Tasmota/tasmota/core_esp8266_waveform.cpp

615 lines
22 KiB
C++

/*
esp8266_waveform - General purpose waveform generation and control,
supporting outputs on all pins in parallel.
Copyright (c) 2018 Earle F. Philhower, III. All rights reserved.
The core idea is to have a programmable waveform generator with a unique
high and low period (defined in microseconds or CPU clock cycles). TIMER1
is set to 1-shot mode and is always loaded with the time until the next
edge of any live waveforms.
Up to one waveform generator per pin supported.
Each waveform generator is synchronized to the ESP clock cycle counter, not
the timer. This allows for removing interrupt jitter and delay as the
counter always increments once per 80MHz clock. Changes to a waveform are
contiguous and only take effect on the next waveform transition,
allowing for smooth transitions.
This replaces older tone(), analogWrite(), and the Servo classes.
Everywhere in the code where "cycles" is used, it means ESP.getCycleCount()
clock cycle count, or an interval measured in CPU clock cycles, but not
TIMER1 cycles (which may be 2 CPU clock cycles @ 160MHz).
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef ESP8266
#include <Arduino.h>
#include "ets_sys.h"
#include "core_esp8266_waveform.h"
#include "user_interface.h"
extern "C" {
// Internal-only calls, not for applications
extern void _setPWMFreq(uint32_t freq);
extern bool _stopPWM(int pin);
extern bool _setPWM(int pin, uint32_t val, uint32_t range);
extern int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles);
// Maximum delay between IRQs
#define MAXIRQUS (10000)
// Waveform generator can create tones, PWM, and servos
typedef struct {
uint32_t nextServiceCycle; // ESP cycle timer when a transition required
uint32_t expiryCycle; // For time-limited waveform, the cycle when this waveform must stop
uint32_t timeHighCycles; // Actual running waveform period (adjusted using desiredCycles)
uint32_t timeLowCycles; //
uint32_t desiredHighCycles; // Ideal waveform period to drive the error signal
uint32_t desiredLowCycles; //
uint32_t lastEdge; // Cycle when this generator last changed
} Waveform;
class WVFState {
public:
Waveform waveform[17]; // State of all possible pins
uint32_t waveformState = 0; // Is the pin high or low, updated in NMI so no access outside the NMI code
uint32_t waveformEnabled = 0; // Is it actively running, updated in NMI so no access outside the NMI code
// Enable lock-free by only allowing updates to waveformState and waveformEnabled from IRQ service routine
uint32_t waveformToEnable = 0; // Message to the NMI handler to start a waveform on a inactive pin
uint32_t waveformToDisable = 0; // Message to the NMI handler to disable a pin from waveform generation
uint32_t waveformToChange = 0; // Mask of pin to change. One bit set in main app, cleared when effected in the NMI
uint32_t waveformNewHigh = 0;
uint32_t waveformNewLow = 0;
uint32_t (*timer1CB)() = NULL;
// Optimize the NMI inner loop by keeping track of the min and max GPIO that we
// are generating. In the common case (1 PWM) these may be the same pin and
// we can avoid looking at the other pins.
uint16_t startPin = 0;
uint16_t endPin = 0;
};
static WVFState wvfState;
// Ensure everything is read/written to RAM
#define MEMBARRIER() { __asm__ volatile("" ::: "memory"); }
// Non-speed critical bits
#pragma GCC optimize ("Os")
// Interrupt on/off control
static ICACHE_RAM_ATTR void timer1Interrupt();
static bool timerRunning = false;
static __attribute__((noinline)) void initTimer() {
if (!timerRunning) {
timer1_disable();
ETS_FRC_TIMER1_INTR_ATTACH(NULL, NULL);
ETS_FRC_TIMER1_NMI_INTR_ATTACH(timer1Interrupt);
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_SINGLE);
timerRunning = true;
timer1_write(microsecondsToClockCycles(10));
}
}
static ICACHE_RAM_ATTR void forceTimerInterrupt() {
if (T1L > microsecondsToClockCycles(10)) {
T1L = microsecondsToClockCycles(10);
}
}
// PWM implementation using special purpose state machine
//
// Keep an ordered list of pins with the delta in cycles between each
// element, with a terminal entry making up the remainder of the PWM
// period. With this method sum(all deltas) == PWM period clock cycles.
//
// At t=0 set all pins high and set the timeout for the 1st edge.
