Tasmota/tasmota/tasmota_xnrg_energy/xnrg_07_ade7953.ino

637 lines
31 KiB
C++

/*
xnrg_07_ade7953.ino - ADE7953 energy sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_ENERGY_SENSOR
#ifdef USE_ADE7953
/*********************************************************************************************\
* ADE7953 - Energy used in Shelly 2.5 (model 1), Shelly EM (model 2) and Shelly Plus 2PM (model 3)
*
* {"NAME":"Shelly 2.5","GPIO":[320,0,32,0,224,193,0,0,640,192,608,225,3456,4736],"FLAG":0,"BASE":18}
* {"NAME":"Shelly EM","GPIO":[0,0,0,0,0,0,0,0,640,3457,608,224,8832,1],"FLAG":0,"BASE":18}
* {"NAME":"Shelly Plus 2PM PCB v0.1.5","GPIO":[320,0,192,0,0,0,1,1,225,224,0,0,0,0,193,0,0,0,0,0,0,608,3840,32,0,0,0,0,0,640,0,0,3458,4736,0,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,32000,40000,3350"}
* {"NAME":"Shelly Plus 2PM PCB v0.1.9","GPIO":[320,0,0,0,32,192,0,0,225,224,0,0,0,0,193,0,0,0,0,0,0,608,640,3458,0,0,0,0,0,9472,0,4736,0,0,0,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,10000,10000,3350"}
*
* Based on datasheet from https://www.analog.com/en/products/ade7953.html
*
* Model differences:
* Function Model1 Model2 Model3 Remark
* ------------------------------ ------ ------ ------- -------------------------------------------------
* Shelly 2.5 EM Plus2PM
* Current measurement device shunt CT shunt CT = Current Transformer
* Swapped channel A/B Yes No No Defined by hardware design - Fixed by Tasmota
* Support Export Active No Yes No Only EM supports correct negative value detection
* Show negative (reactive) power No Yes No Only EM supports correct negative value detection
* Default phase calibration 0 200 0 CT needs different phase calibration than shunts
* Default reset pin on ESP8266 - 16 - Legacy support. Replaced by GPIO ADE7953RST
*
* I2C Address: 0x38
*********************************************************************************************
* Optionally allowing users to tweak calibration registers:
* - In addition to possible rules add a rule containing the calib.dat string like:
* - rule3 on file#calib.dat do {"angles":{"angle0":180,"angle1":176}} endon
* - rule3 on file#calib.dat do {"rms":{"current_a":4194303,"current_b":4194303,"voltage":1613194},"angles":{"angle0":200,"angle1":200},"powers":{"totactive":{"a":2723574,"b":2723574},"apparent":{"a":2723574,"b":2723574},"reactive":{"a":2723574,"b":2723574}}} endon
* - Restart Tasmota and obeserve that the results seem calibrated as Tasmota now uses the information from calib.dat
* To restore standard calibration using commands like VoltSet remove above entry from rule3
\*********************************************************************************************/
#define XNRG_07 7
#define XI2C_07 7 // See I2CDEVICES.md
#define ADE7953_ADDR 0x38
/*********************************************************************************************/
//#define ADE7953_DUMP_REGS
#define ADE7953_PREF 1540 // 4194304 / (1540 / 1000) = 2723574 (= WGAIN, VAGAIN and VARGAIN)
#define ADE7953_UREF 26000 // 4194304 / (26000 / 10000) = 1613194 (= VGAIN)
#define ADE7953_IREF 10000 // 4194304 / (10000 / 10000) = 4194303 (= IGAIN, needs to be different than 4194304 in order to use calib.dat)
// Default calibration parameters can be overridden by a rule as documented above.
