Tasmota/tasmota/tasmota_xsns_sensor/xsns_83_neopool.ino

3353 lines
157 KiB
C++

/*
xsns_83_neopool.ino - Sugar Valley NeoPool Control System Modbus support for Tasmota
Copyright (C) 2023 Norbert Richter
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_NEOPOOL
/*********************************************************************************************\
* Sugar Valley NeoPool electronic pool control and water treatment system, also known as brand
* Hidrolife (yellow case)
* Aquascenic (blue case)
* Oxilife (green case)
* Bionet (light blue case)
* Hidroniser (red case)
* UVScenic (lilca case)
* Station (orange case)
* Brilix
* Bayrol
* Hay
*
* Sugar Valley RS485 connector inside (DISPLAY/WIFI/EXTERN) pins (from top to bottom):
* ___
* 1 |* |- +12V (internal power supply)
* 2 |* |- (not connected)
* 3 |* |- Modbus A+
* 4 |* |- Modbus B-
* 5 |*__|- Modbus GND
*
* Parameter: 19200 Baud / 1 Stopbit / Parity None
* Protocol: Modbus RTU
* NeoPool controller is Modbus server (formerly known as slave)
* Tasmota is Modbus client (formerly known as master)
*
* Connector DISPLAY is useless as long as the internal display is also connected to the
* second DISPLAY connector. Use WIFI or EXTERN.
*
* Hardware serial will be selected if GPIO1 = [NeoPool Rx] and GPIO3 = [NeoPool Tx]
\*********************************************************************************************/
#define XSNS_83 83
#ifndef NEOPOOL_MODBUS_SPEED
#define NEOPOOL_MODBUS_SPEED 19200
#endif
#ifndef NEOPOOL_MODBUS_ADDRESS
#define NEOPOOL_MODBUS_ADDRESS 1 // Modbus address, "WIFI" uses 1, "EXTERN" defaults also 1
#endif
#ifndef NEOPOOL_READ_REGISTER
#define NEOPOOL_READ_REGISTER 0x04 // Function code used to read register
#endif
#ifndef NEOPOOL_WRITE_REGISTER
#define NEOPOOL_WRITE_REGISTER 0x10 // Function code used to write register
#endif
#ifndef NEOPOOL_READ_TIMEOUT
#define NEOPOOL_READ_TIMEOUT 25 // read data timeout in ms
#endif
#ifndef NEOPOOL_CACHE_INVALID_TIME
#define NEOPOOL_CACHE_INVALID_TIME 30 // data cache invalidation time in s
#endif
// Pool LED RGB lights with different programs, the individual programs can be selected
// by switching them off and on again for a defined time when the LED is switched on.
// Default timings for LED light program step sequence (NPLight 3)
#ifndef NEOPOOL_LIGHT_PRG_WAIT
#define NEOPOOL_LIGHT_PRG_WAIT 30 // delay before start prg light if light was off (in ms)
#endif
#ifndef NEOPOOL_LIGHT_PRG_DELAY
#define NEOPOOL_LIGHT_PRG_DELAY 15 // default next light prg delay (in ms)
#endif
#ifndef NEOPOOL_LIGHT_PRG_DELAY_MIN
#define NEOPOOL_LIGHT_PRG_DELAY_MIN 5 // next light prg delay min (in ms)
#endif
#ifndef NEOPOOL_LIGHT_PRG_DELAY_MAX
#define NEOPOOL_LIGHT_PRG_DELAY_MAX 100 // next light prg delay max (in ms)
#endif
#ifdef ESP32 // Defaults for ESP32 only
#ifndef NEOPOOL_RANGE_CHECKS
#define NEOPOOL_RANGE_CHECKS // Compile with value range checks
#endif
#endif
#ifdef NEOPOOL_RANGE_CHECKS
#ifndef NEOPOOL_CONNSTAT
#define NEOPOOL_CONNSTAT // Compile with connection statistics
#endif
#endif
/*********************************************************************************************\
* Sugar Valley Modbus Register (addresses marked with * are queried with each polling cycle)
* (see https://downloads.vodnici.net/uploads/wpforo/attachments/69/171-Modbus-registers.pdf)
\*********************************************************************************************/
enum NeoPoolRegister {
// addr Unit Description - "!" indicates register is not officially documented
// ------ ------ ------------------------------------------------------------
// MODBUS page (0x00xx) - Manages general configuration of the box. This page is reserved for internal purposes
MBF_POWER_MODULE_VERSION = 0x0002, // 0x0002 ! Power module version (MSB=Major, LSB=Minor)
MBF_POWER_MODULE_NODEID = 0x0004, // 0x0004 ! Power module Node ID (6 register 0x0004 - 0x0009)
MBF_POWER_MODULE_REGISTER = 0x000C, // 0x000C ! Writing an address in this register causes the power module register address to be read out into MBF_POWER_MODULE_DATA, see MBF_POWER_MODULE_REG_*
MBF_POWER_MODULE_DATA = 0x000D, // 0x000D ! power module data as requested in MBF_POWER_MODULE_REGISTER
MBF_VOLT_24_36 = 0x0022, // 0x0022* ! Current 24-36V line in mV
MBF_VOLT_12 = 0x0023, // 0x0023* ! Current 12V line in mV
MBF_VOLT_5 = 0x006A, // 0x006A* ! 5V line in mV / 0,62069
MBF_AMP_4_20_MICRO = 0x0072, // 0x0072* ! 2-40mA line in µA * 10 (1=0,01mA)
// MEASURE page (0x01xx) - Contains the different measurement information including hydrolysis current, pH level, redox level, etc.
MBF_ION_CURRENT = 0x0100, // 0x0100* Ionization level measured
MBF_HIDRO_CURRENT, // 0x0101* Hydrolysis intensity level
MBF_MEASURE_PH, // 0x0102* ph pH level measured in 1/100 (700 = 7.00)
MBF_MEASURE_RX, // 0x0103* mV Redox level measured in mV
MBF_MEASURE_CL, // 0x0104* ppm Chlorine level measured in 1/100 ppm (100 = 1.00 ppm)
MBF_MEASURE_CONDUCTIVITY, // 0x0105* % Conductivity level measured in %
MBF_MEASURE_TEMPERATURE, // 0x0106* °C Temperature sensor measured in 1/10° C (100 = 10.0°C)
MBF_PH_STATUS, // 0x0107* mask Status of the pH-module
MBF_RX_STATUS, // 0x0108* mask Status of the Rx-module
MBF_CL_STATUS, // 0x0109* mask Status of the Chlorine-module
MBF_CD_STATUS, // 0x010A* mask Status of the Conductivity-module
MBF_ION_STATUS = 0x010C, // 0x010C* mask Status of the Ionization-module
MBF_HIDRO_STATUS, // 0x010D* mask Status of the Hydrolysis-module
MBF_RELAY_STATE, // 0x010E* mask Status of each configurable relay
MBF_HIDRO_SWITCH_VALUE, // 0x010F* INTERNAL - contains the opening of the hydrolysis PWM.
MBF_NOTIFICATION, // 0x0110* mask Bit field that informs whether a property page has changed since the last time it was queried. (see MBMSK_NOTIF_*). This register makes it possible to refresh the content of the registers maintained by a modbus master in an optimized way, without the need to reread all registers periodically, but only those on a page that has been changed.
MBF_HIDRO_VOLTAGE, // 0x0111 The voltage applied to the hydrolysis cell. This register, together with that of MBF_HIDRO_CURRENT allows extrapolation of water salinity.
// GLOBAL page (0x02xx) - Contains global information, such as the amount of time that each power unit has been working.
MBF_CELL_RUNTIME_LOW = 0x0206, // 0x0206* ! Cell runtime (32 bit value - low word)
MBF_CELL_RUNTIME_HIGH, // 0x0207* ! Cell runtime (32 bit value - high word)
MBF_CELL_RUNTIME_PART_LOW, // 0x0208* ! Cell part runtime (32 bit value - low word)
MBF_CELL_RUNTIME_PART_HIGH, // 0x0209* ! Cell part runtime (32 bit value - high word)
MBF_CELL_BOOST = 0x020C, // 0x020C* mask ! Boost control (see MBMSK_CELL_BOOST_*)
MBF_CELL_RUNTIME_POLA_LOW = 0x0214, // 0x0214* ! Cell runtime polarity 1 (32 bit value - low word)
MBF_CELL_RUNTIME_POLA_HIGH, // 0x0215* ! Cell runtime polarity 1 (32 bit value - high word)
MBF_CELL_RUNTIME_POLB_LOW, // 0x0216* ! Cell runtime polarity 2 (32 bit value - low word)
MBF_CELL_RUNTIME_POLB_HIGH, // 0x0217* ! Cell runtime polarity 2 (32 bit value - high word)
MBF_CELL_RUNTIME_POL_CHANGES_LOW, // 0x0218* ! Cell runtime polarity change count (32 bit value - low word)
MBF_CELL_RUNTIME_POL_CHANGES_HIGH, // 0x0219* ! Cell runtime polarity change count (32 bit value - high word)
MBF_HIDRO_MODULE_VERSION = 0x0280, // 0x0280 ! Hydrolysis module version
MBF_HIDRO_MODULE_CONNECTIVITY = 0x0281, // 0x0281 ! Hydrolysis module connection quality (in myriad: 0..10000)
MBF_SET_COUNTDOWN_KEY_AUX_OFF = 0x0287, // 0x0287 mask ! switch AUX1-4 OFF - only for AUX which is assigned as AUX and set to MBV_PAR_CTIMER_COUNTDOWN_KEY_* mode - see MBV_PAR_CTIMER_COUNTDOWN_KEY_AUX*
MBF_SET_COUNTDOWN_KEY_AUX_ON, // 0x0288 mask ! switch AUX1-4 ON - only for AUX which is assigned as AUX and set to MBV_PAR_CTIMER_COUNTDOWN_KEY_* mode - see MBV_PAR_CTIMER_COUNTDOWN_KEY_AUX*
MBF_SET_MANUAL_CTRL, // 0x0289 ! write a 1 before manual control MBF_RELAY_STATE, after done write 0 and do MBF_EXEC
MBF_ESCAPE = 0x0297, // 0x0297 ! A write operation to this register is the same as using the ESC button on main screen - clears error
MBF_SAVE_TO_EEPROM = 0x02F0, // 0x02F0 A write operation to this register immediately starts a EEPROM storage operation. During the EEPROM storage procedure, the system may be unresponsive to MODBUS requests. The operation will last always less than 1 second.