// On interrupt, if we're at the last element reset to t=0 state
// Otherwise, clear that pin down and set delay for next element
// and so forth.
constexpr int maxPWMs = 8;
// PWM machine state
typedef struct PWMState {
uint32_t mask; // Bitmask of active pins
uint32_t cnt; // How many entries
uint32_t idx; // Where the state machine is along the list
uint8_t pin[maxPWMs + 1];
uint32_t delta[maxPWMs + 1];
uint32_t nextServiceCycle; // Clock cycle for next step
struct PWMState *pwmUpdate; // Set by main code, cleared by ISR
} PWMState;
static PWMState pwmState;
static uint32_t _pwmPeriod = microsecondsToClockCycles(1000000UL) / 1000;
// If there are no more scheduled activities, shut down Timer 1.
// Otherwise, do nothing.
static ICACHE_RAM_ATTR void disableIdleTimer() {
if (timerRunning && !wvfState.waveformEnabled && !pwmState.cnt && !wvfState.timer1CB) {
ETS_FRC_TIMER1_NMI_INTR_ATTACH(NULL);
timer1_disable();
timer1_isr_init();
timerRunning = false;
}
}
// Notify the NMI that a new PWM state is available through the mailbox.
// Wait for mailbox to be emptied (either busy or delay() as needed)
static ICACHE_RAM_ATTR void _notifyPWM(PWMState *p, bool idle) {
p->pwmUpdate = nullptr;
pwmState.pwmUpdate = p;
MEMBARRIER();
forceTimerInterrupt();
while (pwmState.pwmUpdate) {
if (idle) {
delay(0);
}
MEMBARRIER();
}
}
static void _addPWMtoList(PWMState &p, int pin, uint32_t val, uint32_t range);
// Called when analogWriteFreq() changed to update the PWM total period
void _setPWMFreq(uint32_t freq) {
// Convert frequency into clock cycles
uint32_t cc = microsecondsToClockCycles(1000000UL) / freq;
// Simple static adjustment to bring period closer to requested due to overhead
#if F_CPU == 80000000
cc -= microsecondsToClockCycles(2);
#else
cc -= microsecondsToClockCycles(1);
#endif
if (cc == _pwmPeriod) {
return; // No change
}
_pwmPeriod = cc;
if (pwmState.cnt) {
PWMState p; // The working copy since we can't edit the one in use
p.cnt = 0;
for (uint32_t i = 0; i < pwmState.cnt; i++) {
auto pin = pwmState.pin[i];
_addPWMtoList(p, pin, wvfState.waveform[pin].desiredHighCycles, wvfState.waveform[pin].desiredLowCycles);
}
// Update and wait for mailbox to be emptied
initTimer();
_notifyPWM(&p, true);
disableIdleTimer();
}
}
// Helper routine to remove an entry from the state machine
// and clean up any marked-off entries
static void _cleanAndRemovePWM(PWMState *p, int pin) {
uint32_t leftover = 0;
uint32_t in, out;
for (in = 0, out = 0; in < p->cnt; in++) {
if ((p->pin[in] != pin) && (p->mask & (1<<p->pin[in]))) {
p->pin[out] = p->pin[in];
p->delta[out] = p->delta[in] + leftover;
leftover = 0;
out++;
} else {
leftover += p->delta[in];
p->mask &= ~(1<<p->pin[in]);
}
}
p->cnt = out;
// Final pin is never used: p->pin[out] = 0xff;
p->delta[out] = p->delta[in] + leftover;
}
// Disable PWM on a specific pin (i.e. when a digitalWrite or analogWrite(0%/100%))
ICACHE_RAM_ATTR bool _stopPWM(int pin) {
if (!((1<<pin) & pwmState.mask)) {
return false; // Pin not actually active
}
PWMState p; // The working copy since we can't edit the one in use
p = pwmState;
// In _stopPWM we just clear the mask but keep everything else
// untouched to save IRAM. The main startPWM will handle cleanup.
p.mask &= ~(1<<pin);
if (!p.mask) {
// If all have been stopped, then turn PWM off completely
p.cnt = 0;
}
// Update and wait for mailbox to be emptied, no delay (could be in ISR)
_notifyPWM(&p, false);
// Possibly shut down the timer completely if we're done
disableIdleTimer();
return true;
}
static void _addPWMtoList(PWMState &p, int pin, uint32_t val, uint32_t range) {
// Stash the val and range so we can re-evaluate the fraction
// should the user change PWM frequency. This allows us to
// give as great a precision as possible. We know by construction
// that the waveform for this pin will be inactive so we can borrow
// memory from that structure.