#define ADE7953_GAIN_DEFAULT 4194304 // = 0x400000 range 2097152 (min) to 6291456 (max)
#define ADE7953_PHCAL_DEFAULT 0 // = range -383 to 383 - Default phase calibration for Shunts
#define ADE7953_PHCAL_DEFAULT_CT 200 // = range -383 to 383 - Default phase calibration for Current Transformers (Shelly EM)
enum Ade7953Models { ADE7953_SHELLY_25, ADE7953_SHELLY_EM, ADE7953_SHELLY_PLUS_2PM };
enum Ade7953_8BitRegisters {
// Register Name Addres R/W Bt Ty Default Description
// ---------------------------- ------ --- -- -- ---------- --------------------------------------------------------------------
ADE7953_SAGCYC = 0x000, // 0x000 R/W 8 U 0x00 Sag line cycles
ADE7953_DISNOLOAD, // 0x001 R/W 8 U 0x00 No-load detection disable (see Table 16)
ADE7953_RESERVED_0X002, // 0x002
ADE7953_RESERVED_0X003, // 0x003
ADE7953_LCYCMODE, // 0x004 R/W 8 U 0x40 Line cycle accumulation mode configuration (see Table 17)
ADE7953_RESERVED_0X005, // 0x005
ADE7953_RESERVED_0X006, // 0x006
ADE7953_PGA_V, // 0x007 R/W 8 U 0x00 Voltage channel gain configuration (Bits[2:0])
ADE7953_PGA_IA, // 0x008 R/W 8 U 0x00 Current Channel A gain configuration (Bits[2:0])
ADE7953_PGA_IB // 0x009 R/W 8 U 0x00 Current Channel B gain configuration (Bits[2:0])
};
enum Ade7953_16BitRegisters {
// Register Name Addres R/W Bt Ty Default Description
// ---------------------------- ------ --- -- -- ---------- --------------------------------------------------------------------
ADE7953_ZXTOUT = 0x100, // 0x100 R/W 16 U 0xFFFF Zero-crossing timeout
ADE7953_LINECYC, // 0x101 R/W 16 U 0x0000 Number of half line cycles for line cycle energy accumulation mode
ADE7953_CONFIG, // 0x102 R/W 16 U 0x8004 Configuration register (see Table 18)
ADE7953_CF1DEN, // 0x103 R/W 16 U 0x003F CF1 frequency divider denominator. When modifying this register, two sequential write operations must be performed to ensure that the write is successful.
ADE7953_CF2DEN, // 0x104 R/W 16 U 0x003F CF2 frequency divider denominator. When modifying this register, two sequential write operations must be performed to ensure that the write is successful.
ADE7953_RESERVED_0X105, // 0x105
ADE7953_RESERVED_0X106, // 0x106
ADE7953_CFMODE, // 0x107 R/W 16 U 0x0300 CF output selection (see Table 19)
ADE7943_PHCALA, // 0x108 R/W 16 S 0x0000 Phase calibration register (Current Channel A). This register is in sign magnitude format.
ADE7943_PHCALB, // 0x109 R/W 16 S 0x0000 Phase calibration register (Current Channel B). This register is in sign magnitude format.
ADE7943_PFA, // 0x10A R 16 S 0x0000 Power factor (Current Channel A)
ADE7943_PFB, // 0x10B R 16 S 0x0000 Power factor (Current Channel B)
ADE7943_ANGLE_A, // 0x10C R 16 S 0x0000 Angle between the voltage input and the Current Channel A input
ADE7943_ANGLE_B, // 0x10D R 16 S 0x0000 Angle between the voltage input and the Current Channel B input
ADE7943_Period // 0x10E R 16 U 0x0000 Period register
};
enum Ade7953_32BitRegisters {
// Register Name Addres R/W Bt Ty Default Description
// ---------------------------- ------ --- -- -- ---------- --------------------------------------------------------------------
ADE7953_ACCMODE = 0x301, // 0x301 R/W 24 U 0x000000 Accumulation mode (see Table 21)
ADE7953_AVA = 0x310, // 0x310 R 24 S 0x000000 Instantaneous apparent power (Current Channel A)
ADE7953_BVA, // 0x311 R 24 S 0x000000 Instantaneous apparent power (Current Channel B)
ADE7953_AWATT, // 0x312 R 24 S 0x000000 Instantaneous active power (Current Channel A)
