Tasmota/tasmota/support_tasmota.ino

1572 lines
57 KiB
C++

/*
support_tasmota.ino - Core support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
const char kSleepMode[] PROGMEM = "Dynamic|Normal";
const char kPrefixes[] PROGMEM = D_CMND "|" D_STAT "|" D_TELE;
char* Format(char* output, const char* input, int size)
{
char *token;
uint32_t digits = 0;
if (strstr(input, "%") != nullptr) {
strlcpy(output, input, size);
token = strtok(output, "%");
if (strstr(input, "%") == input) {
output[0] = '\0';
} else {
token = strtok(nullptr, "");
}
if (token != nullptr) {
digits = atoi(token);
if (digits) {
char tmp[size];
if (strchr(token, 'd')) {
snprintf_P(tmp, size, PSTR("%s%c0%dd"), output, '%', digits);
snprintf_P(output, size, tmp, ESP_getChipId() & 0x1fff); // %04d - short chip ID in dec, like in hostname
} else {
snprintf_P(tmp, size, PSTR("%s%c0%dX"), output, '%', digits);
snprintf_P(output, size, tmp, ESP_getChipId()); // %06X - full chip ID in hex
}
} else {
if (strchr(token, 'd')) {
snprintf_P(output, size, PSTR("%s%d"), output, ESP_getChipId()); // %d - full chip ID in dec
digits = 8;
}
}
}
}
if (!digits) {
strlcpy(output, input, size);
}
return output;
}
char* GetOtaUrl(char *otaurl, size_t otaurl_size)
{
if (strstr(SettingsText(SET_OTAURL), "%04d") != nullptr) { // OTA url contains placeholder for chip ID
snprintf(otaurl, otaurl_size, SettingsText(SET_OTAURL), ESP_getChipId() & 0x1fff);
}
else if (strstr(SettingsText(SET_OTAURL), "%d") != nullptr) { // OTA url contains placeholder for chip ID
snprintf_P(otaurl, otaurl_size, SettingsText(SET_OTAURL), ESP_getChipId());
}
else {
strlcpy(otaurl, SettingsText(SET_OTAURL), otaurl_size);
}
return otaurl;
}
char* GetTopic_P(char *stopic, uint32_t prefix, char *topic, const char* subtopic)
{
/* prefix 0 = Cmnd
prefix 1 = Stat
prefix 2 = Tele
prefix 4 = Cmnd fallback
prefix 5 = Stat fallback
prefix 6 = Tele fallback
prefix 8 = Cmnd topic
prefix 9 = Stat topic
prefix 10 = Tele topic
*/
char romram[CMDSZ];
String fulltopic;
snprintf_P(romram, sizeof(romram), subtopic);
if (fallback_topic_flag || (prefix > 3)) {
bool fallback = (prefix < 8);
prefix &= 3;
char stemp[11];
fulltopic = GetTextIndexed(stemp, sizeof(stemp), prefix, kPrefixes);
fulltopic += F("/");
if (fallback) {
fulltopic += mqtt_client;
fulltopic += F("_fb"); // cmnd/<mqttclient>_fb
} else {
fulltopic += topic; // cmnd/<grouptopic>
}
} else {
fulltopic = SettingsText(SET_MQTT_FULLTOPIC);
if ((0 == prefix) && (-1 == fulltopic.indexOf(FPSTR(MQTT_TOKEN_PREFIX)))) {
fulltopic += F("/");
fulltopic += FPSTR(MQTT_TOKEN_PREFIX); // Need prefix for commands to handle mqtt topic loops
}
for (uint32_t i = 0; i < MAX_MQTT_PREFIXES; i++) {
if (!strlen(SettingsText(SET_MQTTPREFIX1 + i))) {
char temp[TOPSZ];
SettingsUpdateText(SET_MQTTPREFIX1 + i, GetTextIndexed(temp, sizeof(temp), i, kPrefixes));
}
}
fulltopic.replace(FPSTR(MQTT_TOKEN_PREFIX), SettingsText(SET_MQTTPREFIX1 + prefix));
fulltopic.replace(FPSTR(MQTT_TOKEN_TOPIC), topic);
fulltopic.replace(F("%hostname%"), my_hostname);
String token_id = WiFi.macAddress();
token_id.replace(":", "");
fulltopic.replace(F("%id%"), token_id);
}
fulltopic.replace(F("#"), "");
fulltopic.replace(F("//"), "/");
if (!fulltopic.endsWith("/")) {
fulltopic += "/";
}
snprintf_P(stopic, TOPSZ, PSTR("%s%s"), fulltopic.c_str(), romram);
return stopic;
}
char* GetGroupTopic_P(char *stopic, const char* subtopic, uint32_t itopic)
{
// SetOption75 0: %prefix%/nothing/%topic% = cmnd/nothing/<grouptopic>/#
// SetOption75 1: cmnd/<grouptopic>
return GetTopic_P(stopic, (Settings.flag3.grouptopic_mode) ? CMND +8 : CMND, SettingsText(itopic), subtopic); // SetOption75 - GroupTopic replaces %topic% (0) or fixed topic cmnd/grouptopic (1)
}
char* GetFallbackTopic_P(char *stopic, const char* subtopic)
{
return GetTopic_P(stopic, CMND +4, nullptr, subtopic);
}
char* GetStateText(uint32_t state)
{
if (state >= MAX_STATE_TEXT) {
state = 1;
}
return SettingsText(SET_STATE_TXT1 + state);
}
/********************************************************************************************/
void SetLatchingRelay(power_t lpower, uint32_t state)
{
// power xx00 - toggle REL1 (Off) and REL3 (Off) - device 1 Off, device 2 Off
// power xx01 - toggle REL2 (On) and REL3 (Off) - device 1 On, device 2 Off
// power xx10 - toggle REL1 (Off) and REL4 (On) - device 1 Off, device 2 On
// power xx11 - toggle REL2 (On) and REL4 (On) - device 1 On, device 2 On
if (state && !latching_relay_pulse) { // Set latching relay to power if previous pulse has finished
latching_power = lpower;
latching_relay_pulse = 2; // max 200mS (initiated by stateloop())
}
for (uint32_t i = 0; i < devices_present; i++) {
uint32_t port = (i << 1) + ((latching_power >> i) &1);
DigitalWrite(GPIO_REL1 +port, bitRead(rel_inverted, port) ? !state : state);
}
}
void SetDevicePower(power_t rpower, uint32_t source)
{
ShowSource(source);
last_source = source;
if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) { // All on and stay on
power = (1 << devices_present) -1;
rpower = power;
}
if (Settings.flag.interlock) { // Allow only one or no relay set - CMND_INTERLOCK - Enable/disable interlock
for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) {
power_t mask = 1;
uint32_t count = 0;
for (uint32_t j = 0; j < devices_present; j++) {
if ((Settings.interlock[i] & mask) && (rpower & mask)) {
count++;
}
mask <<= 1;
}
if (count > 1) {
mask = ~Settings.interlock[i]; // Turn interlocked group off as there would be multiple relays on
power &= mask;
rpower &= mask;
}
}
}
if (rpower) { // Any power set
last_power = rpower;
}
XdrvMailbox.index = rpower;
XdrvCall(FUNC_SET_POWER); // Signal power state
XdrvMailbox.index = rpower;
XdrvMailbox.payload = source;
if (XdrvCall(FUNC_SET_DEVICE_POWER)) { // Set power state and stop if serviced
// Serviced
}
#ifdef ESP8266
else if ((SONOFF_DUAL == my_module_type) || (CH4 == my_module_type)) {
Serial.write(0xA0);
Serial.write(0x04);
Serial.write(rpower &0xFF);
Serial.write(0xA1);
Serial.write('\n');
Serial.flush();
}
else if (EXS_RELAY == my_module_type) {
SetLatchingRelay(rpower, 1);
}
else
#endif // ESP8266
{
for (uint32_t i = 0; i < devices_present; i++) {
power_t state = rpower &1;
if (i < MAX_RELAYS) {
DigitalWrite(GPIO_REL1 +i, bitRead(rel_inverted, i) ? !state : state);
}
rpower >>= 1;
}
}
}
void RestorePower(bool publish_power, uint32_t source)
{
if (power != last_power) {
power = last_power;
SetDevicePower(power, source);
if (publish_power) {
MqttPublishAllPowerState();
}
}
}
void SetAllPower(uint32_t state, uint32_t source)
{
// state 0 = POWER_OFF = Relay Off
// state 1 = POWER_ON = Relay On (turn off after Settings.pulse_timer * 100 mSec if enabled)
// state 2 = POWER_TOGGLE = Toggle relay
// state 8 = POWER_OFF_NO_STATE = Relay Off and no publishPowerState
// state 9 = POWER_ON_NO_STATE = Relay On and no publishPowerState
// state 10 = POWER_TOGGLE_NO_STATE = Toggle relay and no publishPowerState
// state 16 = POWER_SHOW_STATE = Show power state
bool publish_power = true;
if ((state >= POWER_OFF_NO_STATE) && (state <= POWER_TOGGLE_NO_STATE)) {
state &= 3; // POWER_OFF, POWER_ON or POWER_TOGGLE
publish_power = false;
}
if ((state >= POWER_OFF) && (state <= POWER_TOGGLE)) {
power_t all_on = (1 << devices_present) -1;
switch (state) {
case POWER_OFF:
power = 0;
break;
case POWER_ON:
power = all_on;
break;
case POWER_TOGGLE:
power ^= all_on; // Complement current state
}
SetDevicePower(power, source);
}
if (publish_power) {
MqttPublishAllPowerState();
}
}
void SetPowerOnState(void)
{
#ifdef ESP8266
if (MOTOR == my_module_type) {
Settings.poweronstate = POWER_ALL_ON; // Needs always on else in limbo!
