.endpoints, ep_profile);
if (found < 0) {
device.endpoints.push_back(ep_profile);
dirty();
} else {
if (device.endpoints[found] != ep_profile) {
device.endpoints[found] = ep_profile;
dirty();
}
}
}
void Z_Devices::addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out) {
if (!shortaddr) { return; }
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
uint32_t ep_cluster = (endpoint << 16) | cluster;
if (!out) {
if (!findInVector(device.clusters_in, ep_cluster)) {
device.clusters_in.push_back(ep_cluster);
dirty();
}
} else { // out
if (!findInVector(device.clusters_out, ep_cluster)) {
device.clusters_out.push_back(ep_cluster);
dirty();
}
}
}
// Look for the best endpoint match to send a command for a specific Cluster ID
// return 0x00 if none found
uint8_t Z_Devices::findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster){
int32_t short_found = findShortAddr(shortaddr);
if (short_found < 0) return 0; // avoid creating an entry if the device was never seen
Z_Device &device = getShortAddr(shortaddr);
if (&device == nullptr) { return 0; } // don't crash if not found
int32_t found = findClusterEndpoint(device.clusters_in, cluster);
if (found >= 0) {
return (device.clusters_in[found] >> 16) & 0xFF;
} else {
return 0;
}
}
void Z_Devices::setManufId(uint16_t shortaddr, const char * str) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
if (!device.manufacturerId.equals(str)) {
dirty();
}
device.manufacturerId = str;
}
void Z_Devices::setModelId(uint16_t shortaddr, const char * str) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
if (!device.modelId.equals(str)) {
dirty();
}
device.modelId = str;
}
void Z_Devices::setFriendlyName(uint16_t shortaddr, const char * str) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
if (!device.friendlyName.equals(str)) {
dirty();
}
device.friendlyName = str;
}
const String * Z_Devices::getFriendlyName(uint16_t shortaddr) const {
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
const Z_Device & device = devicesAt(found);
if (device.friendlyName.length() > 0) {
return &device.friendlyName;
}
}
return nullptr;
}
// device just seen on the network, update the lastSeen field
void Z_Devices::updateLastSeen(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
}
// Per device timers
//
// Reset the timer for a specific device
void Z_Devices::resetTimer(uint32_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
device.timer = 0;
device.func = nullptr;
}
// Set timer for a specific device
void Z_Devices::setTimer(uint32_t shortaddr, uint32_t wait_ms, uint16_t cluster, uint16_t endpoint, uint32_t value, Z_DeviceTimer func) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
device.cluster = cluster;
device.endpoint = endpoint;
device.value = value;
device.func = func;
device.timer = wait_ms + millis();
}
// Run timer at each tick
void Z_Devices::runTimer(void) {
for (std::vector<Z_Device>::iterator it = _devices.begin(); it != _devices.end(); ++it) {
Z_Device &device = *it;
uint16_t shortaddr = device.shortaddr;
uint32_t timer = device.timer;
if ((timer) && TimeReached(timer)) {
device.timer = 0; // cancel the timer before calling, so the callback can set another timer
// trigger the timer
(*device.func)(device.shortaddr, device.cluster, device.endpoint, device.value);
}
}
// save timer
if ((_saveTimer) && TimeReached(_saveTimer)) {
saveZigbeeDevices();
_saveTimer = 0;
}
}
void Z_Devices::jsonClear(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
device.json = nullptr;
device.json_buffer->clear();
}
void CopyJsonVariant(JsonObject &to, const String &key, const JsonVariant &val) {
to.remove(key); // force remove to have metadata like LinkQuality at the end
if (val.is<char*>()) {
String sval = val.as<String>(); // force a copy of the String value
to.set(key, sval);
} else if (val.is<JsonArray>()) {
JsonArray &nested_arr = to.createNestedArray(key);
CopyJsonArray(nested_arr, val.as<JsonArray>());
} else if (val.is<JsonObject>()) {
JsonObject &nested_obj = to.createNestedObject(key);
CopyJsonObject(nested_obj, val.as<JsonObject>());
} else {
to.set(key, val);
}
}
void CopyJsonArray(JsonArray &to, const JsonArray &arr) {
for (auto v : arr) {
if (v.is<char*>()) {
String sval = v.as<String>(); // force a copy of the String value
to.add(sval);
} else if (v.is<JsonArray>()) {
} else if (v.is<JsonObject>()) {
} else {
to.add(v);
}
}
}
void CopyJsonObject(JsonObject &to, const JsonObject &from) {
for (auto kv : from) {
String key_string = kv.key;
JsonVariant &val = kv.value;
CopyJsonVariant(to, key_string, val);
}
}
// does the new payload conflicts with the existing payload, i.e. values would be overwritten
bool Z_Devices::jsonIsConflict(uint16_t shortaddr, const JsonObject &values) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return false; } // don't crash if not found
if (&values == nullptr) { return false; }
if (nullptr == device.json) {
return false; // if no previous value, no conflict
}
for (auto kv : values) {
String key_string = kv.key;
if (strcasecmp_P(kv.key, PSTR(D_CMND_ZIGBEE_LINKQUALITY))) { // exception = ignore duplicates for LinkQuality
if (device.json->containsKey(kv.key)) {
return true; // conflict!