ADE7953_BWATT, // 0x313 R 24 S 0x000000 Instantaneous active power (Current Channel B)
ADE7953_AVAR, // 0x314 R 24 S 0x000000 Instantaneous reactive power (Current Channel A)
ADE7953_BVAR, // 0x315 R 24 S 0x000000 Instantaneous reactive power (Current Channel B)
ADE7953_IA, // 0x316 R 24 S 0x000000 Instantaneous current (Current Channel A)
ADE7953_IB, // 0x317 R 24 S 0x000000 Instantaneous current (Current Channel B)
ADE7953_V, // 0x318 R 24 S 0x000000 Instantaneous voltage (voltage channel)
ADE7953_RESERVED_0X319, // 0x319
ADE7953_IRMSA, // 0x31A R 24 U 0x000000 IRMS register (Current Channel A)
ADE7953_IRMSB, // 0x31B R 24 U 0x000000 IRMS register (Current Channel B)
ADE7953_VRMS, // 0x31C R 24 U 0x000000 VRMS register
ADE7953_RESERVED_0X31D, // 0x31D
ADE7953_AENERGYA, // 0x31E R 24 S 0x000000 Active energy (Current Channel A)
ADE7953_AENERGYB, // 0x31F R 24 S 0x000000 Active energy (Current Channel B)
ADE7953_RENERGYA, // 0x320 R 24 S 0x000000 Reactive energy (Current Channel A)
ADE7953_RENERGYB, // 0x321 R 24 S 0x000000 Reactive energy (Current Channel B)
ADE7953_APENERGYA, // 0x322 R 24 S 0x000000 Apparent energy (Current Channel A)
ADE7953_APENERGYB, // 0x323 R 24 S 0x000000 Apparent energy (Current Channel B)
ADE7953_OVLVL, // 0x324 R/W 24 U 0xFFFFFF Overvoltage level
ADE7953_OILVL, // 0x325 R/W 24 U 0xFFFFFF Overcurrent level
ADE7953_VPEAK, // 0x326 R 24 U 0x000000 Voltage channel peak
ADE7953_RSTVPEAK, // 0x327 R 24 U 0x000000 Read voltage peak with reset
ADE7953_IAPEAK, // 0x328 R 24 U 0x000000 Current Channel A peak
ADE7953_RSTIAPEAK, // 0x329 R 24 U 0x000000 Read Current Channel A peak with reset
ADE7953_IBPEAK, // 0x32A R 24 U 0x000000 Current Channel B peak
ADE7953_RSTIBPEAK, // 0x32B R 24 U 0x000000 Read Current Channel B peak with reset
ADE7953_IRQENA, // 0x32C R/W 24 U 0x100000 Interrupt enable (Current Channel A, see Table 22)
ADE7953_IRQSTATA, // 0x32D R 24 U 0x000000 Interrupt status (Current Channel A, see Table 23)
ADE7953_RSTIRQSTATA, // 0x32E R 24 U 0x000000 Reset interrupt status (Current Channel A)
ADE7953_IRQENB, // 0x32F R/W 24 U 0x000000 Interrupt enable (Current Channel B, see Table 24)
ADE7953_IRQSTATB, // 0x330 R 24 U 0x000000 Interrupt status (Current Channel B, see Table 25)
ADE7953_RSTIRQSTATB, // 0x331 R 24 U 0x000000 Reset interrupt status (Current Channel B)
ADE7953_CRC = 0x37F, // 0x37F R 32 U 0xFFFFFFFF Checksum
ADE7953_AIGAIN, // 0x380 R/W 24 U 0x400000 Current channel gain (Current Channel A)
ADE7953_AVGAIN, // 0x381 R/W 24 U 0x400000 Voltage channel gain
ADE7953_AWGAIN, // 0x382 R/W 24 U 0x400000 Active power gain (Current Channel A)
ADE7953_AVARGAIN, // 0x383 R/W 24 U 0x400000 Reactive power gain (Current Channel A)
ADE7953_AVAGAIN, // 0x384 R/W 24 U 0x400000 Apparent power gain (Current Channel A)
ADE7953_RESERVED_0X385, // 0x385
ADE7953_AIRMSOS, // 0x386 R/W 24 S 0x000000 IRMS offset (Current Channel A)
ADE7953_RESERVED_0X387, // 0x387
ADE7953_VRMSOS, // 0x388 R/W 24 S 0x000000 VRMS offset
ADE7953_AWATTOS, // 0x389 R/W 24 S 0x000000 Active power offset correction (Current Channel A)
ADE7953_AVAROS, // 0x38A R/W 24 S 0x000000 Reactive power offset correction (Current Channel A)
ADE7953_AVAOS, // 0x38B R/W 24 S 0x000000 Apparent power offset correction (Current Channel A)
ADE7953_BIGAIN, // 0x38C R/W 24 U 0x400000 Current channel gain (Current Channel B)
ADE7953_BVGAIN, // 0x38D R/W 24 U 0x400000 This register should not be modified.