}
#endif // ESP8266
if (POWER_ALL_ALWAYS_ON == Settings.poweronstate) {
SetDevicePower(1, SRC_RESTART);
} else {
if ((ResetReason() == REASON_DEFAULT_RST) || (ResetReason() == REASON_EXT_SYS_RST)) {
switch (Settings.poweronstate) {
case POWER_ALL_OFF:
case POWER_ALL_OFF_PULSETIME_ON:
power = 0;
SetDevicePower(power, SRC_RESTART);
break;
case POWER_ALL_ON: // All on
power = (1 << devices_present) -1;
SetDevicePower(power, SRC_RESTART);
break;
case POWER_ALL_SAVED_TOGGLE:
power = (Settings.power & ((1 << devices_present) -1)) ^ POWER_MASK;
if (Settings.flag.save_state) { // SetOption0 - Save power state and use after restart
SetDevicePower(power, SRC_RESTART);
}
break;
case POWER_ALL_SAVED:
power = Settings.power & ((1 << devices_present) -1);
if (Settings.flag.save_state) { // SetOption0 - Save power state and use after restart
SetDevicePower(power, SRC_RESTART);
}
break;
}
} else {
power = Settings.power & ((1 << devices_present) -1);
if (Settings.flag.save_state) { // SetOption0 - Save power state and use after restart
SetDevicePower(power, SRC_RESTART);
}
}
}
// Issue #526 and #909
for (uint32_t i = 0; i < devices_present; i++) {
if (!Settings.flag3.no_power_feedback) { // SetOption63 - Don't scan relay power state at restart - #5594 and #5663
if ((i < MAX_RELAYS) && (pin[GPIO_REL1 +i] < 99)) {
bitWrite(power, i, digitalRead(pin[GPIO_REL1 +i]) ^ bitRead(rel_inverted, i));
}
}
if ((i < MAX_PULSETIMERS) && (bitRead(power, i) || (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate))) {
SetPulseTimer(i, Settings.pulse_timer[i]);
}
}
blink_powersave = power;
}
void SetLedPowerIdx(uint32_t led, uint32_t state)
{
if ((99 == pin[GPIO_LEDLNK]) && (0 == led)) { // Legacy - LED1 is link led only if LED2 is present
if (pin[GPIO_LED1 +1] < 99) {
led = 1;
}
}
if (pin[GPIO_LED1 + led] < 99) {
uint32_t mask = 1 << led;
if (state) {
state = 1;
led_power |= mask;
} else {
led_power &= (0xFF ^ mask);
}
DigitalWrite(GPIO_LED1 + led, bitRead(led_inverted, led) ? !state : state);
}
#ifdef USE_BUZZER
if (led == 0) {
BuzzerSetStateToLed(state);
}
#endif // USE_BUZZER
}
void SetLedPower(uint32_t state)
{
if (99 == pin[GPIO_LEDLNK]) { // Legacy - Only use LED1 and/or LED2
SetLedPowerIdx(0, state);
} else {
power_t mask = 1;
for (uint32_t i = 0; i < leds_present; i++) { // Map leds to power
bool tstate = (power & mask);
SetLedPowerIdx(i, tstate);
mask <<= 1;
}
}
}
void SetLedPowerAll(uint32_t state)
{
for (uint32_t i = 0; i < leds_present; i++) {
SetLedPowerIdx(i, state);
}
}
void SetLedLink(uint32_t state)
{
uint32_t led_pin = pin[GPIO_LEDLNK];
uint32_t led_inv = ledlnk_inverted;
if (99 == led_pin) { // Legacy - LED1 is status
led_pin = pin[GPIO_LED1];
led_inv = bitRead(led_inverted, 0);
}
if (led_pin < 99) {
if (state) { state = 1; }
digitalWrite(led_pin, (led_inv) ? !state : state);
}
#ifdef USE_BUZZER
BuzzerSetStateToLed(state);
#endif // USE_BUZZER
}
void SetPulseTimer(uint32_t index, uint32_t time)
{
pulse_timer[index] = (time > 111) ? millis() + (1000 * (time - 100)) : (time > 0) ? millis() + (100 * time) : 0L;
}
uint32_t GetPulseTimer(uint32_t index)
{
long time = TimePassedSince(pulse_timer[index]);
if (time < 0) {
time *= -1;
return (time > 11100) ? (time / 1000) + 100 : (time > 0) ? time / 100 : 0;
}
return 0;
}
/********************************************************************************************/
bool SendKey(uint32_t key, uint32_t device, uint32_t state)
{
// key 0 = KEY_BUTTON = button_topic
// key 1 = KEY_SWITCH = switch_topic
// state 0 = POWER_OFF = off
// state 1 = POWER_ON = on
// state 2 = POWER_TOGGLE = toggle
// state 3 = POWER_HOLD = hold
// state 9 = CLEAR_RETAIN = clear retain flag
char stopic[TOPSZ];
char scommand[CMDSZ];
char key_topic[TOPSZ];
bool result = false;
uint32_t device_save = device;
char *tmp = (key) ? SettingsText(SET_MQTT_SWITCH_TOPIC) : SettingsText(SET_MQTT_BUTTON_TOPIC);
Format(key_topic, tmp, sizeof(key_topic));
if (Settings.flag.mqtt_enabled && MqttIsConnected() && (strlen(key_topic) != 0) && strcmp(key_topic, "0")) { // SetOption3 - Enable MQTT
if (!key && (device > devices_present)) {
device = 1; // Only allow number of buttons up to number of devices
}
GetTopic_P(stopic, CMND, key_topic,
GetPowerDevice(scommand, device, sizeof(scommand), (key + Settings.flag.device_index_enable))); // cmnd/switchtopic/POWERx - SetOption26 - Switch between POWER or POWER1
if (CLEAR_RETAIN == state) {
mqtt_data[0] = '\0';
} else {
if ((Settings.flag3.button_switch_force_local || // SetOption61 - Force local operation when button/switch topic is set
!strcmp(mqtt_topic, key_topic) ||
!strcmp(SettingsText(SET_MQTT_GRP_TOPIC), key_topic)) &&
(POWER_TOGGLE == state)) {
state = ~(power >> (device -1)) &1; // POWER_OFF or POWER_ON
}
snprintf_P(mqtt_data, sizeof(mqtt_data), GetStateText(state));
}
#ifdef USE_DOMOTICZ
if (!(DomoticzSendKey(key, device, state, strlen(mqtt_data)))) {
#endif // USE_DOMOTICZ
MqttPublish(stopic, ((key) ? Settings.flag.mqtt_switch_retain // CMND_SWITCHRETAIN
: Settings.flag.mqtt_button_retain) && // CMND_BUTTONRETAIN
(state != POWER_HOLD || !Settings.flag3.no_hold_retain)); // SetOption62 - Don't use retain flag on HOLD messages
#ifdef USE_DOMOTICZ
}
#endif // USE_DOMOTICZ
result = !Settings.flag3.button_switch_force_local; // SetOption61 - Force local operation when button/switch topic is set
} else {
Response_P(PSTR("{\"%s%d\":{\"State\":%d}}"), (key) ? "Switch" : "Button", device, state);
result = XdrvRulesProcess();
}
int32_t payload_save = XdrvMailbox.payload;
XdrvMailbox.payload = device_save << 24 | key << 16 | state << 8 | device;
XdrvCall(FUNC_ANY_KEY);
XdrvMailbox.payload = payload_save;
return result;
}