wvfState.waveform[pin].desiredHighCycles = val; // Numerator == high
wvfState.waveform[pin].desiredLowCycles = range; // Denominator == low
uint32_t cc = (_pwmPeriod * val) / range;
if (cc == 0) {
_stopPWM(pin);
digitalWrite(pin, LOW);
return;
} else if (cc >= _pwmPeriod) {
_stopPWM(pin);
digitalWrite(pin, HIGH);
return;
}
if (p.cnt == 0) {
// Starting up from scratch, special case 1st element and PWM period
p.pin[0] = pin;
p.delta[0] = cc;
// Final pin is never used: p.pin[1] = 0xff;
p.delta[1] = _pwmPeriod - cc;
} else {
uint32_t ttl = 0;
uint32_t i;
// Skip along until we're at the spot to insert
for (i=0; (i <= p.cnt) && (ttl + p.delta[i] < cc); i++) {
ttl += p.delta[i];
}
// Shift everything out by one to make space for new edge
for (int32_t j = p.cnt; j >= (int)i; j--) {
p.pin[j + 1] = p.pin[j];
p.delta[j + 1] = p.delta[j];
}
int off = cc - ttl; // The delta from the last edge to the one we're inserting
p.pin[i] = pin;
p.delta[i] = off; // Add the delta to this new pin
p.delta[i + 1] -= off; // And subtract it from the follower to keep sum(deltas) constant
}
p.cnt++;
p.mask |= 1<<pin;
}
// Called by analogWrite(1...99%) to set the PWM duty in clock cycles
bool _setPWM(int pin, uint32_t val, uint32_t range) {
stopWaveform(pin);
PWMState p; // Working copy
p = pwmState;
// Get rid of any entries for this pin
_cleanAndRemovePWM(&p, pin);
// And add it to the list, in order
if (p.cnt >= maxPWMs) {
return false; // No space left
}
_addPWMtoList(p, pin, val, range);
// Set mailbox and wait for ISR to copy it over
initTimer();
_notifyPWM(&p, true);
disableIdleTimer();
return true;
}
// Start up a waveform on a pin, or change the current one. Will change to the new
// waveform smoothly on next low->high transition. For immediate change, stopWaveform()
// first, then it will immediately begin.
int startWaveform(uint8_t pin, uint32_t timeHighUS, uint32_t timeLowUS, uint32_t runTimeUS) {
return startWaveformClockCycles(pin, microsecondsToClockCycles(timeHighUS), microsecondsToClockCycles(timeLowUS), microsecondsToClockCycles(runTimeUS));
}
int startWaveformClockCycles(uint8_t pin, uint32_t timeHighCycles, uint32_t timeLowCycles, uint32_t runTimeCycles) {
if ((pin > 16) || isFlashInterfacePin(pin)) {
return false;
}
Waveform *wave = &wvfState.waveform[pin];
wave->expiryCycle = runTimeCycles ? ESP.getCycleCount() + runTimeCycles : 0;
if (runTimeCycles && !wave->expiryCycle) {
wave->expiryCycle = 1; // expiryCycle==0 means no timeout, so avoid setting it
}
_stopPWM(pin); // Make sure there's no PWM live here
uint32_t mask = 1<<pin;
MEMBARRIER();
if (wvfState.waveformEnabled & mask) {
// Make sure no waveform changes are waiting to be applied
while (wvfState.waveformToChange) {
delay(0); // Wait for waveform to update
// No mem barrier here, the call to a global function implies global state updated
}
wvfState.waveformNewHigh = timeHighCycles;
wvfState.waveformNewLow = timeLowCycles;
MEMBARRIER();
wvfState.waveformToChange = mask;
// The waveform will be updated some time in the future on the next period for the signal
} else { // if (!(wvfState.waveformEnabled & mask)) {
wave->timeHighCycles = timeHighCycles;
wave->desiredHighCycles = timeHighCycles;
wave->timeLowCycles = timeLowCycles;
wave->desiredLowCycles = timeLowCycles;
wave->lastEdge = 0;
wave->nextServiceCycle = ESP.getCycleCount() + microsecondsToClockCycles(1);
wvfState.waveformToEnable |= mask;
MEMBARRIER();
initTimer();
forceTimerInterrupt();
while (wvfState.waveformToEnable) {
delay(0); // Wait for waveform to update
// No mem barrier here, the call to a global function implies global state updated
}
}
return true;
}
// Set a callback. Pass in NULL to stop it
void setTimer1Callback(uint32_t (*fn)()) {
wvfState.timer1CB = fn;
if (fn) {
initTimer();
forceTimerInterrupt();
}
disableIdleTimer();
}
// Speed critical bits
#pragma GCC optimize ("O2")
// Normally would not want two copies like this, but due to different
// optimization levels the inline attribute gets lost if we try the
// other version.