MBF_EXEC = 0x02F5, // 0x02F5 ! A write operation to this register immediately take over settings of the previous written data
// FACTORY page (0x03xx) - Contains factory data such as calibration parameters for the different power units.
MBF_PAR_VERSION = 0x0300, // 0x0300* Software version of the PowerBox
MBF_PAR_MODEL, // 0x0301* mask System model options
MBF_PAR_SERNUM, // 0x0302* Serial number of the PowerBox
MBF_PAR_ION_NOM, // 0x0303* Ionization maximum production level (DO NOT WRITE!)
MBF_PAR_HIDRO_NOM = 0x0306, // 0x0306* Hydrolysis maximum production level. (DO NOT WRITE!) If the hydrolysis is set to work in percent mode, this value will be 100. If the hydrolysis module is set to work in g/h production, this module will contain the maximum amount of production in g/h units. (DO NOT WRITE!)
MBF_PAR_SAL_AMPS = 0x030A, // 0x030A Current command in regulation for which we are going to measure voltage
MBF_PAR_SAL_CELLK, // 0x030B Specifies the relationship between the resistance obtained in the measurement process and its equivalence in g / l (grams per liter)
MBF_PAR_SAL_TCOMP, // 0x030C Specifies the deviation in temperature from the conductivity.
MBF_PAR_HIDRO_MAX_VOLTAGE = 0x0322, // 0x0322 Allows setting the maximum voltage value that can be reached with the hydrolysis current regulation. The value is specified in tenths of a volt. The default value of this register when the EEPROM is cleared is 80, which is equivalent to a maximum cell operating voltage of 8 volts.
MBF_PAR_HIDRO_FLOW_SIGNAL, // 0x0323 Allows to select the operation of the flow detection signal associated with the operation of the hydrolysis (see MBV_PAR_HIDRO_FLOW_SIGNAL*). The default value for this register is 0 (standard detection).
MBF_PAR_HIDRO_MAX_PWM_STEP_UP, // 0x0324 This register sets the PWM ramp up of the hydrolysis in pulses per duty cycle. This register makes it possible to adjust the rate at which the power delivered to the cell increases, allowing a gradual rise in power so that the operation of the switching source of the equipment is not saturated. Default 150
MBF_PAR_HIDRO_MAX_PWM_STEP_DOWN, // 0x0325 This register sets the PWM down ramp of the hydrolysis in pulses per duty cycle. This register allows adjusting the rate at which the power delivered to the cell decreases, allowing a gradual drop in power so that the switched source of the equipment is not disconnected due to lack of consumption. This gradual fall must be in accordance with the type of cell used, since said cell stores charge once the current stimulus has ceased. Default 20
// INSTALLER page (0x04xx) - Contains a set of configuration registers related to the equipment installation, such as the relays used for each function, the amount of time that each pump must operate, etc.
MBF_PAR_ION_POL0 = 0x0400, // 0x0400 Time in minutes that the equipment must remain working in positive polarization in the copper-silver ionization.
MBF_PAR_ION_POL1, // 0x0401 Time in minutes that the equipment must remain working in negative polarization in the copper-silver ionization.
MBF_PAR_ION_POL2, // 0x0402 Time in minutes that the equipment must remain working in dead time (without delivering power) in the copper-silver ionization.
MBF_PAR_HIDRO_ION_CAUDAL, // 0x0403 mask Bitmask register regulates the external control mode of ionization, hydrolysis and pumps (see MBMSK_HIDRO_ION_CAUDAL_*)
MBF_PAR_HIDRO_MODE, // 0x0404 Regulates the external control mode of hydrolysis from the modules of measure. 0 = no control, 1 = standard control (on / off), 2 = with timed pump
MBF_PAR_HIDRO_POL0, // 0x0405 Time in minutes that the equipment must remain in positive polarization during hydrolysis/electrolysis.
MBF_PAR_HIDRO_POL1, // 0x0406 Time in minutes that the equipment must remain in negative polarization during hydrolysis/electrolysis.
MBF_PAR_HIDRO_POL2, // 0x0407 Time in minutes that the equipment must remain working in dead time (without delivering power) in the hydrolysis/electrolysis.
MBF_PAR_TIME_LOW, // 0x0408* System timestamp as unix timestamp (32 bit value - low word).
MBF_PAR_TIME_HIGH, // 0x0409* System timestamp as unix timestsmp (32 bit value - high word).
MBF_PAR_PH_ACID_RELAY_GPIO, // 0x040A* Relay number assigned to the acid pump function (only with pH module).
MBF_PAR_PH_BASE_RELAY_GPIO, // 0x040B* Relay number assigned to the base pump function (only with pH module).
MBF_PAR_RX_RELAY_GPIO, // 0x040C* Relay number assigned to the Redox level regulation function. If the value is 0, there is no relay assigned, and therefore there is no pump function (ON / OFF should not be displayed)
MBF_PAR_CL_RELAY_GPIO, // 0x040D* Relay number assigned to the chlorine pump function (only with free chlorine measuring modules).
MBF_PAR_CD_RELAY_GPIO, // 0x040E* Relay number assigned to the conductivity (brine) pump function (only with conductivity measurement modules).
MBF_PAR_TEMPERATURE_ACTIVE, // 0x040F* Indicates whether the equipment has a temperature measurement or not.
MBF_PAR_LIGHTING_GPIO, // 0x0410* Relay number assigned to the lighting function. 0: inactive.
MBF_PAR_FILT_MODE, // 0x0411* Filtration mode (see MBV_PAR_FILT_*)
MBF_PAR_FILT_GPIO, // 0x0412* Relay selected to perform the filtering function (by default it is relay 2). When this value is at zero, there is no relay assigned and therefore it is understood that the equipment does not control the filtration. In this case, the filter option does not appear in the user menu.
MBF_PAR_FILT_MANUAL_STATE, // 0x0413 Filtration status in manual mode (on = 1; off = 0)
MBF_PAR_HEATING_MODE, // 0x0414 Heating mode: 0 = the equipment is not heated. 1 = the equipment is heating.
MBF_PAR_HEATING_GPIO, // 0x0415 Relay number assigned to perform the heating function (by default it is relay 7). When this value is at zero, there is no relay assigned and therefore it is understood that the equipment does not control the heating. In this case, the filter modes associated with heating will not be displayed.
MBF_PAR_HEATING_TEMP, // 0x0416 Heating mode: Heating setpoint temperature
MBF_PAR_CLIMA_ONOFF, // 0x0417 Activation of the climate mode (0 = inactive, 1 = active).
MBF_PAR_SMART_TEMP_HIGH, // 0x0418 Smart mode: Upper temperature
MBF_PAR_SMART_TEMP_LOW, // 0x0419 Smart mode: Lower temperature
MBF_PAR_SMART_ANTI_FREEZE, // 0x041A Smart mode: Antifreeze mode activated (1) or not (0).
MBF_PAR_SMART_INTERVAL_REDUCTION, // 0x041B Smart mode: This register is read-only and reports to the outside what percentage (0 to 100%) is being applied to the nominal filtration time. 100% means that the total programmed time is being filtered.
MBF_PAR_INTELLIGENT_TEMP, // 0x041C Intelligent mode: Setpoint temperature
MBF_PAR_INTELLIGENT_FILT_MIN_TIME, // 0x041D Intelligent mode: Minimum filtration time in minutes
MBF_PAR_INTELLIGENT_BONUS_TIME, // 0x041E Intelligent mode: Bonus time for the current set of intervals
MBF_PAR_INTELLIGENT_TT_NEXT_INTERVAL, // 0x041F Intelligent mode: Time to next filtration interval. When it reaches 0 an interval is started and the number of seconds is reloaded for the next interval (2x3600)
MBF_PAR_INTELLIGENT_INTERVALS, // 0x0420 Intelligent mode: Number of started intervals. When it reaches 12 it is reset to 0 and the bonus time is reloaded with the value of MBF_PAR_INTELLIGENT_FILT_MIN_TIME
MBF_PAR_FILTRATION_STATE, // 0x0421 Filtration state: 0 is off and 1 is on. The filtration state is regulated according to the MBF_PAR_FILT_MANUAL_STATE register if the filtration mode held in register MBF_PAR_FILT_MODE is set to FILT_MODE_MANUAL (0).