void ExecuteCommandPower(uint32_t device, uint32_t state, uint32_t source)
{
// device = Relay number 1 and up
// state 0 = POWER_OFF = Relay Off
// state 1 = POWER_ON = Relay On (turn off after Settings.pulse_timer * 100 mSec if enabled)
// state 2 = POWER_TOGGLE = Toggle relay
// state 3 = POWER_BLINK = Blink relay
// state 4 = POWER_BLINK_STOP = Stop blinking relay
// state 8 = POWER_OFF_NO_STATE = Relay Off and no publishPowerState
// state 9 = POWER_ON_NO_STATE = Relay On and no publishPowerState
// state 10 = POWER_TOGGLE_NO_STATE = Toggle relay and no publishPowerState
// state 16 = POWER_SHOW_STATE = Show power state
// ShowSource(source);
#ifdef USE_SONOFF_IFAN
if (IsModuleIfan()) {
blink_mask &= 1; // No blinking on the fan relays
Settings.flag.interlock = 0; // No interlock mode as it is already done by the microcontroller - CMND_INTERLOCK - Enable/disable interlock
Settings.pulse_timer[1] = 0; // No pulsetimers on the fan relays
Settings.pulse_timer[2] = 0;
Settings.pulse_timer[3] = 0;
}
#endif // USE_SONOFF_IFAN
bool publish_power = true;
if ((state >= POWER_OFF_NO_STATE) && (state <= POWER_TOGGLE_NO_STATE)) {
state &= 3; // POWER_OFF, POWER_ON or POWER_TOGGLE
publish_power = false;
}
if ((device < 1) || (device > devices_present)) {
device = 1;
}
active_device = device;
if (device <= MAX_PULSETIMERS) {
SetPulseTimer(device -1, 0);
}
power_t mask = 1 << (device -1); // Device to control
if (state <= POWER_TOGGLE) {
if ((blink_mask & mask)) {
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(device);
}
if (Settings.flag.interlock && // CMND_INTERLOCK - Enable/disable interlock
!interlock_mutex &&
((POWER_ON == state) || ((POWER_TOGGLE == state) && !(power & mask)))
) {
interlock_mutex = true; // Clear all but masked relay in interlock group if new set requested
for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) {
if (Settings.interlock[i] & mask) { // Find interlock group
for (uint32_t j = 0; j < devices_present; j++) {
power_t imask = 1 << j;
if ((Settings.interlock[i] & imask) && (power & imask) && (mask != imask)) {
ExecuteCommandPower(j +1, POWER_OFF, SRC_IGNORE);
delay(50); // Add some delay to make sure never have more than one relay on
}
}
break; // An interlocked relay is only present in one group so quit
}
}
interlock_mutex = false;
}
switch (state) {
case POWER_OFF: {
power &= (POWER_MASK ^ mask);
break; }
case POWER_ON:
power |= mask;
break;
case POWER_TOGGLE:
power ^= mask;
}
#ifdef USE_DEVICE_GROUPS
if (SRC_REMOTE != source && SRC_RETRY != source) SendLocalDeviceGroupMessage(DGR_MSGTYP_UPDATE, DGR_ITEM_POWER, power);
#endif // USE_DEVICE_GROUPS
SetDevicePower(power, source);
#ifdef USE_DOMOTICZ
DomoticzUpdatePowerState(device);
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxUpdatePowerState(device, power);
#endif // USE_KNX
if (publish_power && Settings.flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/STATE in addition to stat/%topic%/RESULT
MqttPublishTeleState();
}
if (device <= MAX_PULSETIMERS) { // Restart PulseTime if powered On
SetPulseTimer(device -1, (((POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? ~power : power) & mask) ? Settings.pulse_timer[device -1] : 0);
}
}
else if (POWER_BLINK == state) {
if (!(blink_mask & mask)) {
blink_powersave = (blink_powersave & (POWER_MASK ^ mask)) | (power & mask); // Save state
blink_power = (power >> (device -1))&1; // Prep to Toggle
}
blink_timer = millis() + 100;
blink_counter = ((!Settings.blinkcount) ? 64000 : (Settings.blinkcount *2)) +1;
blink_mask |= mask; // Set device mask
MqttPublishPowerBlinkState(device);
return;
}
else if (POWER_BLINK_STOP == state) {
bool flag = (blink_mask & mask);
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(device);
if (flag) {
ExecuteCommandPower(device, (blink_powersave >> (device -1))&1, SRC_IGNORE); // Restore state
}
return;
}
if (publish_power) {
MqttPublishPowerState(device);
}
}
void StopAllPowerBlink(void)
{
power_t mask;
for (uint32_t i = 1; i <= devices_present; i++) {
mask = 1 << (i -1);
if (blink_mask & mask) {
blink_mask &= (POWER_MASK ^ mask); // Clear device mask
MqttPublishPowerBlinkState(i);
ExecuteCommandPower(i, (blink_powersave >> (i -1))&1, SRC_IGNORE); // Restore state
}
}
}
void MqttShowPWMState(void)
{
ResponseAppend_P(PSTR("\"" D_CMND_PWM "\":{"));
bool first = true;
for (uint32_t i = 0; i < MAX_PWMS; i++) {
if (pin[GPIO_PWM1 + i] < 99) {
ResponseAppend_P(PSTR("%s\"" D_CMND_PWM "%d\":%d"), first ? "" : ",", i+1, Settings.pwm_value[i]);
first = false;
}
}
ResponseJsonEnd();
}
void MqttShowState(void)
{
char stemp1[TOPSZ];
ResponseAppendTime();
ResponseAppend_P(PSTR(",\"" D_JSON_UPTIME "\":\"%s\",\"UptimeSec\":%u"), GetUptime().c_str(), UpTime());
#ifdef USE_ADC_VCC
dtostrfd((double)ESP.getVcc()/1000, 3, stemp1);
ResponseAppend_P(PSTR(",\"" D_JSON_VCC "\":%s"), stemp1);
#endif
ResponseAppend_P(PSTR(",\"" D_JSON_HEAPSIZE "\":%d,\"SleepMode\":\"%s\",\"Sleep\":%u,\"LoadAvg\":%u,\"MqttCount\":%u"),
ESP_getFreeHeap()/1024, GetTextIndexed(stemp1, sizeof(stemp1), Settings.flag3.sleep_normal, kSleepMode), // SetOption60 - Enable normal sleep instead of dynamic sleep
ssleep, loop_load_avg, MqttConnectCount());
for (uint32_t i = 1; i <= devices_present; i++) {
#ifdef USE_LIGHT
if ((LightDevice()) && (i >= LightDevice())) {
if (i == LightDevice()) { LightState(1); } // call it only once
} else {
#endif
ResponseAppend_P(PSTR(",\"%s\":\"%s\""), GetPowerDevice(stemp1, i, sizeof(stemp1), Settings.flag.device_index_enable), // SetOption26 - Switch between POWER or POWER1
GetStateText(bitRead(power, i-1)));
#ifdef USE_SONOFF_IFAN
if (IsModuleIfan()) {
ResponseAppend_P(PSTR(",\"" D_CMND_FANSPEED "\":%d"), GetFanspeed());
break;
}