ADE7953_BWGAIN, // 0x38E R/W 24 U 0x400000 Active power gain (Current Channel B)
ADE7953_BVARGAIN, // 0x38F R/W 24 U 0x400000 Reactive power gain (Current Channel B)
ADE7953_BVAGAIN, // 0x390 R/W 24 U 0x400000 Apparent power gain (Current Channel B)
ADE7953_RESERVED_0X391, // 0x391
ADE7953_BIRMSOS, // 0x392 R/W 24 S 0x000000 IRMS offset (Current Channel B)
ADE7953_RESERVED_0X393, // 0x393
ADE7953_RESERVED_0X394, // 0x394
ADE7953_BWATTOS, // 0x395 R/W 24 S 0x000000 Active power offset correction (Current Channel B)
ADE7953_BVAROS, // 0x396 R/W 24 S 0x000000 Reactive power offset correction (Current Channel B)
ADE7953_BVAOS // 0x397 R/W 24 S 0x000000 Apparent power offset correction (Current Channel B)
};
enum Ade7953CalibrationRegisters {
ADE7953_CAL_AVGAIN,
ADE7953_CAL_BVGAIN,
ADE7953_CAL_AIGAIN,
ADE7953_CAL_BIGAIN,
ADE7953_CAL_AWGAIN,
ADE7953_CAL_BWGAIN,
ADE7953_CAL_AVAGAIN,
ADE7953_CAL_BVAGAIN,
ADE7953_CAL_AVARGAIN,
ADE7953_CAL_BVARGAIN,
ADE7943_CAL_PHCALA,
ADE7943_CAL_PHCALB
};
const uint16_t Ade7953CalibRegs[] {
ADE7953_AVGAIN,
ADE7953_BVGAIN,
ADE7953_AIGAIN,
ADE7953_BIGAIN,
ADE7953_AWGAIN,
ADE7953_BWGAIN,
ADE7953_AVAGAIN,
ADE7953_BVAGAIN,
ADE7953_AVARGAIN,
ADE7953_BVARGAIN,
ADE7943_PHCALA,
ADE7943_PHCALB
};
const uint16_t Ade7953Registers[] {
ADE7953_IRMSA, // IRMSA - RMS current channel A
ADE7953_AWATT, // AWATT - Active power channel A
ADE7953_AVA, // AVA - Apparent power channel A
ADE7953_AVAR, // AVAR - Reactive power channel A
ADE7953_IRMSB, // IRMSB - RMS current channel B
ADE7953_BWATT, // BWATT - Active power channel B
ADE7953_BVA, // BVA - Apparent power channel B
ADE7953_BVAR, // BVAR - Reactive power channel B
ADE7953_VRMS, // VRMS - RMS voltage (Both channels)
ADE7943_Period, // Period - 16-bit unsigned period register
ADE7953_ACCMODE // ACCMODE - Accumulation mode
};
struct Ade7953 {
uint32_t voltage_rms = 0;
uint32_t period = 0;
uint32_t current_rms[2] = { 0, 0 };
uint32_t active_power[2] = { 0, 0 };
int32_t calib_data[sizeof(Ade7953CalibRegs)/sizeof(uint16_t)];
uint8_t init_step = 0;
uint8_t model = 0; // 0 = Shelly 2.5, 1 = Shelly EM, 2 = Shelly Plus 2PM
} Ade7953;
int Ade7953RegSize(uint16_t reg) {
int size = 0;
switch ((reg >> 8) & 0x0F) {
case 0x03: // 32-bit
size++;
case 0x02: // 24-bit
size++;
case 0x01: // 16-bit
size++;
case 0x00: // 8-bit
case 0x07:
case 0x08:
size++;
}
return size;
}
void Ade7953Write(uint16_t reg, uint32_t val) {
int size = Ade7953RegSize(reg);
if (size) {
Wire.beginTransmission(ADE7953_ADDR);
Wire.write((reg >> 8) & 0xFF);
Wire.write(reg & 0xFF);
while (size--) {
Wire.write((val >> (8 * size)) & 0xFF); // Write data, MSB first
}
Wire.endTransmission();
delayMicroseconds(5); // Bus-free time minimum 4.7us
}
}
int32_t Ade7953Read(uint16_t reg) {
uint32_t response = 0;
int size = Ade7953RegSize(reg);
if (size) {
Wire.beginTransmission(ADE7953_ADDR);
Wire.write((reg >> 8) & 0xFF);
Wire.write(reg & 0xFF);
Wire.endTransmission(0);
Wire.requestFrom(ADE7953_ADDR, size);
if (size <= Wire.available()) {
for (uint32_t i = 0; i < size; i++) {
response = response << 8 | Wire.read(); // receive DATA (MSB first)
}
}
}
return response;
}