}
}
}
return false;
}
void Z_Devices::jsonAppend(uint16_t shortaddr, const JsonObject &values) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
if (&values == nullptr) { return; }
if (nullptr == device.json) {
device.json = &(device.json_buffer->createObject());
}
// Prepend Device, will be removed later if redundant
char sa[8];
snprintf_P(sa, sizeof(sa), PSTR("0x%04X"), shortaddr);
device.json->set(F(D_JSON_ZIGBEE_DEVICE), sa);
// Prepend Friendly Name if it has one
const String * fname = zigbee_devices.getFriendlyName(shortaddr);
if (fname) {
device.json->set(F(D_JSON_ZIGBEE_NAME), (char*)fname->c_str()); // (char*) forces ArduinoJson to make a copy of the cstring
}
// copy all values from 'values' to 'json'
CopyJsonObject(*device.json, values);
}
const JsonObject *Z_Devices::jsonGet(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return nullptr; } // don't crash if not found
return device.json;
}
void Z_Devices::jsonPublishFlush(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
JsonObject * json = device.json;
if (json == nullptr) { return; } // abort if nothing in buffer
const String * fname = zigbee_devices.getFriendlyName(shortaddr);
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
// if (use_fname) {
// // we need to add the Device short_addr inside the JSON
// char sa[8];
// snprintf_P(sa, sizeof(sa), PSTR("0x%04X"), shortaddr);
// json->set(F(D_JSON_ZIGBEE_DEVICE), sa);
// } else if (fname) {
// json->set(F(D_JSON_NAME), (char*) fname);
// }
// Remove redundant "Name" or "Device"
if (use_fname) {
json->remove(F(D_JSON_ZIGBEE_NAME));
} else {
json->remove(F(D_JSON_ZIGBEE_DEVICE));
}
String msg = "";
json->printTo(msg);
zigbee_devices.jsonClear(shortaddr);
if (use_fname) {
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":{\"%s\":%s}}"), fname->c_str(), msg.c_str());
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
XdrvRulesProcess();
// DEPRECATED TODO
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED_LEGACY "\":{\"%s\":%s}}"), fname->c_str(), msg.c_str());
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
XdrvRulesProcess();
} else {
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":{\"0x%04X\":%s}}"), shortaddr, msg.c_str());
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
XdrvRulesProcess();
// DEPRECATED TODO
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED_LEGACY "\":{\"0x%04X\":%s}}"), shortaddr, msg.c_str());
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
XdrvRulesProcess();
}
// MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
// XdrvRulesProcess();
}
void Z_Devices::jsonPublishNow(uint16_t shortaddr, JsonObject & values) {
jsonPublishFlush(shortaddr); // flush any previous buffer
jsonAppend(shortaddr, values);
jsonPublishFlush(shortaddr); // publish now
}
void Z_Devices::dirty(void) {
_saveTimer = kZigbeeSaveDelaySeconds * 1000 + millis();
}
void Z_Devices::clean(void) {
_saveTimer = 0;
}
// Parse the command parameters for either:
// - a short address starting with "0x", example: 0x1234
// - a long address starting with "0x", example: 0x7CB03EBB0A0292DD
// - a number 0..99, the index number in ZigbeeStatus
// - a friendly name, between quotes, example: "Room_Temp"
uint16_t Z_Devices::parseDeviceParam(const char * param, bool short_must_be_known) const {
if (nullptr == param) { return 0; }
size_t param_len = strlen(param);
char dataBuf[param_len + 1];
strcpy(dataBuf, param);
RemoveSpace(dataBuf);
uint16_t shortaddr = 0;
if (strlen(dataBuf) < 4) {
// simple number 0..99
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 99)) {