#endif // USE_SONOFF_IFAN
#ifdef USE_LIGHT
}
#endif
}
if (pwm_present) {
ResponseAppend_P(PSTR(","));
MqttShowPWMState();
}
int32_t rssi = WiFi.RSSI();
ResponseAppend_P(PSTR(",\"" D_JSON_WIFI "\":{\"" D_JSON_AP "\":%d,\"" D_JSON_SSID "\":\"%s\",\"" D_JSON_BSSID "\":\"%s\",\"" D_JSON_CHANNEL "\":%d,\"" D_JSON_RSSI "\":%d,\"" D_JSON_SIGNAL "\":%d,\"" D_JSON_LINK_COUNT "\":%d,\"" D_JSON_DOWNTIME "\":\"%s\"}}"),
Settings.sta_active +1, SettingsText(SET_STASSID1 + Settings.sta_active), WiFi.BSSIDstr().c_str(), WiFi.channel(),
WifiGetRssiAsQuality(rssi), rssi, WifiLinkCount(), WifiDowntime().c_str());
}
void MqttPublishTeleState(void)
{
mqtt_data[0] = '\0';
MqttShowState();
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), MQTT_TELE_RETAIN);
#if defined(USE_RULES) || defined(USE_SCRIPT)
RulesTeleperiod(); // Allow rule based HA messages
#endif // USE_SCRIPT
}
void TempHumDewShow(bool json, bool pass_on, const char *types, float f_temperature, float f_humidity)
{
if (json) {
ResponseAppend_P(PSTR(",\"%s\":{"), types);
ResponseAppendTHD(f_temperature, f_humidity);
ResponseJsonEnd();
#ifdef USE_DOMOTICZ
if (pass_on) {
DomoticzTempHumPressureSensor(f_temperature, f_humidity);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if (pass_on) {
KnxSensor(KNX_TEMPERATURE, f_temperature);
KnxSensor(KNX_HUMIDITY, f_humidity);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
WSContentSend_THD(types, f_temperature, f_humidity);
#endif // USE_WEBSERVER
}
}
bool MqttShowSensor(void)
{
ResponseAppendTime();
int json_data_start = strlen(mqtt_data);
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
#ifdef USE_TM1638
if ((pin[GPIO_SWT1 +i] < 99) || ((pin[GPIO_TM16CLK] < 99) && (pin[GPIO_TM16DIO] < 99) && (pin[GPIO_TM16STB] < 99))) {
#else
if (pin[GPIO_SWT1 +i] < 99) {
#endif // USE_TM1638
ResponseAppend_P(PSTR(",\"" D_JSON_SWITCH "%d\":\"%s\""), i +1, GetStateText(SwitchState(i)));
}
}
XsnsCall(FUNC_JSON_APPEND);
XdrvCall(FUNC_JSON_APPEND);
bool json_data_available = (strlen(mqtt_data) - json_data_start);
if (strstr_P(mqtt_data, PSTR(D_JSON_PRESSURE)) != nullptr) {
ResponseAppend_P(PSTR(",\"" D_JSON_PRESSURE_UNIT "\":\"%s\""), PressureUnit().c_str());
}
if (strstr_P(mqtt_data, PSTR(D_JSON_TEMPERATURE)) != nullptr) {
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE_UNIT "\":\"%c\""), TempUnit());
}
if ((strstr_P(mqtt_data, PSTR(D_JSON_SPEED)) != nullptr) && Settings.flag2.speed_conversion) {
ResponseAppend_P(PSTR(",\"" D_JSON_SPEED_UNIT "\":\"%s\""), SpeedUnit().c_str());
}
ResponseJsonEnd();
if (json_data_available) { XdrvCall(FUNC_SHOW_SENSOR); }
return json_data_available;
}
void MqttPublishSensor(void)
{
mqtt_data[0] = '\0';
if (MqttShowSensor()) {
MqttPublishTeleSensor();
}
}
/*********************************************************************************************\
* State loops
\*********************************************************************************************/
/*-------------------------------------------------------------------------------------------*\
* Every second
\*-------------------------------------------------------------------------------------------*/
void PerformEverySecond(void)
{
uptime++;
if (POWER_CYCLE_TIME == uptime) {
UpdateQuickPowerCycle(false);
}
if (BOOT_LOOP_TIME == uptime) {
RtcRebootReset();
#ifdef USE_DEEPSLEEP
if (!(DeepSleepEnabled() && !Settings.flag3.bootcount_update)) {
#endif
Settings.bootcount++; // Moved to here to stop flash writes during start-up
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_BOOT_COUNT " %d"), Settings.bootcount);
#ifdef USE_DEEPSLEEP
}
#endif
}
if (mqtt_cmnd_blocked_reset) {
mqtt_cmnd_blocked_reset--;
if (!mqtt_cmnd_blocked_reset) {
mqtt_cmnd_blocked = 0; // Clean up MQTT cmnd loop block
}
}
if (seriallog_timer) {
seriallog_timer--;
if (!seriallog_timer) {
if (seriallog_level) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SERIAL_LOGGING_DISABLED));
}
seriallog_level = 0;
}
}
if (syslog_timer) { // Restore syslog level
syslog_timer--;
if (!syslog_timer) {
syslog_level = Settings.syslog_level;
if (Settings.syslog_level) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_LOGGING_REENABLED)); // Might trigger disable again (on purpose)
}
}
}
ResetGlobalValues();
if (Settings.tele_period) {
if (tele_period >= 9999) {
if (!global_state.wifi_down) {
tele_period = 0; // Allow teleperiod once wifi is connected
}
} else {
tele_period++;
if (tele_period >= Settings.tele_period) {
tele_period = 0;
MqttPublishTeleState();
mqtt_data[0] = '\0';
if (MqttShowSensor()) {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain); // CMND_SENSORRETAIN
#if defined(USE_RULES) || defined(USE_SCRIPT)
RulesTeleperiod(); // Allow rule based HA messages
#endif // USE_RULES
}
XsnsCall(FUNC_AFTER_TELEPERIOD);
XdrvCall(FUNC_AFTER_TELEPERIOD);
}
}
}
#ifndef ARDUINO_ESP8266_RELEASE_2_3_0
// Wifi keep alive to send Gratuitous ARP
wifiKeepAlive();
#endif // ARDUINO_ESP8266_RELEASE_2_3_0
#ifdef ESP32
if (11 == uptime) { // Perform one-time ESP32 houskeeping
ESP_getSketchSize(); // Init sketchsize as it can take up to 2 seconds
}
#endif
}
/*-------------------------------------------------------------------------------------------*\
* Every 0.1 second
\*-------------------------------------------------------------------------------------------*/
void Every100mSeconds(void)
{
// As the max amount of sleep = 250 mSec this loop will shift in time...
power_t power_now;
if (prepped_loglevel) {
AddLog(prepped_loglevel);
}
if (latching_relay_pulse) {
latching_relay_pulse--;
if (!latching_relay_pulse) SetLatchingRelay(0, 0);
}
for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) {
if (pulse_timer[i] != 0L) { // Timer active?