#ifdef ADE7953_DUMP_REGS
void Ade7953DumpRegs(void) {
AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: SAGCYC DISNOLD Resrvd Resrvd LCYCMOD Resrvd Resrvd PGAV PGAIA PGAIB"));
char data[200] = { 0 };
for (uint32_t i = 0; i < 10; i++) {
int32_t value = Ade7953Read(ADE7953_SAGCYC + i);
snprintf_P(data, sizeof(data), PSTR("%s %02X"), data, value); // 8-bit regs
}
AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Regs 0x000..009%s"), data);
AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: ZXTOUT LINECYC CONFIG CF1DEN CF2DEN Resrvd Resrvd CFMODE PHCALA PHCALB PFA PFB ANGLEA ANGLEB Period"));
data[0] = '\0';
for (uint32_t i = 0; i < 15; i++) {
int32_t value = Ade7953Read(ADE7953_ZXTOUT + i);
snprintf_P(data, sizeof(data), PSTR("%s %04X"), data, value); // 16-bit regs
}
AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Regs 0x100..10E%s"), data);
AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: IGAIN VGAIN WGAIN VARGAIN VAGAIN Resrvd IRMSOS Resrvd VRMSOS WATTOS VAROS VAOS"));
data[0] = '\0';
for (uint32_t i = 0; i < 12; i++) {
int32_t value = Ade7953Read(ADE7953_AIGAIN + i);
snprintf_P(data, sizeof(data), PSTR("%s %06X"), data, value); // 24-bit regs
}
AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Regs 0x380..38B%s"), data);
data[0] = '\0';
for (uint32_t i = 0; i < 12; i++) {
int32_t value = Ade7953Read(ADE7953_BIGAIN + i);
snprintf_P(data, sizeof(data), PSTR("%s %06X"), data, value); // 24-bit regs
}
AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Regs 0x38C..397%s"), data);
}
#endif // ADE7953_DUMP_REGS
void Ade7953Init(void) {
#ifdef ADE7953_DUMP_REGS
Ade7953DumpRegs();
#endif // ADE7953_DUMP_REGS
Ade7953Write(ADE7953_CONFIG, 0x0004); // Locking the communication interface (Clear bit COMM_LOCK), Enable HPF
Ade7953Write(0x0FE, 0x00AD); // Unlock register 0x120
Ade7953Write(0x120, 0x0030); // Configure optimum setting
for (uint32_t i = 0; i < sizeof(Ade7953CalibRegs)/sizeof(uint16_t); i++) {
if (i >= ADE7943_CAL_PHCALA) {
int16_t phasecal = Ade7953.calib_data[i];
if (phasecal < 0) {
phasecal = abs(phasecal) + 0x200; // Add sign magnitude
}
Ade7953Write(Ade7953CalibRegs[i], phasecal);
} else {
Ade7953Write(Ade7953CalibRegs[i], Ade7953.calib_data[i]);
}
}
int32_t regs[sizeof(Ade7953CalibRegs)/sizeof(uint16_t)];
for (uint32_t i = 0; i < sizeof(Ade7953CalibRegs)/sizeof(uint16_t); i++) {
regs[i] = Ade7953Read(Ade7953CalibRegs[i]);
if (i >= ADE7943_CAL_PHCALA) {
if (regs[i] >= 0x0200) {
regs[i] &= 0x01FF; // Clear sign magnitude
regs[i] *= -1; // Make negative
}
}
}
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: CalibRegs aV %d, bV %d, aI %d, bI %d, aW %d, bW %d, aVA %d, bVA %d, aVAr %d, bVAr %d, aP %d, bP %d"),
regs[0], regs[1], regs[2], regs[3], regs[4], regs[5], regs[6], regs[7], regs[8], regs[9], regs[10], regs[11]);
#ifdef ADE7953_DUMP_REGS
Ade7953DumpRegs();
#endif // ADE7953_DUMP_REGS
}
void Ade7953GetData(void) {
uint32_t acc_mode;
int32_t reg[2][4];
for (uint32_t i = 0; i < sizeof(Ade7953Registers)/sizeof(uint16_t); i++) {
int32_t value = Ade7953Read(Ade7953Registers[i]);
if (8 == i) {
Ade7953.voltage_rms = value; // RMS voltage (both channels)