MBF_PAR_HEATING_DELAY_TIME, // 0x0422 Timer in seconds that counts up when the heating is to be enabled. Once this counter reaches 60 seconds, the heating is then enabled. This counter is for internal use only.
MBF_PAR_FILTERING_TIME_LOW, // 0x0423 Internal timer for the intelligent filtering mode (32-bit value - low word). It counts the filtering time done during a given day. This register is only for internal use and should not be modified by the user.
MBF_PAR_FILTERING_TIME_HIGH, // 0x0424 Internal timer for the intelligent filtering mode (32-bit value - high word)
MBF_PAR_INTELLIGENT_INTERVAL_TIME_LOW, // 0x0425 Internal timer that counts the filtration interval assigned to the the intelligent mode (32-bit value - low word). This register is only for internal use and should not be modified by the user.
MBF_PAR_INTELLIGENT_INTERVAL_TIME_HIGH, // 0x0426 Internal timer that counts the filtration interval assigned to the the intelligent mode (32-bit value - high word)
MBF_PAR_UV_MODE, // 0x0427 UV mode active or not - see MBV_PAR_UV_MODE*. To enable UV support for a given device, add the mask MBMSK_MODEL_UV to the MBF_PAR_MODEL register.
MBF_PAR_UV_HIDE_WARN, // 0x0428 mask Suppression for warning messages in the UV mode (see MBMSK_UV_HIDE_WARN_*)
MBF_PAR_UV_RELAY_GPIO, // 0x0429 Relay number assigned to the UV function.
MBF_PAR_PH_PUMP_REP_TIME_ON, // 0x042A mask Time that the pH pump will be turn on in the repetitive mode (see MBMSK_PH_PUMP_*). Contains a special time format, see desc for MBMSK_PH_PUMP_TIME.
MBF_PAR_PH_PUMP_REP_TIME_OFF, // 0x042B mask Time that the pH pump will be turn off in the repetitive mode. Contains a special time format, see desc for MBMSK_PH_PUMP_TIME, has no upper configuration bit 0x8000
MBF_PAR_HIDRO_COVER_ENABLE, // 0x042C mask Options for the hydrolysis/electrolysis module (see MBMSK_HIDRO_*)
MBF_PAR_HIDRO_COVER_REDUCTION, // 0x042D Configured levels for the cover reduction and the hydrolysis shutdown temperature options: LSB = Percentage for the cover reduction, MSB = Temperature level for the hydrolysis shutdown (see MBMSK_HIDRO_*)
MBF_PAR_PUMP_RELAY_TIME_OFF, // 0x042E Time level in minutes or seconds that the dosing pump must remain off when the temporized pump mode is selected. This time level register applies to all pumps except pH. Contains a special time format, see desc for MBMSK_PH_PUMP_TIME, has no upper configuration bit 0x8000
MBF_PAR_PUMP_RELAY_TIME_ON, // 0x042F Time level in minutes or seconds that the dosing pump must remain on when the temporized pump mode is selected. This time level register applies to all pumps except pH. Contains a special time format, see desc for MBMSK_PH_PUMP_TIME, has no upper configuration bit 0x8000
MBF_PAR_RELAY_PH, // 0x0430 Determine what pH regulation configuration the equipment has (see MBV_PAR_RELAY_PH_*)
MBF_PAR_RELAY_MAX_TIME, // 0x0431 Maximum amount of time in seconds, that a dosing pump can operate before rising an alarm signal. The behavior of the system when the dosing time is exceeded is regulated by the type of action stored in the MBF_PAR_RELAY_MODE register.
MBF_PAR_RELAY_MODE, // 0x0432 Behavior of the system when the dosing time is exceeded (see MBMSK_PAR_RELAY_MODE_* and MBV_PAR_RELAY_MODE_*)
MBF_PAR_RELAY_ACTIVATION_DELAY, // 0x0433 Delay time in seconds for the pH pump when the measured pH value is outside the allowable pH setpoints. The system internally adds an extra time of 10 seconds to the value stored here. The pump starts the dosing operation once the condition of pH out of valid interval is maintained during the time specified in this register.
MBF_PAR_TIMER_BLOCK_BASE, // 0x0434 Block of 180 registers containing the configuration of the 12 timers with 15 registers each (see MBV_TIMER_OFFMB_*). The system has a set of 12 fully configurable timers, each one assigned to a specific function:
MBF_PAR_TIMER_BLOCK_FILT_INT1 = 0x0434, // 0x0434 Filtration timer 1
MBF_PAR_TIMER_BLOCK_FILT_INT2 = 0x0443, // 0x0443 Filtration tiemr 2
MBF_PAR_TIMER_BLOCK_FILT_INT3 = 0x0452, // 0x0452 Filtration timer 3
MBF_PAR_TIMER_BLOCK_AUX1_INT2 = 0x0461, // 0x0461 Aux1 timer 2
MBF_PAR_TIMER_BLOCK_LIGHT_INT = 0x0470, // 0x0470 Lighting timer
MBF_PAR_TIMER_BLOCK_AUX2_INT2 = 0x047F, // 0x047F Aux2 timer 2
MBF_PAR_TIMER_BLOCK_AUX3_INT2 = 0x048E, // 0x048E Aux3 timer 2
MBF_PAR_TIMER_BLOCK_AUX4_INT2 = 0x049D, // 0x049D Aux4 timer 2
MBF_PAR_TIMER_BLOCK_AUX1_INT1 = 0x04AC, // 0x04AC Aux1 timer 1
MBF_PAR_TIMER_BLOCK_AUX2_INT1 = 0x04BB, // 0x04BB Aux2 timer 1
MBF_PAR_TIMER_BLOCK_AUX3_INT1 = 0x04CA, // 0x04CA Aux3 timer 1
MBF_PAR_TIMER_BLOCK_AUX4_INT1 = 0x04D9, // 0x04D9 Aux4 timer 1
MBF_PAR_FILTVALVE_ENABLE = 0x04E8, // 0x04E8 Filter cleaning functionality mode (0 = off, 1 = Besgo)
MBF_PAR_FILTVALVE_MODE, // 0x04E9 Filter cleaning valve timing mode, possible modes: MBV_PAR_CTIMER_ENABLED, MBV_PAR_CTIMER_ALWAYS_ON, MBV_PAR_CTIMER_ALWAYS_OFF
MBF_PAR_FILTVALVE_GPIO, // 0x04EA Relay associated with the filter cleaning function. default AUX2 (value 5)
MBF_PAR_FILTVALVE_START_LOW, // 0x04EB Start timestamp of filter cleaning (32-bit value - low word)
MBF_PAR_FILTVALVE_START_HIGH, // 0x04EC Start timestamp of filter cleaning (32-bit value - high word)
MBF_PAR_FILTVALVE_PERIOD_MINUTES, // 0x04ED Period in minutes between cleaning actions. For example, if a value of 60 is stored in this registry, a cleanup action will occur every hour.
MBF_PAR_FILTVALVE_INTERVAL, // 0x04EE Cleaning action duration in seconds.
MBF_PAR_FILTVALVE_REMAINING, // 0x04EF Time remaining for the current cleaning action in seconds. If this register is 0, it means that there is no cleaning function running. When a cleanup function is started, the contents of the MBF_PAR_FILTVALVE_INTERVAL register are copied to this register, then decremented once per second. The display uses this log to track the progress of the cleaning function.
MBF_ACTION_COPY_TO_RTC, // 0x04F0 A write (any value) forces the writing of the RTC time registers MBF_PAR_TIME_LOW (0x0408) and MBF_PAR_TIME_HIGH (0x0409) into the RTC internal microcontroller clock management registers.
// USER page (0x05xx) - Contains user configuration registers, such as the production level for the ionization and the hydrolysis, or the set points for the pH, redox, or chlorine regulation loops.
MBF_PAR_ION = 0x0500, // 0x0500* Ionization target production level. The value adjusted in this register must not exceed the value set in the MBF_PAR_ION_NOM factory register.
MBF_PAR_ION_PR, // 0x0501* Amount of time in minutes that the ionization must be activated each time that the filtration starts.
MBF_PAR_HIDRO, // 0x0502* Hydrolisis target production level. When the hydrolysis production is to be set in percent values, this value will contain the percent of production. If the hydrolysis module is set to work in g/h production, this module will contain the desired amount of production in g/h units. The value adjusted in this register must not exceed the value set in the MBF_PAR_HIDRO_NOM factory register.
MBF_PAR_PH1 = 0x0504, // 0x0504* Higher limit of the pH regulation system. The value set in this register is multiplied by 100. This means that if we want to set a value of 7.5, the numerical content that we must write in this register is 750. This register must be always higher than MBF_PAR_PH2.
MBF_PAR_PH2, // 0x0505* Lower limit of the pH regulation system. The value set in this register is multiplied by 100. This means that if we want to set a value of 7.0, the numerical content that we must write in this register is 700. This register must be always lower than MBF_PAR_PH1.