if (TimeReached(pulse_timer[i])) { // Timer finished?
pulse_timer[i] = 0L; // Turn off this timer
ExecuteCommandPower(i +1, (POWER_ALL_OFF_PULSETIME_ON == Settings.poweronstate) ? POWER_ON : POWER_OFF, SRC_PULSETIMER);
}
}
}
if (blink_mask) {
if (TimeReached(blink_timer)) {
SetNextTimeInterval(blink_timer, 100 * Settings.blinktime);
blink_counter--;
if (!blink_counter) {
StopAllPowerBlink();
} else {
blink_power ^= 1;
power_now = (power & (POWER_MASK ^ blink_mask)) | ((blink_power) ? blink_mask : 0);
SetDevicePower(power_now, SRC_IGNORE);
}
}
}
}
/*-------------------------------------------------------------------------------------------*\
* Every 0.25 second
\*-------------------------------------------------------------------------------------------*/
void Every250mSeconds(void)
{
// As the max amount of sleep = 250 mSec this loop should always be taken...
uint32_t blinkinterval = 1;
state_250mS++;
state_250mS &= 0x3;
if (!Settings.flag.global_state) { // Problem blinkyblinky enabled - SetOption31 - Control link led blinking
if (global_state.data) { // Any problem
if (global_state.mqtt_down) { blinkinterval = 7; } // MQTT problem so blink every 2 seconds (slowest)
if (global_state.wifi_down) { blinkinterval = 3; } // Wifi problem so blink every second (slow)
blinks = 201; // Allow only a single blink in case the problem is solved
}
}
if (blinks || restart_flag || ota_state_flag) {
if (restart_flag || ota_state_flag) { // Overrule blinks and keep led lit
blinkstate = true; // Stay lit
} else {
blinkspeed--;
if (!blinkspeed) {
blinkspeed = blinkinterval; // Set interval to 0.2 (default), 1 or 2 seconds
blinkstate ^= 1; // Blink
}
}
if ((!(Settings.ledstate &0x08)) && ((Settings.ledstate &0x06) || (blinks > 200) || (blinkstate))) {
SetLedLink(blinkstate); // Set led on or off
}
if (!blinkstate) {
blinks--;
if (200 == blinks) blinks = 0; // Disable blink
}
}
if (Settings.ledstate &1 && (pin[GPIO_LEDLNK] < 99 || !(blinks || restart_flag || ota_state_flag)) ) {
bool tstate = power & Settings.ledmask;
#ifdef ESP8266
if ((SONOFF_TOUCH == my_module_type) || (SONOFF_T11 == my_module_type) || (SONOFF_T12 == my_module_type) || (SONOFF_T13 == my_module_type)) {
tstate = (!power) ? 1 : 0; // As requested invert signal for Touch devices to find them in the dark
}
#endif // ESP8266
SetLedPower(tstate);
}
/*-------------------------------------------------------------------------------------------*\
* Every second at 0.25 second interval
\*-------------------------------------------------------------------------------------------*/
switch (state_250mS) {
case 0: // Every x.0 second
if (ota_state_flag && BACKLOG_EMPTY) {
ota_state_flag--;
if (2 == ota_state_flag) {
RtcSettings.ota_loader = 0; // Try requested image first
ota_retry_counter = OTA_ATTEMPTS;
ESPhttpUpdate.rebootOnUpdate(false);
SettingsSave(1); // Free flash for OTA update
}
if (ota_state_flag <= 0) {
#ifdef USE_WEBSERVER
if (Settings.webserver) StopWebserver();
#endif // USE_WEBSERVER
#ifdef USE_ARILUX_RF
AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine
#endif // USE_ARILUX_RF
ota_state_flag = 92;
ota_result = 0;
ota_retry_counter--;
if (ota_retry_counter) {
strlcpy(mqtt_data, GetOtaUrl(log_data, sizeof(log_data)), sizeof(mqtt_data));
#ifndef FIRMWARE_MINIMAL
if (RtcSettings.ota_loader) {
// OTA File too large so try OTA minimal version
// Replace tasmota with tasmota-minimal
// Replace tasmota-DE with tasmota-minimal
// Replace tasmota.bin with tasmota-minimal.bin
// Replace tasmota.xyz with tasmota-minimal.xyz
// Replace tasmota.bin.gz with tasmota-minimal.bin.gz
// Replace tasmota.xyz.gz with tasmota-minimal.xyz.gz
// Replace tasmota.ino.bin with tasmota-minimal.ino.bin
// Replace tasmota.ino.bin.gz with tasmota-minimal.ino.bin.gz
// Replace http://domus1:80/api/arduino/tasmota.bin with http://domus1:80/api/arduino/tasmota-minimal.bin
// Replace http://domus1:80/api/arduino/tasmota.bin.gz with http://domus1:80/api/arduino/tasmota-minimal.bin.gz
// Replace http://domus1:80/api/arduino/tasmota-DE.bin.gz with http://domus1:80/api/arduino/tasmota-minimal.bin.gz
// Replace http://domus1:80/api/ard-uino/tasmota-DE.bin.gz with http://domus1:80/api/ard-uino/tasmota-minimal.bin.gz
// Replace http://192.168.2.17:80/api/arduino/tasmota.bin with http://192.168.2.17:80/api/arduino/tasmota-minimal.bin
// Replace http://192.168.2.17/api/arduino/tasmota.bin.gz with http://192.168.2.17/api/arduino/tasmota-minimal.bin.gz
char *bch = strrchr(mqtt_data, '/'); // Only consider filename after last backslash prevent change of urls having "-" in it
if (bch == nullptr) { bch = mqtt_data; } // No path found so use filename only
/*
char *ech = strrchr(bch, '.'); // Find file type in filename (none, .bin or .gz)
if ((ech != nullptr) && (0 == strncasecmp_P(ech, PSTR(".GZ"), 3))) {
char *fch = ech;
*fch = '\0';
ech = strrchr(bch, '.'); // Find file type .bin.gz
*fch = '.';
}
*/
char *ech = strchr(bch, '.'); // Find file type in filename (none, .ino.bin, .ino.bin.gz, .bin, .bin.gz or .gz)
if (ech == nullptr) { ech = mqtt_data + strlen(mqtt_data); } // Point to '/0' at end of mqtt_data becoming an empty string
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("OTA: File type [%s]"), ech);
char ota_url_type[strlen(ech) +1];
strncpy(ota_url_type, ech, sizeof(ota_url_type)); // Either empty, .ino.bin, .ino.bin.gz, .bin, .bin.gz or .gz
char *pch = strrchr(bch, '-'); // Find last dash (-) and ignore remainder - handles tasmota-DE
if (pch == nullptr) { pch = ech; } // No dash so ignore filetype
*pch = '\0'; // mqtt_data = http://domus1:80/api/arduino/tasmota
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s-" D_JSON_MINIMAL "%s"), mqtt_data, ota_url_type); // Minimal filename must be filename-minimal
}
#endif // FIRMWARE_MINIMAL
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_UPLOAD "%s"), mqtt_data);
#if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2)
ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(mqtt_data));
#else
// If using core stage or 2.5.0+ the syntax has changed
WiFiClient OTAclient;
ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(OTAclient, mqtt_data));
#endif
if (!ota_result) {
#ifndef FIRMWARE_MINIMAL
int ota_error = ESPhttpUpdate.getLastError();
DEBUG_CORE_LOG(PSTR("OTA: Error %d"), ota_error);
if ((HTTP_UE_TOO_LESS_SPACE == ota_error) || (HTTP_UE_BIN_FOR_WRONG_FLASH == ota_error)) {
RtcSettings.ota_loader = 1; // Try minimal image next
}
#endif // FIRMWARE_MINIMAL
ota_state_flag = 2; // Upgrade failed - retry
}
}
}
if (90 == ota_state_flag) { // Allow MQTT to reconnect
ota_state_flag = 0;
Response_P(PSTR("{\"" D_CMND_UPGRADE "\":\""));
if (ota_result) {
// SetFlashModeDout(); // Force DOUT for both ESP8266 and ESP8285
if (!VersionCompatible()) {
ResponseAppend_P(PSTR(D_JSON_FAILED " " D_UPLOAD_ERR_14));
} else {
ResponseAppend_P(PSTR(D_JSON_SUCCESSFUL ". " D_JSON_RESTARTING));
restart_flag = 2;
}
} else {
ResponseAppend_P(PSTR(D_JSON_FAILED " %s"), ESPhttpUpdate.getLastErrorString().c_str());
}
ResponseAppend_P(PSTR("\"}"));
// restart_flag = 2; // Restart anyway to keep memory clean webserver
MqttPublishPrefixTopic_P(STAT, PSTR(D_CMND_UPGRADE));
}
}
break;
case 1: // Every x.25 second
if (MidnightNow()) {
XsnsCall(FUNC_SAVE_AT_MIDNIGHT);
}
if (save_data_counter && BACKLOG_EMPTY) {
save_data_counter--;
if (save_data_counter <= 0) {
if (Settings.flag.save_state) { // SetOption0 - Save power state and use after restart
power_t mask = POWER_MASK;
for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) {