} else if (9 == i) {
Ade7953.period = value; // Period
} else if (10 == i) {
acc_mode = value; // Accumulation mode
} else {
uint32_t reg_index = i >> 2; // 0 or 1
reg[(ADE7953_SHELLY_25 == Ade7953.model) ? !reg_index : reg_index][i &3] = value; // IRMS, WATT, VA, VAR
}
}
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ADE: ACCMODE 0x%06X, VRMS %d, Period %d, IRMS %d, %d, WATT %d, %d, VA %d, %d, VAR %d, %d"),
acc_mode, Ade7953.voltage_rms, Ade7953.period,
reg[0][0], reg[1][0], reg[0][1], reg[1][1], reg[0][2], reg[1][2], reg[0][3], reg[1][3]);
uint32_t apparent_power[2] = { 0, 0 };
uint32_t reactive_power[2] = { 0, 0 };
for (uint32_t channel = 0; channel < 2; channel++) {
Ade7953.current_rms[channel] = reg[channel][0];
if (Ade7953.current_rms[channel] < 2000) { // No load threshold (20mA)
Ade7953.current_rms[channel] = 0;
Ade7953.active_power[channel] = 0;
} else {
Ade7953.active_power[channel] = abs(reg[channel][1]);
apparent_power[channel] = abs(reg[channel][2]);
reactive_power[channel] = abs(reg[channel][3]);
if ((ADE7953_SHELLY_EM == Ade7953.model) && (bitRead(acc_mode, 18 +(channel * 3)))) { // VARNLOAD
reactive_power[channel] = 0;
}
}
}
if (Energy.power_on) { // Powered on
float divider = (Ade7953.calib_data[ADE7953_CAL_AVGAIN] != ADE7953_GAIN_DEFAULT) ? 10000 : Settings->energy_voltage_calibration;
Energy.voltage[0] = (float)Ade7953.voltage_rms / divider;
Energy.frequency[0] = 223750.0f / ((float)Ade7953.period + 1);
for (uint32_t channel = 0; channel < 2; channel++) {
Energy.data_valid[channel] = 0;
divider = (Ade7953.calib_data[ADE7953_CAL_AWGAIN + channel] != ADE7953_GAIN_DEFAULT) ? 44 : (Settings->energy_power_calibration / 10);
Energy.active_power[channel] = (float)Ade7953.active_power[channel] / divider;
divider = (Ade7953.calib_data[ADE7953_CAL_AVARGAIN + channel] != ADE7953_GAIN_DEFAULT) ? 44 : (Settings->energy_power_calibration / 10);
Energy.reactive_power[channel] = (float)reactive_power[channel] / divider;
if (ADE7953_SHELLY_EM == Ade7953.model) {
if (bitRead(acc_mode, 10 +channel)) { // APSIGN
Energy.active_power[channel] *= -1;
}
if (bitRead(acc_mode, 12 +channel)) { // VARSIGN
Energy.reactive_power[channel] *= -1;
}
}
divider = (Ade7953.calib_data[ADE7953_CAL_AVAGAIN + channel] != ADE7953_GAIN_DEFAULT) ? 44 : (Settings->energy_power_calibration / 10);
Energy.apparent_power[channel] = (float)apparent_power[channel] / divider;
if (0 == Energy.active_power[channel]) {
Energy.current[channel] = 0;
} else {
divider = (Ade7953.calib_data[ADE7953_CAL_AIGAIN + channel] != ADE7953_GAIN_DEFAULT) ? 100000 : (Settings->energy_current_calibration * 10);
Energy.current[channel] = (float)Ade7953.current_rms[channel] / divider;
Energy.kWhtoday_delta[channel] += Energy.active_power[channel] * 1000 / 36;
}
}
EnergyUpdateToday();
/*
} else { // Powered off
Energy.data_valid[0] = ENERGY_WATCHDOG;
Energy.data_valid[1] = ENERGY_WATCHDOG;
*/
}
}
void Ade7953EnergyEverySecond(void) {
if (Ade7953.init_step) {
if (1 == Ade7953.init_step) {
Ade7953Init();
}
Ade7953.init_step--;
} else {
Ade7953GetData();
}
}
/*********************************************************************************************/