static inline ICACHE_RAM_ATTR uint32_t GetCycleCountIRQ() {
uint32_t ccount;
__asm__ __volatile__("rsr %0,ccount":"=a"(ccount));
return ccount;
}
static inline ICACHE_RAM_ATTR uint32_t min_u32(uint32_t a, uint32_t b) {
if (a < b) {
return a;
}
return b;
}
// Stops a waveform on a pin
int ICACHE_RAM_ATTR stopWaveform(uint8_t pin) {
// Can't possibly need to stop anything if there is no timer active
if (!timerRunning) {
return false;
}
// If user sends in a pin >16 but <32, this will always point to a 0 bit
// If they send >=32, then the shift will result in 0 and it will also return false
uint32_t mask = 1<<pin;
if (wvfState.waveformEnabled & mask) {
wvfState.waveformToDisable = mask;
// Cancel any pending updates for this waveform, too.
if (wvfState.waveformToChange & mask) {
wvfState.waveformToChange = 0;
}
forceTimerInterrupt();
while (wvfState.waveformToDisable) {
MEMBARRIER(); // If it wasn't written yet, it has to be by now
/* no-op */ // Can't delay() since stopWaveform may be called from an IRQ
}
}
disableIdleTimer();
return true;
}
// The SDK and hardware take some time to actually get to our NMI code, so
// decrement the next IRQ's timer value by a bit so we can actually catch the
// real CPU cycle counter we want for the waveforms.
// The SDK also sometimes is running at a different speed the the Arduino core
// so the ESP cycle counter is actually running at a variable speed.
// adjust(x) takes care of adjusting a delta clock cycle amount accordingly.
#if F_CPU == 80000000
#define DELTAIRQ (microsecondsToClockCycles(3))
#define adjust(x) ((x) << (turbo ? 1 : 0))
#else
#define DELTAIRQ (microsecondsToClockCycles(2))
#define adjust(x) ((x) >> (turbo ? 0 : 1))
#endif
static ICACHE_RAM_ATTR void timer1Interrupt() {
// Flag if the core is at 160 MHz, for use by adjust()
bool turbo = (*(uint32_t*)0x3FF00014) & 1 ? true : false;
uint32_t nextEventCycles = microsecondsToClockCycles(MAXIRQUS);
uint32_t timeoutCycle = GetCycleCountIRQ() + microsecondsToClockCycles(14);
if (wvfState.waveformToEnable || wvfState.waveformToDisable) {
// Handle enable/disable requests from main app
wvfState.waveformEnabled = (wvfState.waveformEnabled & ~wvfState.waveformToDisable) | wvfState.waveformToEnable; // Set the requested waveforms on/off
wvfState.waveformState &= ~wvfState.waveformToEnable; // And clear the state of any just started
wvfState.waveformToEnable = 0;
wvfState.waveformToDisable = 0;
// No mem barrier. Globals must be written to RAM on ISR exit.
// Find the first GPIO being generated by checking GCC's find-first-set (returns 1 + the bit of the first 1 in an int32_t)
wvfState.startPin = __builtin_ffs(wvfState.waveformEnabled) - 1;
// Find the last bit by subtracting off GCC's count-leading-zeros (no offset in this one)
wvfState.endPin = 32 - __builtin_clz(wvfState.waveformEnabled);
} else if (!pwmState.cnt && pwmState.pwmUpdate) {
// Start up the PWM generator by copying from the mailbox
pwmState.cnt = 1;
pwmState.idx = 1; // Ensure copy this cycle, cause it to start at t=0
pwmState.nextServiceCycle = GetCycleCountIRQ(); // Do it this loop!