shortaddr = zigbee_devices.isKnownIndex(XdrvMailbox.payload - 1);
}
} else if ((dataBuf[0] == '0') && (dataBuf[1] == 'x')) {
// starts with 0x
if (strlen(dataBuf) < 18) {
// expect a short address
shortaddr = strtoull(dataBuf, nullptr, 0);
if (short_must_be_known) {
shortaddr = zigbee_devices.isKnownShortAddr(shortaddr);
}
// else we don't check if it's already registered to force unregistered devices
} else {
// expect a long address
uint64_t longaddr = strtoull(dataBuf, nullptr, 0);
shortaddr = zigbee_devices.isKnownLongAddr(longaddr);
}
} else {
// expect a Friendly Name
shortaddr = zigbee_devices.isKnownFriendlyName(dataBuf);
}
return shortaddr;
}
// Dump the internal memory of Zigbee devices
// Mode = 1: simple dump of devices addresses
// Mode = 2: simple dump of devices addresses and names
// Mode = 3: Mode 2 + also dump the endpoints, profiles and clusters
String Z_Devices::dump(uint32_t dump_mode, uint16_t status_shortaddr) const {
DynamicJsonBuffer jsonBuffer;
JsonArray& json = jsonBuffer.createArray();
JsonArray& devices = json;
for (std::vector<Z_Device>::const_iterator it = _devices.begin(); it != _devices.end(); ++it) {
const Z_Device& device = *it;
uint16_t shortaddr = device.shortaddr;
char hex[22];
// ignore non-current device, if specified device is non-zero
if ((status_shortaddr) && (status_shortaddr != shortaddr)) { continue; }
JsonObject& dev = devices.createNestedObject();
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
dev[F(D_JSON_ZIGBEE_DEVICE)] = hex;
if (device.friendlyName.length() > 0) {
dev[F(D_JSON_ZIGBEE_NAME)] = device.friendlyName;
}
if (2 <= dump_mode) {
hex[0] = '0'; // prefix with '0x'
hex[1] = 'x';
Uint64toHex(device.longaddr, &hex[2], 64);
dev[F("IEEEAddr")] = hex;
if (device.modelId.length() > 0) {
dev[F(D_JSON_MODEL D_JSON_ID)] = device.modelId;
}
if (device.manufacturerId.length() > 0) {
dev[F("Manufacturer")] = device.manufacturerId;
}
}
// If dump_mode == 2, dump a lot more details
if (3 <= dump_mode) {
JsonObject& dev_endpoints = dev.createNestedObject(F("Endpoints"));
for (std::vector<uint32_t>::const_iterator ite = device.endpoints.begin() ; ite != device.endpoints.end(); ++ite) {
uint32_t ep_profile = *ite;
uint8_t endpoint = (ep_profile >> 16) & 0xFF;
uint16_t profileId = ep_profile & 0xFFFF;
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
JsonObject& ep = dev_endpoints.createNestedObject(hex);
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), profileId);
ep[F("ProfileId")] = hex;
int32_t found = -1;
for (uint32_t i = 0; i < sizeof(Z_ProfileIds) / sizeof(Z_ProfileIds[0]); i++) {
if (pgm_read_word(&Z_ProfileIds[i]) == profileId) {
found = i;
break;
}
}
if (found > 0) {
GetTextIndexed(hex, sizeof(hex), found, Z_ProfileNames);
ep[F("ProfileIdName")] = hex;
}
ep.createNestedArray(F("ClustersIn"));
ep.createNestedArray(F("ClustersOut"));
}
for (std::vector<uint32_t>::const_iterator itc = device.clusters_in.begin() ; itc != device.clusters_in.end(); ++itc) {
uint16_t cluster = *itc & 0xFFFF;
uint8_t endpoint = (*itc >> 16) & 0xFF;
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersIn")];
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster);
cluster_arr.add(hex);
}
for (std::vector<uint32_t>::const_iterator itc = device.clusters_out.begin() ; itc != device.clusters_out.end(); ++itc) {
uint16_t cluster = *itc & 0xFFFF;
uint8_t endpoint = (*itc >> 16) & 0xFF;
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersOut")];
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster);
cluster_arr.add(hex);
}
}
}
String payload = "";
payload.reserve(200);
json.printTo(payload);
return payload;
}
#endif // USE_ZIGBEE