MBF_PAR_RX1 = 0x0508, // 0x0508* Set point for the redox regulation system. This value must be in the range of 0 to 1000.
MBF_PAR_CL1 = 0x050A, // 0x050A* Set point for the chlorine regulation system. The value stored in this register is multiplied by 100. This mean that if we want to set a value of 1.5 ppm, we will have to write a numerical value of 150. This value stored in this register must be in the range of 0 to 1000.
MBF_PAR_FILTRATION_CONF = 0x050F, // 0x050F* mask ! filtration type and speed, see MBMSK_PAR_FILTRATION_CONF_*
MBF_PAR_FILTRATION_SPEED_FUNC = 0x0513, // 0x0513 ! filtration speed function control
MBF_PAR_FUNCTION_DEPENDENCY = 0x051B, // 0x051B mask Specification for the dependency of different functions, such as heating, from external events like FL1 (see MBMSK_FCTDEP_HEATING/MBMSK_DEPENDENCY_*)
// MISC page (0x06xx) - Contains the configuration parameters for the screen controllers (language, colours, sound, etc).
MBF_PAR_UICFG_MACHINE = 0x0600, // 0x0600* Machine type (see MBV_PAR_MACH_* and kNeoPoolMachineNames[])
MBF_PAR_UICFG_LANGUAGE, // 0x0601* Selected language (see MBV_PAR_LANG_*)
MBF_PAR_UICFG_BACKLIGHT, // 0x0602* Display backlight function (see MBV_PAR_BACKLIGHT_*)
MBF_PAR_UICFG_SOUND, // 0x0603* mask Audible alerts (see MBMSK_PAR_SOUND_*)
MBF_PAR_UICFG_PASSWORD, // 0x0604* System password encoded in BCD
MBF_PAR_UICFG_VISUAL_OPTIONS, // 0x0605* mask Stores the different display options for the user interface menus (bitmask). Some bits allow you to hide options that are normally visible (bits 0 to 3) while other bits allow you to show options that are normally hidden (bits 9 to 15)
MBF_PAR_UICFG_VISUAL_OPTIONS_EXT, // 0x0606* mask This register stores additional display options for the user interface menus (see MBMSK_VOE_*)
MBF_PAR_UICFG_MACH_VISUAL_STYLE, // 0x0607* mask This register is an expansion of register MBF_PAR_UICFG_MACHINE and MBF_PAR_UICFG_VISUAL_OPTIONS. If MBF_PAR_UICFG_MACHINE is MBV_PAR_MACH_GENERIC then the lower part (8 bits LSB) is used to store the type of color selected. Colors and styles correspond to those listed in MBF_PAR_UICFG_MACHINE (see MBV_PAR_MACH_*). The upper part (8-bit MSB) contains extra bits MBMSK_VS_FORCE_UNITS_GRH, MBMSK_VS_FORCE_UNITS_PERCENTAGE and MBMSK_ELECTROLISIS
MBF_PAR_UICFG_MACH_NAME_BOLD = 0x0608, // 0x0608 Machine name bold part title displayed during startup if MBF_PAR_UICFG_MACHINE is MBV_PAR_MACH_GENERIC. Note: Only lowercase letters (a-z) can be used. 4 register (0x608 to 0x60B) ASCIIZ string with up to 8 characters
MBF_PAR_UICFG_MACH_NAME_LIGHT = 0x060C, // 0x060C Machine name normal intensity part title displayed during startup if MBF_PAR_UICFG_MACHINE is MBV_PAR_MACH_GENERIC. Note: Only lowercase letters (a-z) can be used. 4 register (0x060C to 0x060F) ASCIIZ string with up to 8 characters
MBF_PAR_UICFG_MACH_NAME_AUX1 = 0x0610, // 0x0610 Aux1 relay name: 5 register ASCIIZ string with up to 10 characters
MBF_PAR_UICFG_MACH_NAME_AUX2 = 0x0615, // 0x0615 Aux2 relay name: 5 register ASCIIZ string with up to 10 characters
MBF_PAR_UICFG_MACH_NAME_AUX3 = 0x061A, // 0x061A Aux3 relay name: 5 register ASCIIZ string with up to 10 characters
MBF_PAR_UICFG_MACH_NAME_AUX4 = 0x061F, // 0x061F Aux4 relay name: 5 register ASCIIZ string with up to 10 characters
};
// Sugar Valley register constants and bit masks
enum NeoPoolConstAndBitMask {
// MBF_PH_STATUS
MBMSK_PH_STATUS_ALARM = 0x000F, // PH alarm. The possible alarm values are depending on the regulation model:
// Valid alarm values for pH regulation with acid and base:
MBV_PH_ACID_BASE_ALARM0 = 0, // no alarm
MBV_PH_ACID_BASE_ALARM1 = 1, // pH too high; the pH value is 0.8 points higher than the setpoint (PH1 on acid systems, PH2 on base systems, PH1 on acid+base systems)
MBV_PH_ACID_BASE_ALARM2 = 2, // pH too low: the pH value is 0.8 points lower than the set point value set in (PH1 on acid systems, PH2 on base systems, PH2 on acid+base systems)
MBV_PH_ACID_BASE_ALARM3 = 3, // pH pump has exceeded the working time set by the MBF_PAR_RELAY_PH_MAX_TIME parameter and has stopped.
MBV_PH_ACID_BASE_ALARM4 = 4, // pH higher than the set point (PH1 + 0.1 on acid systems, PH2 + 0.1 on base systems, PH1 on acid+base systems)
MBV_PH_ACID_BASE_ALARM5 = 5, // pH lower than the set point (PH1 - 0.3 on acid systems, PH2 - 0.3 on base systems, PH2 on acid+base systems)
MBV_PH_ACID_BASE_ALARM6 = 6, // ! tank level alarm
// bit
MBMSK_PH_STATUS_CTRL_BY_FL = 0x0400, // 10 Control status of the pH module by flow detection (if enabled by MBF_PAR_HIDRO_ION_CAUDAL)
MBMSK_PH_STATUS_ACID_PUMP_ACTIVE = 0x0800, // 11 Acid pH pump relay on (pump on)
MBMSK_PH_STATUS_BASE_PUMP_ACTIVE = 0x1000, // 12 Base pH Pump Relay On (Pump On)
MBMSK_PH_STATUS_CTRL_ACTIVE = 0x2000, // 13 Active pH control module and controlling pumps
MBMSK_PH_STATUS_MEASURE_ACTIVE = 0x4000, // 14 Active pH measurement module and making measurements. If this bit is at 1, the pH bar should be displayed.
MBMSK_PH_STATUS_MODULE_PRESENT = 0x8000, // 15 Detected pH measurement module
// MBF_RX_STATUS // bit
MBMSK_RX_STATUS_RX_PUMP_ACTIVE = 0x1000, // 12 Redox pump relay on (pump activated)
MBMSK_RX_STATUS_CTRL_ACTIVE = 0x2000, // 13 Active Redox control module and controlling pump
MBMSK_RX_STATUS_MEASURE_ACTIVE = 0x4000, // 14 Active Redox measurement module and performing measurements. If this bit is at 1, the Redox bar should be displayed on the screen.
MBMSK_RX_STATUS_MODULE_PRESENT = 0x8000, // 15 Redox measurement module detected in the system
// MBF_CL_STATUS // bit
MBMSK_CL_STATUS_CHLORINE_FLOW = 0x0008, // 3 Chlorine Probe Flow Sensor. This sensor is built into the probe itself and serves to detect whether there is water passing through the chlorine measurement probe. In case the sensor is at 0, the chlorine measurement will not be valid.
MBMSK_CL_STATUS_CL_PUMP_ACTIVE = 0x1000, // 12 Chlorine pump relay on (pump on)
MBMSK_CL_STATUS_CTRL_ACTIVE = 0x2000, // 13 Active chlorine control module and controlling pump
MBMSK_CL_STATUS_MEASURE_ACTIVE = 0x4000, // 14 Active chlorine measurement module and taking measurements. If this bit is 1, the chlorine bar should be displayed on the screen.
MBMSK_CL_STATUS_MODULE_PRESENT = 0x8000, // 15 Chlorine measurement module detected in the system
// MBF_CD_STATUS // bit
MBMSK_CD_STATUS_RX_PUMP_ACTIVE = 0x1000, // 12 Conductivity pump relay on (pump active)
MBMSK_CD_STATUS_CTRL_ACTIVE = 0x2000, // 13 Active conductivity control module and controlling pump
MBMSK_CD_STATUS_MEASURE_ACTIVE = 0x4000, // 14 Active conductivity measurement module and making measurements. If this bit is 1, the conditionality bar should be displayed on the screen.
MBMSK_CD_STATUS_MODULE_PRESENT = 0x8000, // 15 Conductivity measurement module detected in the system
// MBF_ION_STATUS // bit
MBMSK_ION_STATUS_ON_TARGET = 0x0001, // 0 On Target - the system has reached the set point.
MBMSK_ION_STATUS_LOW = 0x0002, // 1 Low - Ionization cannot reach the set point.
