Tasmota/tasmota/xsns_63_aht1x.ino

247 lines
7.8 KiB
C++

/*
xsns_63_AHT1x.ino - AHT10 I2C temperature and humidity sensor support for Tasmota
Copyright (C) 2020 Martin Wagner
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_AHT1x
/*********************************************************************************************\
* AHT10/15 - Temperature and Humidity
*
* I2C Address: 0x38
*
* Attention: this Sensor is incompatible with other I2C devices on I2C bus.
*
* The Datasheet write:
* "Only a single AHT10 can be connected to the I2C bus and no other I2C
* devices can be connected".
*
* after lot of search and tests, now is confirmed that works only reliable with one sensor
* on I2C Bus
\*********************************************************************************************/
#define XSNS_63 63
#define XI2C_43 43 // See I2CDEVICES.md
#define AHT1X_ADDR1 0x38
#define AHT1X_ADDR2 0x39
#define AHT1X_MAX_SENSORS 2
#define AHT_HUMIDITY_CONST 100
#define AHT_TEMPERATURE_CONST 200
#define AHT_TEMPERATURE_OFFSET 50
#define KILOBYTE_CONST 1048576.0f
#define AHT1X_CMD_DELAY 40
#define AHT1X_RST_DELAY 30
#define AHT1X_MEAS_DELAY 80 // over 75ms in datasheet
uint8_t AHTSetCalCmd[3] = {0xE1, 0x08, 00}; //load factory calibration coeff
uint8_t AHTSetCycleCmd[3] = {0xE1, 0x28, 00}; //enable cycle mode
uint8_t AHTMeasureCmd[3] = {0xAC, 0x33, 00}; //start measurment command
uint8_t AHTResetCmd = 0xBA; //soft reset command
const char ahtTypes[] PROGMEM = "AHT1X|AHT1X";
uint8_t aht1x_addresses[] = { AHT1X_ADDR1, AHT1X_ADDR2 };
uint8_t aht1x_count = 0;
uint8_t aht1x_Pcount = 0;
struct AHT1XSTRUCT
{
float humidity = NAN;
float temperature = NAN;
uint8_t address; // bus address
char types[6]; // Sensor type name and address -
} aht1x_sensors[AHT1X_MAX_SENSORS];
bool AHT1XWrite(uint8_t aht1x_idx)
{
Wire.beginTransmission(aht1x_sensors[aht1x_idx].address);
Wire.write(AHTMeasureCmd, 3);
if (Wire.endTransmission() != 0)
return false;
}
bool AHT1XRead(uint8_t aht1x_idx)
{
uint8_t data[6];
Wire.requestFrom(aht1x_sensors[aht1x_idx].address, (uint8_t) 6);
for(uint8_t i = 0; Wire.available() > 0; i++){
data[i] = Wire.read();
}
if ((data[0] & 0x80) == 0x80) return false; //device is busy
aht1x_sensors[aht1x_idx].humidity = (((data[1] << 12)| (data[2] << 4) | data[3] >> 4) * AHT_HUMIDITY_CONST / KILOBYTE_CONST);
aht1x_sensors[aht1x_idx].temperature = ((AHT_TEMPERATURE_CONST * (((data[3] & 0x0F) << 16) | (data[4] << 8) | data[5]) / KILOBYTE_CONST) - AHT_TEMPERATURE_OFFSET);
return (!isnan(aht1x_sensors[aht1x_idx].temperature) && !isnan(aht1x_sensors[aht1x_idx].humidity) && (aht1x_sensors[aht1x_idx].humidity != 0));
}
/********************************************************************************************/
// Test for Polling the device without delays
// Incompatible with other devices on I2C bus
void AHT1XPoll(void) // We have 100ms for read. Sensor needs 80-95 ms
{
aht1x_Pcount++;
switch (aht1x_Pcount) {
case 10:
AHT1XWrite(0);
break;
case 11:
if (AHT1XRead(0)){
ConvertTemp(aht1x_sensors[0].temperature); // Set global temperature
ConvertHumidity(aht1x_sensors[0].humidity); // Set global humidity
}
aht1x_Pcount = 0;
break;
}
}
unsigned char AHT1XReadStatus(uint8_t aht1x_address)
{
uint8_t result = 0;
Wire.requestFrom(aht1x_address, (uint8_t) 1);
result = Wire.read();