if ((Settings.pulse_timer[i] > 0) && (Settings.pulse_timer[i] < 30)) { // 3 seconds
mask &= ~(1 << i);
}
}
if (!((Settings.power &mask) == (power &mask))) {
Settings.power = power;
}
} else {
Settings.power = 0;
}
SettingsSave(0);
save_data_counter = Settings.save_data;
}
}
if (restart_flag && BACKLOG_EMPTY) {
if ((214 == restart_flag) || (215 == restart_flag) || (216 == restart_flag)) {
// Backup current SSIDs and Passwords
char storage_ssid1[strlen(SettingsText(SET_STASSID1)) +1];
strncpy(storage_ssid1, SettingsText(SET_STASSID1), sizeof(storage_ssid1));
char storage_ssid2[strlen(SettingsText(SET_STASSID2)) +1];
strncpy(storage_ssid2, SettingsText(SET_STASSID2), sizeof(storage_ssid2));
char storage_pass1[strlen(SettingsText(SET_STAPWD1)) +1];
strncpy(storage_pass1, SettingsText(SET_STAPWD1), sizeof(storage_pass1));
char storage_pass2[strlen(SettingsText(SET_STAPWD2)) +1];
strncpy(storage_pass2, SettingsText(SET_STAPWD2), sizeof(storage_pass2));
char storage_mqtthost[strlen(SettingsText(SET_MQTT_HOST)) +1];
strncpy(storage_mqtthost, SettingsText(SET_MQTT_HOST), sizeof(storage_mqtthost));
char storage_mqttuser[strlen(SettingsText(SET_MQTT_USER)) +1];
strncpy(storage_mqttuser, SettingsText(SET_MQTT_USER), sizeof(storage_mqttuser));
char storage_mqttpwd[strlen(SettingsText(SET_MQTT_PWD)) +1];
strncpy(storage_mqttpwd, SettingsText(SET_MQTT_PWD), sizeof(storage_mqttpwd));
char storage_mqtttopic[strlen(SettingsText(SET_MQTT_TOPIC)) +1];
strncpy(storage_mqtttopic, SettingsText(SET_MQTT_TOPIC), sizeof(storage_mqtttopic));
uint16_t mqtt_port = Settings.mqtt_port;
// if (216 == restart_flag) {
// Backup mqtt host, port, client, username and password
// }
if ((215 == restart_flag) || (216 == restart_flag)) {
SettingsErase(0); // Erase all flash from program end to end of physical flash
}
SettingsDefault();
// Restore current SSIDs and Passwords
SettingsUpdateText(SET_STASSID1, storage_ssid1);
SettingsUpdateText(SET_STASSID2, storage_ssid2);
SettingsUpdateText(SET_STAPWD1, storage_pass1);
SettingsUpdateText(SET_STAPWD2, storage_pass2);
if (216 == restart_flag) {
// Restore the mqtt host, port, client, username and password
SettingsUpdateText(SET_MQTT_HOST, storage_mqtthost);
SettingsUpdateText(SET_MQTT_USER, storage_mqttuser);
SettingsUpdateText(SET_MQTT_PWD, storage_mqttpwd);
SettingsUpdateText(SET_MQTT_TOPIC, storage_mqtttopic);
Settings.mqtt_port = mqtt_port;
}
restart_flag = 2;
}
else if (213 == restart_flag) {
SettingsSdkErase(); // Erase flash SDK parameters
restart_flag = 2;
}
else if (212 == restart_flag) {
SettingsErase(0); // Erase all flash from program end to end of physical flash
restart_flag = 211;
}
if (211 == restart_flag) {
SettingsDefault();
restart_flag = 2;
}
if (2 == restart_flag) {
SettingsSaveAll();
}
restart_flag--;
if (restart_flag <= 0) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_RESTARTING));
EspRestart();
}
}
break;
case 2: // Every x.5 second
WifiCheck(wifi_state_flag);
wifi_state_flag = WIFI_RESTART;
break;
case 3: // Every x.75 second
if (!global_state.wifi_down) { MqttCheck(); }
break;
}
}
#ifdef USE_ARDUINO_OTA
/*********************************************************************************************\
* Allow updating via the Arduino OTA-protocol.
*
* - Once started disables current wifi clients and udp
* - Perform restart when done to re-init wifi clients
\*********************************************************************************************/
bool arduino_ota_triggered = false;
uint16_t arduino_ota_progress_dot_count = 0;
void ArduinoOTAInit(void)
{
ArduinoOTA.setPort(8266);
ArduinoOTA.setHostname(my_hostname);
if (strlen(SettingsText(SET_WEBPWD))) {
ArduinoOTA.setPassword(SettingsText(SET_WEBPWD));
}
ArduinoOTA.onStart([]()
{
SettingsSave(1); // Free flash for OTA update
#ifdef USE_WEBSERVER
if (Settings.webserver) { StopWebserver(); }
#endif // USE_WEBSERVER
#ifdef USE_ARILUX_RF
AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine
#endif // USE_ARILUX_RF
if (Settings.flag.mqtt_enabled) {
MqttDisconnect(); // SetOption3 - Enable MQTT
}
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_UPLOAD_STARTED));
arduino_ota_triggered = true;
arduino_ota_progress_dot_count = 0;
delay(100); // Allow time for message xfer
});
ArduinoOTA.onProgress([](unsigned int progress, unsigned int total)
{
if ((LOG_LEVEL_DEBUG <= seriallog_level)) {
arduino_ota_progress_dot_count++;
Serial.printf(".");
if (!(arduino_ota_progress_dot_count % 80)) { Serial.println(); }
}
});
ArduinoOTA.onError([](ota_error_t error)
{
/*
From ArduinoOTA.h:
typedef enum { OTA_AUTH_ERROR, OTA_BEGIN_ERROR, OTA_CONNECT_ERROR, OTA_RECEIVE_ERROR, OTA_END_ERROR } ota_error_t;
*/
char error_str[100];
if ((LOG_LEVEL_DEBUG <= seriallog_level) && arduino_ota_progress_dot_count) { Serial.println(); }
switch (error) {
case OTA_BEGIN_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_2), sizeof(error_str)); break;
case OTA_RECEIVE_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_5), sizeof(error_str)); break;
case OTA_END_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_7), sizeof(error_str)); break;
default:
snprintf_P(error_str, sizeof(error_str), PSTR(D_UPLOAD_ERROR_CODE " %d"), error);
}
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA %s. " D_RESTARTING), error_str);
EspRestart();
});
ArduinoOTA.onEnd([]()
{
if ((LOG_LEVEL_DEBUG <= seriallog_level)) { Serial.println(); }
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_SUCCESSFUL ". " D_RESTARTING));
EspRestart();
});
ArduinoOTA.begin();
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_ENABLED " " D_PORT " 8266"));
}
void ArduinoOtaLoop(void)
{
MDNS.update();
ArduinoOTA.handle();
// Once OTA is triggered, only handle that and dont do other stuff. (otherwise it fails)
while (arduino_ota_triggered) { ArduinoOTA.handle(); }
}
#endif // USE_ARDUINO_OTA
/********************************************************************************************/
void SerialInput(void)
{
while (Serial.available()) {
// yield();
delay(0);
serial_in_byte = Serial.read();
#ifdef ESP8266
/*-------------------------------------------------------------------------------------------*\
* Sonoff dual and ch4 19200 baud serial interface
\*-------------------------------------------------------------------------------------------*/
if ((SONOFF_DUAL == my_module_type) || (CH4 == my_module_type)) {
serial_in_byte = ButtonSerial(serial_in_byte);
}
#endif // ESP8266
/*-------------------------------------------------------------------------------------------*/
if (XdrvCall(FUNC_SERIAL)) {
serial_in_byte_counter = 0;
Serial.flush();
return;
}
/*-------------------------------------------------------------------------------------------*/
if (serial_in_byte > 127 && !Settings.flag.mqtt_serial_raw) { // Discard binary data above 127 if no raw reception allowed - CMND_SERIALSEND3
serial_in_byte_counter = 0;
Serial.flush();
return;
}
if (!Settings.flag.mqtt_serial) { // SerialSend active - CMND_SERIALSEND and CMND_SERIALLOG
if (isprint(serial_in_byte)) { // Any char between 32 and 127
if (serial_in_byte_counter < INPUT_BUFFER_SIZE -1) { // Add char to string if it still fits
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
} else {
serial_in_byte_counter = 0;
}
}
} else {
if (serial_in_byte || Settings.flag.mqtt_serial_raw) { // Any char between 1 and 127 or any char (0 - 255) - CMND_SERIALSEND3
if ((serial_in_byte_counter < INPUT_BUFFER_SIZE -1) && // Add char to string if it still fits and ...