MBMSK_ION_STATUS_RESERVED = 0x0004, // 2 reserved
MBMSK_ION_STATUS_PROGTIME_EXCEEDED = 0x0008, // 3 Pr off - The programmed ionization time has been exceeded
MBMSK_ION_STATUS_POLOFF = 0x1000, // 12 Ion Pol off - Ionization in dead time
MBMSK_ION_STATUS_POL1 = 0x2000, // 13 Ion Pol 1 - Ionization working in polarization 1
MBMSK_ION_STATUS_POL2 = 0x4000, // 14 Ion Pol 2 - Ionization working in polarization 2
// MBF_HIDRO_STATUS // bit
MBMSK_HIDRO_STATUS_ON_TARGET = 0x0001, // 0 On Target - the system has reached the set point.
MBMSK_HIDRO_STATUS_LOW = 0x0002, // 1 Low - Hydrolysis cannot reach the set point.
MBMSK_HIDRO_STATUS_RESERVED = 0x0004, // 2 reserved
MBMSK_HIDRO_STATUS_FL1 = 0x0008, // 3 Flow - Hydrolysis cell flow indicator (FL1)
MBMSK_HIDRO_STATUS_COVER = 0x0010, // 4 Cover - Cover input activated
MBMSK_HIDRO_STATUS_MODULE_ACTIVE = 0x0020, // 5 Active - Active Module hydrolysis (hidroEnable)
MBMSK_HIDRO_STATUS_CTRL_ACTIVE = 0x0040, // 6 Control - Hydrolysis module working with regulation (hydroControlEnable)
MBMSK_HIDRO_STATUS_REDOX_ENABLED = 0x0080, // 7 Redox enable - Activation of hydrolysis by the redox module
MBMSK_HIDRO_STATUS_SHOCK_ENABLED = 0x0100, // 8 Hydro shock enabled - Chlorine shock mode enabled
MBMSK_HIDRO_STATUS_FL2 = 0x0200, // 9 FL2 - Chlorine probe flow indicator, if present
MBMSK_HIDRO_STATUS_ENABLED_BY_CHLORINE = 0x0400, // 10 Cl enable - Activation of hydrolysis by the chlorine module
MBMSK_HIDRO_STATUS_POLOFF = 0x1000, // 12 Ion Pol off - Ionization in dead time
MBMSK_HIDRO_STATUS_POL1 = 0x2000, // 13 Ion Pol 1 - Ionization working in polarization 1
MBMSK_HIDRO_STATUS_POL2 = 0x4000, // 14 Ion Pol 2 - Ionization working in polarization 2
// MBF_RELAY_STATE // bit
MBMSK_RELAY_STATE1 = 0x0001, // 0 Relay 1 state (1 on; 0 off) (normally assigned to ph)
MBMSK_RELAY_STATE2 = 0x0002, // 1 Relay 2 state (1 on; 0 off) (normally assigned to filtering)
MBMSK_RELAY_STATE3 = 0x0004, // 2 Relay 3 status (1 on; 0 off) (normally assigned to lighting)
MBMSK_RELAY_STATE4 = 0x0008, // 3 Relay 4 status (1 on; 0 off)
MBMSK_RELAY_STATE5 = 0x0010, // 4 Relay 5 status (1 on; 0 off)
MBMSK_RELAY_STATE6 = 0x0020, // 5 Relay 6 status (1 on; 0 off)
MBMSK_RELAY_STATE7 = 0x0040, // 6 Relay 7 status (1 on; 0 off)
MBMSK_RELAY_FILTSPEED_LOW = 0x0100, // 8 Filtration low speed
MBMSK_RELAY_FILTSPEED_MID = 0x0200, // 9 Filtration mid speed
MBMSK_RELAY_FILTSPEED_HIGH = 0x0400, // 10 Filtration high speed
MBMSK_RELAY_FILTSPEED = 0x0700, // Filtration current speed mask
MBSHFT_RELAY_FILTSPEED = 8, // Filtration current speed bit shift
// MBF_NOTIFICATION // bit
MBMSK_NOTIF_MODBUS_CHANGED = 0x0001, // 0 Modbus page changed
MBMSK_NOTIF_GLOBAL_CHANGED = 0x0002, // 1 Global page changed
MBMSK_NOTIF_FACTORY_CHANGED = 0x0004, // 2 Factory page changed
MBMSK_NOTIF_INSTALLER_CHANGED = 0x0008, // 3 Installer page changed
MBMSK_NOTIF_USER_CHANGED = 0x0010, // 4 User page changed
MBMSK_NOTIF_MISC_CHANGED = 0x0020, // 5 Misc page changed
// MBF_CELL_BOOST
MBMSK_CELL_BOOST_NO_REDOX_CTL = 0x8000, // ! Disable redox ctrl
MBMSK_CELL_BOOST_STATE = 0x0500, // ! Boost
MBMSK_CELL_BOOST_START = 0x00A0, // ! Start boost
// MBF_PAR_MODEL // bit
MBMSK_MODEL_ION = 0x0001, // 0 The equipment includes ionization control
MBMSK_MODEL_HIDRO = 0x0002, // 1 The equipment includes hydrolysis or electrolysis
MBMSK_MODEL_UV = 0x0004, // 2 The equipment includes disinfection control by ultraviolet lamp
MBMSK_MODEL_SALINITY = 0x0008, // 3 The equipment includes measurement of salinity (Fanless equipment only)
// MBF_PAR_HIDRO_FLOW_SIGNAL
MBV_PAR_HIDRO_FLOW_SIGNAL_STD = 0, // Standard detection based on conduction between an auxiliary electrode and either of the two electrodes of the cell.
MBV_PAR_HIDRO_FLOW_SIGNAL_ALWAYS_ON = 1, // Always connected. This value allows forcing the generation of the hydrolysis current even if no flow is detected in the sensor.
MBV_PAR_HIDRO_FLOW_SIGNAL_PADDLE = 2, // Detection based on the paddle switch, associated with the FL1 input
MBV_PAR_HIDRO_FLOW_SIGNAL_PADDLE_AND_STD= 3, // Detection based on the paddle switch, associated with the FL1 input, and the standard detector. The system will understand that there is flow when both elements detect flow. If either one opens, the hydrolysis will stop.
MBV_PAR_HIDRO_FLOW_SIGNAL_PADDLE_OR_STD = 4, // Detection based on the paddle switch, associated with the FL1 input, or the standard detector. The system will understand that there is flow when either of the two elements detects flow. Hydrolysis will stop only if both detectors detect no flow.
// MBF_PAR_HIDRO_ION_CAUDAL // bit
MBMSK_HIDRO_ION_CAUDAL_FL1_CTRL = 0x0001, // 0 If the FL1 signal is detected to be inactive, the actuation of the different elements of the system is disabled.
MBMSK_HIDRO_ION_CAUDAL_FL2_CTRL = 0x0002, // 1 If the FL2 signal is detected to be inactive, the actuation of the different elements of the system is disabled.
MBMSK_HIDRO_ION_CAUDAL_FULL_CL_HIDRO_CTRL=0x0004, // 2 If there is a chlorine module installed and it is detected that its flow sensor is inactive, the action of the different elements of the system is disabled.
MBMSK_HIDRO_ION_CAUDAL_SLAVE = 0x0008, // 3 The value of the slave input is taken and if it is inactive, the action of the different elements of the system is disabled.
MBMSK_HIDRO_ION_CAUDAL_PADDLE_SWITCH = 0x0010, // 4
MBMSK_HIDRO_ION_CAUDAL_PADDLE_SWITCH_INV= 0x0020, // 5
MBMSK_HIDRO_ION_CAUDAL_INVERSION = 0x0080, // 7 This bit determines if active means open or closed for the input electrical signals, and allows to reverse the operation for example to implement a paddle switch that closes when there is no flow.
// MBF_PAR_FILT_MODE
MBV_PAR_FILT_MANUAL = 0, // This mode allows to turn the filtration (and all other systems that depend on it) on and off manually.
MBV_PAR_FILT_AUTO = 1, // This mode allows filtering to be turned on and off according to the settings of the TIMER1, TIMER2 and TIMER3 timers.
MBV_PAR_FILT_HEATING = 2, // This mode is similar to the AUTO mode, but includes setting the temperature for the heating function. This mode is activated only if the MBF_PAR_HEATING_MODE register is at 1 and there is a heating relay assigned.
MBV_PAR_FILT_SMART = 3, // This filtration mode adjusts the pump operating times depending on the temperature. This mode is activated only if the MBF_PAR_TEMPERATURE_ACTIVE register is at 1.
MBV_PAR_FILT_INTELLIGENT = 4, // This mode performs an intelligent filtration process in combination with the heating function. This mode is activated only if the MBF_PAR_HEATING_MODE register is at 1 and there is a heating relay assigned.
MBV_PAR_FILT_BACKWASH = 13, // This filter mode is started when the backwash operation is activated.
// MBF_PAR_UV_MODE
MBV_PAR_UV_MODE0 = 0, // UV is switched off and it will not turn on when filtration starts
MBV_PAR_UV_MODE1 = 1, // UV is switched on and it will turn on when filtration starts. Time counter for the UV lamp will be incremented.