bool Ade7953SetDefaults(const char* json) {
// {"angles":{"angle0":180,"angle1":176}}
// {"rms":{"current_a":4194303,"current_b":4194303,"voltage":1613194},"angles":{"angle0":0,"angle1":0},"powers":{"totactive":{"a":2723574,"b":2723574},"apparent":{"a":2723574,"b":2723574},"reactive":{"a":2723574,"b":2723574}}}
uint32_t len = strlen(json) +1;
if (len < 7) { return false; } // Too short
char json_buffer[len];
memcpy(json_buffer, json, len); // Keep original safe
JsonParser parser(json_buffer);
JsonParserObject root = parser.getRootObject();
if (!root) {
AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Invalid JSON"));
return false;
}
// All parameters are optional allowing for partial changes
JsonParserToken val;
JsonParserObject rms = root[PSTR("rms")].getObject();
if (rms) {
val = rms[PSTR("voltage")];
if (val) {
Ade7953.calib_data[ADE7953_CAL_AVGAIN] = val.getInt();
Ade7953.calib_data[ADE7953_CAL_BVGAIN] = Ade7953.calib_data[ADE7953_CAL_AVGAIN];
}
val = rms[PSTR("current_a")];
if (val) { Ade7953.calib_data[ADE7953_CAL_AIGAIN] = val.getInt(); }
val = rms[PSTR("current_b")];
if (val) { Ade7953.calib_data[ADE7953_CAL_BIGAIN] = val.getInt(); }
}
JsonParserObject angles = root[PSTR("angles")].getObject();
if (angles) {
val = angles[PSTR("angle0")];
if (val) { Ade7953.calib_data[ADE7943_CAL_PHCALA] = val.getInt(); }
val = angles[PSTR("angle1")];
if (val) { Ade7953.calib_data[ADE7943_CAL_PHCALB] = val.getInt(); }
}
JsonParserObject powers = root[PSTR("powers")].getObject();
if (powers) {
JsonParserObject totactive = powers[PSTR("totactive")].getObject();
if (totactive) {
val = totactive[PSTR("a")];
if (val) { Ade7953.calib_data[ADE7953_CAL_AWGAIN] = val.getInt(); }
val = totactive[PSTR("b")];
if (val) { Ade7953.calib_data[ADE7953_CAL_BWGAIN] = val.getInt(); }
}
JsonParserObject apparent = powers[PSTR("apparent")].getObject();
if (apparent) {
val = apparent[PSTR("a")];
if (val) { Ade7953.calib_data[ADE7953_CAL_AVAGAIN] = val.getInt(); }
val = apparent[PSTR("b")];
if (val) { Ade7953.calib_data[ADE7953_CAL_BVAGAIN] = val.getInt(); }
}
JsonParserObject reactive = powers[PSTR("reactive")].getObject();
if (reactive) {
val = reactive[PSTR("a")];
if (val) { Ade7953.calib_data[ADE7953_CAL_AVARGAIN] = val.getInt(); }
val = reactive[PSTR("b")];
if (val) { Ade7953.calib_data[ADE7953_CAL_BVARGAIN] = val.getInt(); }
}
}
return true;
}
void Ade7953Defaults(void) {
for (uint32_t i = 0; i < sizeof(Ade7953CalibRegs)/sizeof(uint16_t); i++) {
if (i < sizeof(Ade7953CalibRegs)/sizeof(uint16_t) -2) {
Ade7953.calib_data[i] = ADE7953_GAIN_DEFAULT;
} else {
Ade7953.calib_data[i] = (ADE7953_SHELLY_EM == Ade7953.model) ? ADE7953_PHCAL_DEFAULT_CT : ADE7953_PHCAL_DEFAULT;
}
}
#ifdef USE_RULES
// rule3 on file#calib.dat do {"angles":{"angle0":180,"angle1":176}} endon
String calib = RuleLoadFile("CALIB.DAT");
if (calib.length()) {
// AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: File '%s'"), calib.c_str());
Ade7953SetDefaults(calib.c_str());
}
#endif // USE_RULES
}
void Ade7953DrvInit(void) {
if (PinUsed(GPIO_ADE7953_IRQ, GPIO_ANY)) { // Irq on GPIO16 is not supported...