// No need for mem barrier here. Global must be written by IRQ exit
}
bool done = false;
if (wvfState.waveformEnabled || pwmState.cnt) {
do {
nextEventCycles = microsecondsToClockCycles(MAXIRQUS);
// PWM state machine implementation
if (pwmState.cnt) {
int32_t cyclesToGo = pwmState.nextServiceCycle - GetCycleCountIRQ();
if (cyclesToGo < 0) {
if (pwmState.idx == pwmState.cnt) { // Start of pulses, possibly copy new
if (pwmState.pwmUpdate) {
// Do the memory copy from temp to global and clear mailbox
pwmState = *(PWMState*)pwmState.pwmUpdate;
}
GPOS = pwmState.mask; // Set all active pins high
if (pwmState.mask & (1<<16)) {
GP16O = 1;
}
pwmState.idx = 0;
} else {
do {
// Drop the pin at this edge
if (pwmState.mask & (1<<pwmState.pin[pwmState.idx])) {
GPOC = 1<<pwmState.pin[pwmState.idx];
if (pwmState.pin[pwmState.idx] == 16) {
GP16O = 0;
}
}
pwmState.idx++;
// Any other pins at this same PWM value will have delta==0, drop them too.
} while (pwmState.delta[pwmState.idx] == 0);
}
// Preserve duty cycle over PWM period by using now+xxx instead of += delta
cyclesToGo = adjust(pwmState.delta[pwmState.idx]);
pwmState.nextServiceCycle = GetCycleCountIRQ() + cyclesToGo;
}
nextEventCycles = min_u32(nextEventCycles, cyclesToGo);
}
for (auto i = wvfState.startPin; i <= wvfState.endPin; i++) {
uint32_t mask = 1<<i;
// If it's not on, ignore!
if (!(wvfState.waveformEnabled & mask)) {
continue;
}
Waveform *wave = &wvfState.waveform[i];
uint32_t now = GetCycleCountIRQ();
// Disable any waveforms that are done
if (wave->expiryCycle) {
int32_t expiryToGo = wave->expiryCycle - now;
if (expiryToGo < 0) {
// Done, remove!
if (i == 16) {
GP16O = 0;
}
GPOC = mask;
wvfState.waveformEnabled &= ~mask;
continue;
}
}
// Check for toggles
int32_t cyclesToGo = wave->nextServiceCycle - now;
if (cyclesToGo < 0) {
uint32_t nextEdgeCycles;
uint32_t desired = 0;
uint32_t *timeToUpdate;
wvfState.waveformState ^= mask;
if (wvfState.waveformState & mask) {
if (i == 16) {
GP16O = 1;
}
GPOS = mask;
if (wvfState.waveformToChange & mask) {
// Copy over next full-cycle timings
wave->timeHighCycles = wvfState.waveformNewHigh;
wave->desiredHighCycles = wvfState.waveformNewHigh;
wave->timeLowCycles = wvfState.waveformNewLow;
wave->desiredLowCycles = wvfState.waveformNewLow;
wave->lastEdge = 0;
wvfState.waveformToChange = 0;
}
if (wave->lastEdge) {
desired = wave->desiredLowCycles;
timeToUpdate = &wave->timeLowCycles;
}
nextEdgeCycles = wave->timeHighCycles;
} else {
if (i == 16) {
GP16O = 0;
}
GPOC = mask;
desired = wave->desiredHighCycles;
timeToUpdate = &wave->timeHighCycles;
nextEdgeCycles = wave->timeLowCycles;
}
if (desired) {
desired = adjust(desired);
int32_t err = desired - (now - wave->lastEdge);
if (abs(err) < desired) { // If we've lost > the entire phase, ignore this error signal
err /= 2;
*timeToUpdate += err;
}
}
nextEdgeCycles = adjust(nextEdgeCycles);
wave->nextServiceCycle = now + nextEdgeCycles;
nextEventCycles = min_u32(nextEventCycles, nextEdgeCycles);
wave->lastEdge = now;
} else {
uint32_t deltaCycles = wave->nextServiceCycle - now;
nextEventCycles = min_u32(nextEventCycles, deltaCycles);
}
}
// Exit the loop if we've hit the fixed runtime limit or the next event is known to be after that timeout would occur
uint32_t now = GetCycleCountIRQ();
int32_t cycleDeltaNextEvent = timeoutCycle - (now + nextEventCycles);
int32_t cyclesLeftTimeout = timeoutCycle - now;
done = (cycleDeltaNextEvent < 0) || (cyclesLeftTimeout < 0);
} while (!done);
} // if (wvfState.waveformEnabled)
if (wvfState.timer1CB) {
nextEventCycles = min_u32(nextEventCycles, wvfState.timer1CB());
}
if (nextEventCycles < microsecondsToClockCycles(5)) {
nextEventCycles = microsecondsToClockCycles(5);
}
nextEventCycles -= DELTAIRQ;
// Do it here instead of global function to save time and because we know it's edge-IRQ
T1L = nextEventCycles >> (turbo ? 1 : 0);
}
};
#endif // ESP8266