// MBF_PAR_UV_HIDE_WARN // bit
MBMSK_UV_HIDE_WARN_CLEAN = 0x0001, // 0 Suppress UV lamp clean wanring
MBMSK_UV_HIDE_WARN_REPLACE = 0x0002, // 1 Suppress UV lamp replace warning
// MBF_PAR_PH_PUMP_REP_TIME_ON
MBMSK_PH_PUMP_TIME = 0x7FFF, // Time level for the pump: The time level has a special coding format. It can cover periods of 1 to 180 seconds with 1 second granularity and from 3 to 999 minutes with 1 minute granularity. f the value is set to 30 for example, a 30 second time will be considered. If we have the value 200, we will have an on time of (200-180+3) = 23 minutes.
MBMSK_PH_PUMP_REPETITIVE = 0x8000, // pH pump in repetitive mode (1)
// MBF_PAR_HIDRO_COVER_ENABLE
MBMSK_HIDRO_COVER_ENABLE = 0x0001, // If enabled, the hydrolysis/electrolysis production will be reduced by a given percentage specified in the lower half of the MBF_PAR_HIDRO_COVER_REDUCTION register when the cover input is detected.
MBMSK_HIDRO_TEMPERATURE_SHUTDOWN_ENABLE = 0x0002, // If enabled, the hydrolysis/electrolysis production will stop when the temperature falls below a given temperature threshold specified in higher part of the MBF_PAR_HIDRO_COVER_REDUCTION register.
// MBF_PAR_HIDRO_COVER_REDUCTION
MBMSK_HIDRO_COVER_REDUCTION = 0x00FF, // Percentage for the cover reduction
MBMSK_HIDRO_SHUTDOWN_TEMPERATURE = 0xFF00, // Temperature level for the hydrolysis shutdown
// MBF_PAR_RELAY_PH
MBV_PAR_RELAY_PH_ACID_AND_BASE = 0, // The equipment works with an acid and base pump
MBV_PAR_RELAY_PH_ACID_ONLY = 1, // The equipment works with acid pump only
MBV_PAR_RELAY_PH_BASE_ONLY = 2, // The equipment works with base pump only
//MBF_PAR_RELAY_MODE
MBMSK_PAR_RELAY_MODE_PH = 0x0003, // Behavior for the pH module (MBV_PAR_RELAY_MODE_*)
MBMSK_PAR_RELAY_MODE_RX = 0x000C, // Behavior for the Redox module (MBV_PAR_RELAY_MODE_*)
MBMSK_PAR_RELAY_MODE_CL = 0x0030, // Behavior for the Chlorine module (MBV_PAR_RELAY_MODE_*)
MBMSK_PAR_RELAY_MODE_CD = 0x00C0, // Behavior for the Conductivity module (MBV_PAR_RELAY_MODE_*)
MBMSK_PAR_RELAY_MODE_TURBIDITY = 0x0300, // Behavior for the Turbidity module (MBV_PAR_RELAY_MODE_*)
MBV_PAR_RELAY_MODE_IGNORE = 0, // The system simply ignores the alarm and dosing continues.
MBV_PAR_RELAY_MODE_SHOW_ONLY = 1, // The system only shows the alarm on screen, but the dosing continues.
MBV_PAR_RELAY_MODE_SHOW_AND_STOP = 2, // The system shows the alarm on screen and stops the dosing pump
// MBF_PAR_FILTRATION_CONF
MBMSK_PAR_FILTRATION_CONF_TYPE = 0x000F, // Filtration pump type, see MBV_PAR_FILTRATION_TYPE_*
MBMSK_PAR_FILTRATION_CONF_DEF_SPEED = 0x0070, // Filtration default speed, see MBV_PAR_FILTRATION_SPEED_*
MBMSK_PAR_FILTRATION_CONF_INT1_SPEED = 0x0380, // Filtration speed for timer interval 1, see MBV_PAR_FILTRATION_SPEED_*
MBMSK_PAR_FILTRATION_CONF_INT2_SPEED = 0x1C00, // Filtration speed for timer interval 2, see MBV_PAR_FILTRATION_SPEED_*
MBMSK_PAR_FILTRATION_CONF_INT3_SPEED = 0xE000, // Filtration speed for timer interval 3, see MBV_PAR_FILTRATION_SPEED_*
MBSHFT_PAR_FILTRATION_CONF_TYPE = 0, // Filtration pump type bit shift
MBSHFT_PAR_FILTRATION_CONF_DEF_SPEED = 4, // Filtration default speed bit shift
MBSHFT_PAR_FILTRATION_CONF_INT1_SPEED = 7, // Filtration speed for timer interval 1 bit shift
MBSHFT_PAR_FILTRATION_CONF_INT2_SPEED = 10, // Filtration speed for timer interval 2 bit shift
MBSHFT_PAR_FILTRATION_CONF_INT3_SPEED = 13, // Filtration speed for timer interval 3 bit shift
MBV_PAR_FILTRATION_TYPE_STANDARD = 0, // Standard (without speed control)
MBV_PAR_FILTRATION_TYPE_HAYWARD = 1, // Variable speed B
MBV_PAR_FILTRATION_TYPE_SPEED_B = 2, // Variable speed B
MBV_PAR_FILTRATION_SPEED_SLOW = 0, // Speed Slow
MBV_PAR_FILTRATION_SPEED_MEDIUM = 1, // Speed Medium
MBV_PAR_FILTRATION_SPEED_FAST = 2, // Speed Fast
// MBF_PAR_FUNCTION_DEPENDENCY
MBMSK_FCTDEP_HEATING = 0x0007, // Heating function dependency:
MBMSK_DEPENDENCY_FL1_PADDLE = 0x0001,
MBMSK_DEPENDENCY_FL2 = 0x0002,
MBMSK_DEPENDENCY_SLAVE = 0x0004,
// MBF_PAR_UICFG_MACHINE
MBV_PAR_MACH_NONE = 0, // No machine assigned
MBV_PAR_MACH_HIDROLIFE = 1, // Hidrolife (yellow)
MBV_PAR_MACH_AQUASCENIC = 2, // Aquascenic (blue)
MBV_PAR_MACH_OXILIFE = 3, // Oxilife (green)
MBV_PAR_MACH_BIONET = 4, // Bionet (light blue)
MBV_PAR_MACH_HIDRONISER = 5, // Hidroniser (red)
MBV_PAR_MACH_UVSCENIC = 6, // UVScenic (lilac)
MBV_PAR_MACH_STATION = 7, // Station (orange)
MBV_PAR_MACH_BRILIX = 8, // Brilix
MBV_PAR_MACH_GENERIC = 9, // Generic
MBV_PAR_MACH_BAYROL = 10, // Bayrol
MBV_PAR_MACH_HAY = 11, // Hay
// MBF_PAR_UICFG_LANGUAGE
MBV_PAR_LANG_SPANISH = 0,
MBV_PAR_LANG_ENGLISH = 1,
MBV_PAR_LANG_FRENCH = 2,
MBV_PAR_LANG_GERMAN = 3,
MBV_PAR_LANG_ITALIAN = 4,
MBV_PAR_LANG_TURKISH = 5,
MBV_PAR_LANG_CZECH = 6,
MBV_PAR_LANG_PORTUGUESE = 7,
MBV_PAR_LANG_DUTCH = 8,
MBV_PAR_LANG_POLISH = 9,
MBV_PAR_LANG_HUNGARIAN = 10,
MBV_PAR_LANG_RUSSIAN = 11,
// MBF_PAR_UICFG_BACKLIGHT
MBV_PAR_BACKLIGHT_15SEC = 0, // Backlight off after 15 sec
MBV_PAR_BACKLIGHT_30SEC = 1, // Backlight off after 30 sec
MBV_PAR_BACKLIGHT_60SEC = 2, // Backlight off after 60 sec
MBV_PAR_BACKLIGHT_5MIN = 3, // Backlight off after 5 min
MBV_PAR_BACKLIGHT_ON = 4, // Backlight never turns off
// MBF_PAR_TIMER_BLOCK_BASE
MBV_TIMER_OFFMB_TIMER_ENABLE = 0, // Enables the timer function in the selected working mode, see MBF_PAR_CTIMER_*
MBV_TIMER_OFFMB_TIMER_ON = 1, // Timer start (32-bit timestamp, LSB first)
MBV_TIMER_OFFMB_TIMER_OFF = 3, // Timer stop (32-bit timestamp, LSB first) - not used
MBV_TIMER_OFFMB_TIMER_PERIOD = 5, // Time in seconds between starting points (32-bit, LSB first), e.g. 86400 means daily
MBV_TIMER_OFFMB_TIMER_INTERVAL = 7, // Time in seconds that the timer has to run when started (32-bit, LSB first)
MBV_TIMER_OFFMB_TIMER_COUNTDOWN = 9, // Time remaining in seconds for the countdown mode (32-bit, LSB first)
MBV_TIMER_OFFMB_TIMER_FUNCTION = 11, // Function assigned to this timer, see MBV_PAR_CTIMER_FCT_*
MBV_TIMER_OFFMB_TIMER_WORK_TIME = 13, // Number of seconds that the timer has been operating (valid only if MBV_TIMER_OFFMB_TIMER_ENABLE is in MBV_PAR_CTIMER_COUNTDOWN_KEY_* mode)
// MBV_TIMER_OFFMB_TIMER_ENABLE working modes:
MBV_PAR_CTIMER_DISABLE = 0, // Timer disabled