((isprint(serial_in_byte) && (128 == Settings.serial_delimiter)) || // Any char between 32 and 127
((serial_in_byte != Settings.serial_delimiter) && (128 != Settings.serial_delimiter)) || // Any char between 1 and 127 and not being delimiter
Settings.flag.mqtt_serial_raw)) { // Any char between 0 and 255 - CMND_SERIALSEND3
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
serial_polling_window = millis();
} else {
serial_polling_window = 0; // Reception done - send mqtt
break;
}
}
}
#ifdef USE_SONOFF_SC
/*-------------------------------------------------------------------------------------------*\
* Sonoff SC 19200 baud serial interface
\*-------------------------------------------------------------------------------------------*/
if (SONOFF_SC == my_module_type) {
if (serial_in_byte == '\x1B') { // Sonoff SC status from ATMEGA328P
serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed
SonoffScSerialInput(serial_in_buffer);
serial_in_byte_counter = 0;
Serial.flush();
return;
}
} else
#endif // USE_SONOFF_SC
/*-------------------------------------------------------------------------------------------*/
if (!Settings.flag.mqtt_serial && (serial_in_byte == '\n')) { // CMND_SERIALSEND and CMND_SERIALLOG
serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed
seriallog_level = (Settings.seriallog_level < LOG_LEVEL_INFO) ? (uint8_t)LOG_LEVEL_INFO : Settings.seriallog_level;
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_COMMAND "%s"), serial_in_buffer);
ExecuteCommand(serial_in_buffer, SRC_SERIAL);
serial_in_byte_counter = 0;
serial_polling_window = 0;
Serial.flush();
return;
}
}
if (Settings.flag.mqtt_serial && serial_in_byte_counter && (millis() > (serial_polling_window + SERIAL_POLLING))) { // CMND_SERIALSEND and CMND_SERIALLOG
serial_in_buffer[serial_in_byte_counter] = 0; // Serial data completed
char hex_char[(serial_in_byte_counter * 2) + 2];
bool assume_json = (!Settings.flag.mqtt_serial_raw && (serial_in_buffer[0] == '{'));
Response_P(PSTR("{\"" D_JSON_SERIALRECEIVED "\":%s%s%s}"),
(assume_json) ? "" : "\"",
(Settings.flag.mqtt_serial_raw) ? ToHex_P((unsigned char*)serial_in_buffer, serial_in_byte_counter, hex_char, sizeof(hex_char)) : serial_in_buffer,
(assume_json) ? "" : "\"");
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_SERIALRECEIVED));
XdrvRulesProcess();
serial_in_byte_counter = 0;
}
}
/********************************************************************************************/
void ResetPwm(void)
{
for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only
if (pin[GPIO_PWM1 +i] < 99) {
analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range : 0);
// analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - Settings.pwm_value[i] : Settings.pwm_value[i]);
}
}
}
/********************************************************************************************/
void GpioInit(void)
{
uint32_t mpin;
if (!ValidModule(Settings.module)) {
uint32_t module = MODULE;
if (!ValidModule(MODULE)) {
#ifdef ESP8266
module = SONOFF_BASIC;
#endif // ESP8266
#ifdef ESP32
module = WEMOS;
#endif // ESP32
}
Settings.module = module;
Settings.last_module = module;
}
SetModuleType();
if (Settings.module != Settings.last_module) {
Settings.baudrate = APP_BAUDRATE / 300;
Settings.serial_config = TS_SERIAL_8N1;
}
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.user_template.gp.io); i++) {
if ((Settings.user_template.gp.io[i] >= GPIO_SENSOR_END) && (Settings.user_template.gp.io[i] < GPIO_USER)) {
Settings.user_template.gp.io[i] = GPIO_USER; // Fix not supported sensor ids in template
}
}
myio def_gp;
ModuleGpios(&def_gp);
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.my_gp.io); i++) {
if ((Settings.my_gp.io[i] >= GPIO_SENSOR_END) && (Settings.my_gp.io[i] < GPIO_USER)) {
Settings.my_gp.io[i] = GPIO_NONE; // Fix not supported sensor ids in module
}
else if (Settings.my_gp.io[i] > GPIO_NONE) {
my_module.io[i] = Settings.my_gp.io[i]; // Set User selected Module sensors
}
if ((def_gp.io[i] > GPIO_NONE) && (def_gp.io[i] < GPIO_USER)) {
my_module.io[i] = def_gp.io[i]; // Force Template override
}
}
if ((Settings.my_adc0 >= ADC0_END) && (Settings.my_adc0 < ADC0_USER)) {
Settings.my_adc0 = ADC0_NONE; // Fix not supported sensor ids in module
}
else if (Settings.my_adc0 > ADC0_NONE) {
my_adc0 = Settings.my_adc0; // Set User selected Module sensors
}
my_module_flag = ModuleFlag();
uint32_t template_adc0 = my_module_flag.data &15;
if ((template_adc0 > ADC0_NONE) && (template_adc0 < ADC0_USER)) {
my_adc0 = template_adc0; // Force Template override
}
for (uint32_t i = 0; i < GPIO_MAX; i++) {
pin[i] = 99;
}
for (uint32_t i = 0; i < ARRAY_SIZE(my_module.io); i++) {
mpin = ValidPin(i, my_module.io[i]);
DEBUG_CORE_LOG(PSTR("INI: gpio pin %d, mpin %d"), i, mpin);
if (mpin) {
XdrvMailbox.index = mpin;
XdrvMailbox.payload = i;
if ((mpin >= GPIO_SWT1_NP) && (mpin < (GPIO_SWT1_NP + MAX_SWITCHES))) {
SwitchPullupFlag(mpin - GPIO_SWT1_NP);
mpin -= (GPIO_SWT1_NP - GPIO_SWT1);