return result;
}
void AHT1XReset(uint8_t aht1x_address)
{
Wire.beginTransmission(aht1x_address);
Wire.write(AHTResetCmd);
Wire.endTransmission();
delay(AHT1X_RST_DELAY);
}
/********************************************************************************************/
bool AHT1XInit(uint8_t aht1x_address)
{
Wire.beginTransmission(aht1x_address);
Wire.write(AHTSetCalCmd, 3);
if (Wire.endTransmission() != 0) return false;
delay(AHT1X_CMD_DELAY);
if((AHT1XReadStatus(aht1x_address) & 0x68) == 0x08) // Sensor calcoef aktiv
return true;
return false;
}
void AHT1XDetect(void)
{
for (uint8_t i = 0; i < AHT1X_MAX_SENSORS; i++) {
if (I2cActive(aht1x_addresses[i])) { continue; }
if (AHT1XInit(aht1x_addresses[i]))
{
aht1x_sensors[aht1x_count].address = aht1x_addresses[i];
GetTextIndexed(aht1x_sensors[aht1x_count].types, sizeof(aht1x_sensors[aht1x_count].types), i, ahtTypes);
I2cSetActiveFound(aht1x_sensors[aht1x_count].address, aht1x_sensors[aht1x_count].types);
aht1x_count = 1;
break; // Only one Sensor allowed at the moment (I2C Sensor-Bug)
}
}
}
/*
void AHT1XShow(bool json)
{
for (uint8_t i = 0; i < aht1x_count; i++)
{
float tem = ConvertTemp(aht1x_sensors[i].temperature);
float hum = ConvertHumidity(aht1x_sensors[i].humidity);
float dew = CalcTemHumToDew(aht1x_sensors[i].humidity, aht1x_sensors[i].temperature);
char types[11]; // AHT1X-0x38
snprintf_P(types, sizeof(types), PSTR("%s%c0x%02X"), aht1x_sensors[i].types, IndexSeparator(), aht1x_sensors[i].address); // "X-0xXX"
char temperature[33];
dtostrfd(tem, Settings.flag2.temperature_resolution, temperature);
char humidity[33];
dtostrfd(hum, Settings.flag2.humidity_resolution, humidity);
char dewpoint[33];
dtostrfd(dew, Settings.flag2.temperature_resolution, dewpoint);
if (json) {
//ResponseAppend_P(JSON_SNS_TEMPHUM, types, temperature, humidity);
ResponseAppend_P(JSON_SNS_TEMPHUMDEW, types, temperature, humidity, dewpoint);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (0 == i)); // <-- fails
{
DomoticzTempHumSensor(temperature, humidity);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if (0 == tele_period)
{
KnxSensor(KNX_TEMPERATURE, tem);
KnxSensor(KNX_HUMIDITY, hum);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
}
else
{
WSContentSend_PD(HTTP_SNS_TEMP, types, temperature, TempUnit());
WSContentSend_PD(HTTP_SNS_HUM, types, humidity);
WSContentSend_PD(HTTP_SNS_DEW, types, dewpoint,TempUnit());
#endif // USE_WEBSERVER
}
}
}
*/
void AHT1XShow(bool json)
{
for (uint32_t i = 0; i < aht1x_count; i++) {
float tem = ConvertTemp(aht1x_sensors[i].temperature);
float hum = ConvertHumidity(aht1x_sensors[i].humidity);
char types[11]; // AHT1X-0x38
snprintf_P(types, sizeof(types), PSTR("%s%c0x%02X"), aht1x_sensors[i].types, IndexSeparator(), aht1x_sensors[i].address); // "X-0xXX"
TempHumDewShow(json, ((0 == tele_period) && (0 == i)), types, tem, hum);
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns63(uint8_t function)
{
if (!I2cEnabled(XI2C_43)) { return false; }
bool result = false;
if (FUNC_INIT == function) {
AHT1XDetect();
}
else if (aht1x_count){
switch (function) {
case FUNC_EVERY_100_MSECOND:
AHT1XPoll();
break;
case FUNC_JSON_APPEND:
AHT1XShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
AHT1XShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_AHT1X
#endif // USE_I2C