MBV_PAR_CTIMER_ENABLED = 1, // Timer enabled and independent
MBV_PAR_CTIMER_ENABLED_LINKED = 2, // Timer enabled and linked to relay from timer 0
MBV_PAR_CTIMER_ALWAYS_ON = 3, // Relay assigned to this timer always on
MBV_PAR_CTIMER_ALWAYS_OFF = 4, // Relay assigned to this timer always off
MBV_PAR_CTIMER_COUNTDOWN_KEY_PLUS = 0x0105, // Timer in countdown mode using + key
MBV_PAR_CTIMER_COUNTDOWN_KEY_MINUS = 0x0205, // Timer in countdown mode using - key
MBV_PAR_CTIMER_COUNTDOWN_KEY_ARROWDOWN = 0x0405, // Timer in countdown mode using arrow-down key
// MBF_SET_COUNTDOWN_KEY_AUX_* mask:
MBV_PAR_CTIMER_COUNTDOWN_KEY_AUX1 = 0x0100, // Aux1 ON/OFF, when MBV_TIMER_OFFMB_TIMER_ENABLE is set to MBV_PAR_CTIMER_COUNTDOWN_KEY_*
MBV_PAR_CTIMER_COUNTDOWN_KEY_AUX2 = 0x0200, // Aux2 ON/OFF, when MBV_TIMER_OFFMB_TIMER_ENABLE is set to MBV_PAR_CTIMER_COUNTDOWN_KEY_*
MBV_PAR_CTIMER_COUNTDOWN_KEY_AUX3 = 0x0400, // Aux3 ON/OFF, when MBV_TIMER_OFFMB_TIMER_ENABLE is set to MBV_PAR_CTIMER_COUNTDOWN_KEY_*
MBV_PAR_CTIMER_COUNTDOWN_KEY_AUX4 = 0x0800, // Aux4 ON/OFF, when MBV_TIMER_OFFMB_TIMER_ENABLE is set to MBV_PAR_CTIMER_COUNTDOWN_KEY_*
// MBV_TIMER_OFFMB_TIMER_FUNCTION codes:
MBV_PAR_CTIMER_FCT_FILTRATION = 0x0001, // Filtration function of the system
MBV_PAR_CTIMER_FCT_LIGHTING = 0x0002, // Lighting function of the system
MBV_PAR_CTIMER_FCT_HEATING = 0x0004, // Heating function of the system
MBV_PAR_CTIMER_FCT_RELAY1 = 0x0100, // Function assigned to relay 1 (Filtration)
MBV_PAR_CTIMER_FCT_RELAY2 = 0x0200, // Function assigned to relay 2 (Light)
MBV_PAR_CTIMER_FCT_RELAY3 = 0x0400, // Function assigned to relay 3 (pH Pump)
MBV_PAR_CTIMER_FCT_RELAY4 = 0x0800, // Function assigned to relay 4 (AUX1)
MBV_PAR_CTIMER_FCT_RELAY5 = 0x1000, // Function assigned to relay 5 (AUX2)
MBV_PAR_CTIMER_FCT_RELAY6 = 0x2000, // Function assigned to relay 6 (AUX3)
MBV_PAR_CTIMER_FCT_RELAY7 = 0x4000, // Function assigned to relay 7 (AUX4)
// MBF_PAR_UICFG_SOUND // bit
MBMSK_PAR_SOUND_CLICK = 0x0001, // 0 Click sounds every time a key is pressed
MBMSK_PAR_SOUND_POPUP = 0x0002, // 1 Sound plays each time a pop-up message appears
MBMSK_PAR_SOUND_ALERTS = 0x0004, // 2 An alarm sounds when there is an alert on the equipment (AL3)
MBMSK_PAR_SOUND_FILTRATION = 0x0008, // 3 Audible warning every time the filtration is started
// MBF_PAR_UICFG_VISUAL_OPTIONS // bit
MBMSK_HIDE_TEMPERATURE = 0x0001, // 0 Hide temperature measurement from main menu
MBMSK_HIDE_FILTRATION = 0x0002, // 1 Hide filter status from main menu
MBMSK_HIDE_LIGHTING = 0x0004, // 2 Hide lighting status from main menu
MBMSK_HIDE_AUX_RELAYS = 0x0008, // 3 Hide auxiliary relay status from main menu.
MBMSK_VO_HIDE_EXTRA_REGS = 0x0010, // 4 Hide the option to adjust additional registers in the installer menu
MBMSK_VO_HIDE_RELAY_CONFIG = 0x0020, // 5 Hide the relay configuration option in the installer menu.
MBMSK_VO_SLOW_FILTER_HIDRO_LEVEL = 0x0040, // 6 This option enables the slow hydrolysis level filtering option when the pH module is installed. This is especially important when the acid / base dosing is done very close to the hydrolysis probe.
MBMSK_VO_HIDE_SALINITY_MAIN_WINDOW = 0x0080, // 7 Hides the salinity measurement from main screen.
MBMSK_VO_SHOW_SPECIAL_REGS = 0x0100, // 8 Displays the special register set configuration menu in the installer menu.
MBMSK_SHOW_HID_SHUTDOWN_BY_TEMPERATURE = 0x0200, // 9 Displays the option to turn off hydrolysis by temperature.
MBMSK_SHOW_CELL_SELECTION = 0x0400, // 10 Enables access to the cell selection menu from the service menu option of the configuration menu.
MBMSK_SHOW_PUMP_TYPE = 0x0800, // 11 Displays the option for selecting the type of filtration pump (normal, three speeds, etc.).
MBMSK_SHOW_QUICK_MENU = 0x1000, // 12 Displays the quick access menu instead of the conventional menu, when the SET key is pressed from the main display screen. Filtration (normal, three speeds, etc).
MBMSK_SHOW_OXI_MAIN_DATA_SCREEN = 0x2000, // 13 Displays main screen shown with a particular style called OXI
MBMSK_SHOW_INSTALLER_MENU = 0x4000, // 14 Shows access to the installer menu in the main menu without the need for a password.
MBMSK_SHOW_FACTORY_MENU = 0x8000, // 15 Shows access to the factory menu in the main menu without the need for a password.
// MBF_PAR_UICFG_VISUAL_OPTIONS_EXT // bit
MBMSK_VOE_SHOW_PNEUMATIC_VALVE = 0x0001, // 0 Shows the pneumatic valve
MBMSK_VOE_HIDE_AUX_REL_DEPENDENCY = 0x0002, // 1 Hides the auxiliary relay dependency
MBMSK_VOE_SHOW_BESGO_NAME = 0x0004, // 2 Show “Besgo” instead of “Pneumatic” for the pneumatic valve titles.
MBMSK_VOE_HIDE_SMART_INTEL_MODES = 0x0008, // 3 Hide smart intelligent modes
MBMSK_VOE_ENABLE_ADVANCED_CALIBRATION = 0x0010, // 4 Enable advanced calibration
MBMSK_VOE_SHOW_DOSING_PUMP_SCALING = 0x0020, // 5 Show dosing pump scaling
MBMSK_VOE_HIDE_MASTER_SLAVE_SEL = 0x0030, // 6 Hide master slave selection
MBMSK_VOE_ENABLE_ADVANCED_MASTER_SLAVE = 0x0080, // 7 Enable advanced Master Slave
MBMSK_VOE_SHOW_OVERTEMP_PROTECTION = 0x0100, // 8 Show overtemperature protection
MBMSK_VOE_SHOW_HYDRO_MODE_SEL = 0x0200, // 9 Show hidrolysis mode selection
MBMSK_VOE_SHOW_ADVANCED_EXT_CONTROL = 0x0400, // 10 Show advanced external controls
MBMSK_VOE_HIDE_BASIC_EXT_CONTROL = 0x0800, // 11 Hide basic external controls
MBMSK_VOE_HIDE_DIAGNOSTICS = 0x1000, // 12 Hide diagnostics
// MBF_PAR_UICFG_MACH_VISUAL_STYLE // bit
MBMSK_VS_FORCE_UNITS_GRH = 0x2000, // 13 Display the hydrolysis/electrolysis in units of grams per hour (gr/h).
MBMSK_VS_FORCE_UNITS_PERCENTAGE = 0x4000, // 14 Display the hydrolysis/electrolysis in percentage units (%).
MBMSK_ELECTROLISIS = 0x8000, // 15 Display the word electrolysis instead of hydrolysis in generic mode.
// To determine the type of units are used to display the hydrolysis/electrolysis:
// 1. If MBMSK_VS_FORCE_UNITS_PERCENTAGE bit is set, "%" is displayed
// 2. If MBMSK_VS_FORCE_UNITS_GRH bit is set, "gr/h" is displayed
// 3. If neither of the above two bits is set:
// a. If MBF_PAR_UICFG_MACHINE is MBV_PAR_MACH_HIDROLIFE or MBV_PAR_MACH_BIONET, then "gr/h" is displayed
// b. If MBF_PAR_UICFG_MACHINE is MBV_PAR_MACH_GENERIC and MBMSK_ELECTROLISIS bit is set, "gr/h" is displayed.