}
else if ((mpin >= GPIO_KEY1_NP) && (mpin < (GPIO_KEY1_NP + MAX_KEYS))) {
ButtonPullupFlag(mpin - GPIO_KEY1_NP); // 0 .. 3
mpin -= (GPIO_KEY1_NP - GPIO_KEY1);
}
else if ((mpin >= GPIO_KEY1_INV) && (mpin < (GPIO_KEY1_INV + MAX_KEYS))) {
ButtonInvertFlag(mpin - GPIO_KEY1_INV); // 0 .. 3
mpin -= (GPIO_KEY1_INV - GPIO_KEY1);
}
else if ((mpin >= GPIO_KEY1_INV_NP) && (mpin < (GPIO_KEY1_INV_NP + MAX_KEYS))) {
ButtonPullupFlag(mpin - GPIO_KEY1_INV_NP); // 0 .. 3
ButtonInvertFlag(mpin - GPIO_KEY1_INV_NP); // 0 .. 3
mpin -= (GPIO_KEY1_INV_NP - GPIO_KEY1);
}
else if ((mpin >= GPIO_REL1_INV) && (mpin < (GPIO_REL1_INV + MAX_RELAYS))) {
bitSet(rel_inverted, mpin - GPIO_REL1_INV);
mpin -= (GPIO_REL1_INV - GPIO_REL1);
}
else if ((mpin >= GPIO_LED1_INV) && (mpin < (GPIO_LED1_INV + MAX_LEDS))) {
bitSet(led_inverted, mpin - GPIO_LED1_INV);
mpin -= (GPIO_LED1_INV - GPIO_LED1);
}
else if (mpin == GPIO_LEDLNK_INV) {
ledlnk_inverted = 1;
mpin -= (GPIO_LEDLNK_INV - GPIO_LEDLNK);
}
else if ((mpin >= GPIO_PWM1_INV) && (mpin < (GPIO_PWM1_INV + MAX_PWMS))) {
bitSet(pwm_inverted, mpin - GPIO_PWM1_INV);
mpin -= (GPIO_PWM1_INV - GPIO_PWM1);
}
else if (XdrvCall(FUNC_PIN_STATE)) {
mpin = XdrvMailbox.index;
}
else if (XsnsCall(FUNC_PIN_STATE)) {
mpin = XdrvMailbox.index;
};
}
if (mpin) pin[mpin] = i;
}
#ifdef ESP8266
if ((2 == pin[GPIO_TXD]) || (H801 == my_module_type)) { Serial.set_tx(2); }
#endif // ESP8266
analogWriteRange(Settings.pwm_range); // Default is 1023 (Arduino.h)
analogWriteFreq(Settings.pwm_frequency); // Default is 1000 (core_esp8266_wiring_pwm.c)
#ifdef USE_SPI
spi_flg = ((((pin[GPIO_SPI_CS] < 99) && (pin[GPIO_SPI_CS] > 14)) || (pin[GPIO_SPI_CS] < 12)) || (((pin[GPIO_SPI_DC] < 99) && (pin[GPIO_SPI_DC] > 14)) || (pin[GPIO_SPI_DC] < 12)));
if (spi_flg) {
for (uint32_t i = 0; i < GPIO_MAX; i++) {
if ((pin[i] >= 12) && (pin[i] <=14)) pin[i] = 99;
}
my_module.io[12] = GPIO_SPI_MISO;
pin[GPIO_SPI_MISO] = 12;
my_module.io[13] = GPIO_SPI_MOSI;
pin[GPIO_SPI_MOSI] = 13;
my_module.io[14] = GPIO_SPI_CLK;
pin[GPIO_SPI_CLK] = 14;
}
soft_spi_flg = ((pin[GPIO_SSPI_CS] < 99) && (pin[GPIO_SSPI_SCLK] < 99) && ((pin[GPIO_SSPI_MOSI] < 99) || (pin[GPIO_SSPI_MOSI] < 99)));
#endif // USE_SPI
// Set any non-used GPIO to INPUT - Related to resetPins() in support_legacy_cores.ino
// Doing it here solves relay toggles at restart.
for (uint32_t i = 0; i < ARRAY_SIZE(my_module.io); i++) {
mpin = ValidPin(i, my_module.io[i]);
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("INI: gpio pin %d, mpin %d"), i, mpin);
if (((i < 6) || (i > 11)) && (0 == mpin)) { // Skip SPI flash interface
if (!((1 == i) || (3 == i))) { // Skip serial
pinMode(i, INPUT);
}
}
}
#ifdef USE_I2C
i2c_flg = ((pin[GPIO_I2C_SCL] < 99) && (pin[GPIO_I2C_SDA] < 99));
if (i2c_flg) {
Wire.begin(pin[GPIO_I2C_SDA], pin[GPIO_I2C_SCL]);
}
#endif // USE_I2C
devices_present = 0;
light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0
if (XdrvCall(FUNC_MODULE_INIT)) {
// Serviced
}
#ifdef ESP8266
else if (YTF_IR_BRIDGE == my_module_type) {
ClaimSerial(); // Stop serial loopback mode
// devices_present = 1;
}
else if (SONOFF_DUAL == my_module_type) {
devices_present = 2;
SetSerial(19200, TS_SERIAL_8N1);
}
else if (CH4 == my_module_type) {
devices_present = 4;
SetSerial(19200, TS_SERIAL_8N1);
}
#ifdef USE_SONOFF_SC
else if (SONOFF_SC == my_module_type) {
SetSerial(19200, TS_SERIAL_8N1);
}
#endif // USE_SONOFF_SC
#endif // ESP8266
for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only
if (pin[GPIO_PWM1 +i] < 99) {
pinMode(pin[GPIO_PWM1 +i], OUTPUT);
if (light_type) {
// force PWM GPIOs to low or high mode, see #7165
analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range : 0);
} else {
pwm_present = true;
analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - Settings.pwm_value[i] : Settings.pwm_value[i]);
}
}
}
for (uint32_t i = 0; i < MAX_RELAYS; i++) {
if (pin[GPIO_REL1 +i] < 99) {
pinMode(pin[GPIO_REL1 +i], OUTPUT);
devices_present++;
#ifdef ESP8266
if (EXS_RELAY == my_module_type) {
digitalWrite(pin[GPIO_REL1 +i], bitRead(rel_inverted, i) ? 1 : 0);
if (i &1) { devices_present--; }
}
#endif // ESP8266
}
}
for (uint32_t i = 0; i < MAX_LEDS; i++) {
if (pin[GPIO_LED1 +i] < 99) {
#ifdef USE_ARILUX_RF
if ((3 == i) && (leds_present < 2) && (99 == pin[GPIO_ARIRFSEL])) {
pin[GPIO_ARIRFSEL] = pin[GPIO_LED4]; // Legacy support where LED4 was Arilux RF enable
pin[GPIO_LED4] = 99;
} else {
#endif
pinMode(pin[GPIO_LED1 +i], OUTPUT);
leds_present++;
digitalWrite(pin[GPIO_LED1 +i], bitRead(led_inverted, i));
#ifdef USE_ARILUX_RF
}
#endif
}
}
if (pin[GPIO_LEDLNK] < 99) {
pinMode(pin[GPIO_LEDLNK], OUTPUT);
digitalWrite(pin[GPIO_LEDLNK], ledlnk_inverted);
}
#ifdef USE_PWM_DIMMER
if (PWM_DIMMER == my_module_type && pin[GPIO_REL1] < 99) devices_present--;
#endif // USE_PWM_DIMMER
ButtonInit();
SwitchInit();
#ifdef ROTARY_V1
RotaryInit();
#endif
SetLedPower(Settings.ledstate &8);
SetLedLink(Settings.ledstate &8);
XdrvCall(FUNC_PRE_INIT);
}