uint32_t pin_irq = Pin(GPIO_ADE7953_IRQ, GPIO_ANY);
pinMode(pin_irq, INPUT); // Related to resetPins() - Must be set to input
Ade7953.model = GetPin(pin_irq) - AGPIO(GPIO_ADE7953_IRQ); // 0 (1 = Shelly 2.5), 1 (2 = Shelly EM), 2 (3 = Shelly Plus 2PM)
int pin_reset = Pin(GPIO_ADE7953_RST); // -1 if not defined
#ifdef ESP8266
if (ADE7953_SHELLY_EM == Ade7953.model) {
if (-1 == pin_reset) {
pin_reset = 16;
}
}
#endif
if (pin_reset > -1) {
pinMode(pin_reset, OUTPUT); // Reset pin ADE7953
digitalWrite(pin_reset, 0);
delay(1);
digitalWrite(pin_reset, 1);
pinMode(pin_reset, INPUT);
}
delay(100); // Need 100mS to init ADE7953
if (I2cSetDevice(ADE7953_ADDR)) {
if (HLW_PREF_PULSE == Settings->energy_power_calibration) {
Settings->energy_power_calibration = ADE7953_PREF;
Settings->energy_voltage_calibration = ADE7953_UREF;
Settings->energy_current_calibration = ADE7953_IREF;
}
I2cSetActiveFound(ADE7953_ADDR, "ADE7953");
Ade7953Defaults();
Ade7953.init_step = 2;
Energy.phase_count = 2; // Handle two channels as two phases
Energy.voltage_common = true; // Use common voltage
Energy.frequency_common = true; // Use common frequency
Energy.use_overtemp = true; // Use global temperature for overtemp detection
if (ADE7953_SHELLY_EM == Ade7953.model) {
Energy.local_energy_active_export = true;
}
TasmotaGlobal.energy_driver = XNRG_07;
}
}
}
bool Ade7953Command(void) {
bool serviced = true;
uint32_t channel = (2 == XdrvMailbox.index) ? 1 : 0;
uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123
if (CMND_POWERCAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_PREF; }
// Service in xdrv_03_energy.ino
}
else if (CMND_VOLTAGECAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_UREF; }
// Service in xdrv_03_energy.ino
}
else if (CMND_CURRENTCAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_IREF; }
// Service in xdrv_03_energy.ino
}
else if (CMND_POWERSET == Energy.command_code) {
if (XdrvMailbox.data_len && Ade7953.active_power[channel]) {
if ((value > 100) && (value < 200000)) { // Between 1W and 2000W
Settings->energy_power_calibration = (Ade7953.active_power[channel] * 1000) / value; // 0.00 W
}
}
}
else if (CMND_VOLTAGESET == Energy.command_code) {
if (XdrvMailbox.data_len && Ade7953.voltage_rms) {
if ((value > 10000) && (value < 26000)) { // Between 100V and 260V
Settings->energy_voltage_calibration = (Ade7953.voltage_rms * 100) / value; // 0.00 V
}
}
}
else if (CMND_CURRENTSET == Energy.command_code) {
if (XdrvMailbox.data_len && Ade7953.current_rms[channel]) {
if ((value > 2000) && (value < 1000000)) { // Between 20mA and 10A
Settings->energy_current_calibration = ((Ade7953.current_rms[channel] * 100) / value) * 100; // 0.00 mA
}
}
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg07(uint8_t function) {
if (!I2cEnabled(XI2C_07)) { return false; }
bool result = false;
switch (function) {
case FUNC_ENERGY_EVERY_SECOND:
Ade7953EnergyEverySecond();
break;
case FUNC_COMMAND:
result = Ade7953Command();
break;
case FUNC_PRE_INIT:
Ade7953DrvInit();
break;
}
return result;
}
#endif // USE_ADE7953
#endif // USE_ENERGY_SENSOR
#endif // USE_I2C