// c. If none of the above cases apply, "%" is displayed.
// MBF_POWER_MODULE_REG_*
MBV_POWER_MODULE_REG_INFO = 0, // ! set of 26-byte power module register stores an ASCIIZ string containing the subversion and timestamp of the module, e. g. ".57\nMay 26 2020\n01:08:10\n\0"
};
#include <TasmotaModbus.h>
TasmotaModbus *NeoPoolModbus;
// emulates a g/h system !!!! only for development purposes on % systems
// enables also cmnd 'NPgPerh [0|1]': 0 = disables emulation, 1 enables emulation
//#define NEOPOOL_EMULATE_GPERH 16 // Max g/h power of an emulated % system
#ifdef NEOPOOL_EMULATE_GPERH
bool neopool_system_gperh = false; // emulation defaults off
#endif
#define NEOPOOL_RELAY_MAX 7 // Number of relais build-in
bool neopool_active = false;
volatile bool neopool_poll = true;
uint8_t neopool_read_state = 0;
uint8_t neopool_send_retry = 0;
uint8_t neopool_failed_count = 0;
bool neopool_error = true;
uint16_t neopool_power_module_version;
uint16_t neopool_power_module_nodeid[6];
#define NEOPOOL_MAX_REPEAT_ON_ERROR 10
uint8_t neopool_repeat_on_error = 2;
uint16_t neopool_light_relay;
uint8_t neopool_light_prg_delay;
uint8_t neopoll_cmd_delay = 0;
void (* neopoll_cmd)(void) = nullptr;
// Modbus register set to read
// Defines blocks of register read once with a single read
typedef struct {
const uint16_t addr;
const uint16_t cnt;
uint16_t *data;
} TNeoPoolReg;
// complete poll cycle needs 2000 ms to read complete register set
#define NEOPOOL_REG_QUERY {\
{MBF_ION_CURRENT, MBF_NOTIFICATION - MBF_ION_CURRENT + 1, nullptr},\
{MBF_CELL_RUNTIME_LOW, MBF_CELL_RUNTIME_POL_CHANGES_HIGH - MBF_CELL_RUNTIME_LOW + 1, nullptr},\
{MBF_PAR_VERSION, MBF_PAR_HIDRO_NOM - MBF_PAR_VERSION + 1, nullptr},\
{MBF_PAR_TIME_LOW, MBF_PAR_HEATING_GPIO - MBF_PAR_TIME_LOW + 1, nullptr},\
{MBF_PAR_ION, MBF_PAR_FILTRATION_CONF - MBF_PAR_ION + 1, nullptr},\
{MBF_PAR_UICFG_MACHINE, MBF_PAR_UICFG_MACH_VISUAL_STYLE - MBF_PAR_UICFG_MACHINE + 1, nullptr},\
{MBF_VOLT_24_36, MBF_VOLT_12 - MBF_VOLT_24_36 + 1, nullptr},\
{MBF_VOLT_5, MBF_AMP_4_20_MICRO - MBF_VOLT_5 + 1, nullptr}\
}
TNeoPoolReg NeoPoolReg[] = NEOPOOL_REG_QUERY;
// Register to check for NPTelePeriod changes
const uint16_t NeoPoolRegCheck[] PROGMEM = {
// excl. values that change almost continuously
// MBF_PAR_TIME_LOW,
// MBF_PAR_TIME_HIGH,
// MBF_VOLT_12,
// MBF_VOLT_24_36,
// MBF_VOLT_5,
// MBF_AMP_4_20_MICRO,
// MBF_CELL_RUNTIME_LOW,
// MBF_CELL_RUNTIME_HIGH,
// MBF_CELL_RUNTIME_PART_LOW,
// MBF_CELL_RUNTIME_PART_HIGH,
// MBF_CELL_RUNTIME_POLA_LOW,
// MBF_CELL_RUNTIME_POLA_HIGH,
// MBF_CELL_RUNTIME_POLB_LOW,
// MBF_CELL_RUNTIME_POLB_HIGH,
// MBF_CELL_RUNTIME_POL_CHANGES_LOW,
// MBF_CELL_RUNTIME_POL_CHANGES_HIGH,
// measured values delayed (set bit 15 to indicate often value changes)
MBF_MEASURE_TEMPERATURE | 0x8000,
// undelayed measured values
MBF_MEASURE_CL,
MBF_MEASURE_CONDUCTIVITY,
MBF_MEASURE_PH,
MBF_MEASURE_RX,
MBF_ION_CURRENT,
MBF_HIDRO_CURRENT,
MBF_HIDRO_STATUS,
MBF_PH_STATUS,
MBF_RELAY_STATE,
// undelayed setting values
MBF_CELL_BOOST,
MBF_PAR_CL1,
MBF_PAR_FILT_MODE,
MBF_PAR_HIDRO,
MBF_PAR_HIDRO_NOM,
MBF_PAR_ION,
MBF_PAR_PH1,
MBF_PAR_PH2,
MBF_PAR_RX1,
MBF_PAR_CD_RELAY_GPIO,
MBF_PAR_CL_RELAY_GPIO,
MBF_PAR_FILT_GPIO,
MBF_PAR_FILTVALVE_GPIO,
MBF_PAR_HEATING_GPIO,
MBF_PAR_LIGHTING_GPIO,
MBF_PAR_PH_ACID_RELAY_GPIO,
MBF_PAR_PH_BASE_RELAY_GPIO,
MBF_PAR_RX_RELAY_GPIO,
MBF_PAR_UV_RELAY_GPIO,
MBF_PAR_ION_NOM,
MBF_PAR_TEMPERATURE_ACTIVE,
MBF_PAR_UICFG_MACHINE
};
uint16_t *NeoPoolRegCheckData;
uint32_t NeoPoolRegCheckDataTimeout = 0;
typedef struct {
uint16_t addr;
uint16_t data;
uint32_t ts;
} TNeoPoolData;
uint16_t NeoPoolDataCount = 0;
TNeoPoolData* NeoPoolData = nullptr;
// NeoPool modbus function errors
enum NeoPoolModbusCode {
NEOPOOL_MODBUS_OK = 0,
NEOPOOL_MODBUS_ERROR_RW_DATA,
NEOPOOL_MODBUS_ERROR_TIMEOUT,
NEOPOOL_MODBUS_ERROR_OUT_OF_MEM,
NEOPOOL_MODBUS_ERROR_DEADLOCK
};
#ifdef NEOPOOL_RANGE_CHECKS
#define NEOPOOL_UNDEF_UINT16 0xFFFF
typedef struct {
uint16_t addr; // Modbus register addr
uint16_t min; // min valid value (or UNDEFined)
uint16_t max; // max valid value (or UNDEFined)
uint16_t prev; // previous read value
} TNeoPoolRangeCheck;
TNeoPoolRangeCheck NeoPoolRangeCheck[] = {
{MBF_ION_CURRENT, 0, 100, NEOPOOL_UNDEF_UINT16}, // Ionization level measured
{MBF_HIDRO_CURRENT, 0, NEOPOOL_UNDEF_UINT16, NEOPOOL_UNDEF_UINT16}, // Hydrolysis intensity level
{MBF_MEASURE_PH, 0, 1400, NEOPOOL_UNDEF_UINT16}, // pH level measured
{MBF_MEASURE_RX, 0, 1000, NEOPOOL_UNDEF_UINT16}, // Redox level measured
{MBF_MEASURE_CL, 0, 1000, NEOPOOL_UNDEF_UINT16}, // Chlorine level measured
{MBF_MEASURE_CONDUCTIVITY, 0, 100, NEOPOOL_UNDEF_UINT16}, // Conductivity level measured
{MBF_MEASURE_TEMPERATURE, 0, 6500, NEOPOOL_UNDEF_UINT16} // Temperature sensor measured
};
#endif
#ifdef NEOPOOL_CONNSTAT
#define NEOPOOL_TASMOTAMODBUS_ERROR_NUM_MAX 15 // 0-14 - see TasmotaModbus.h class TasmotaModbus highest error #
// counting modbus and data error
struct {
uint32_t time; // time where counting started
uint32_t mb_requests; // request count
// result count:
uint32_t mb_results[NEOPOOL_TASMOTAMODBUS_ERROR_NUM_MAX + 1];
uint32_t value_out_of_range; // value out of range count
} NeoPoolStats;
#endif
// NPResult possible values
enum NeoPoolResult {
NEOPOOL_RESULT_DEC = false,
NEOPOOL_RESULT_HEX,
NEOPOOL_RESULT_MAX
};
// Sensor saved variables
#define NEOPOOL_SETTING_VERSION 0x0100
#define NEOPOOL_DEFAULT_PHRES 1
#define NEOPOOL_DEFAULT_CLRES 1
#define NEOPOOL_DEFAULT_IONRES 1
#define NEOPOOL_DEFAULT_RESULT NEOPOOL_RESULT_HEX
#define NEOPOOL_DEFAULT_NPTELEPERIOD 0
// NeoPool value resolutions
typedef struct {
uint16_t ph : 2;
uint16_t cl : 2;
uint16_t ion : 2;
} NeoPoolResMBitfield;
// Global structure containing sensor saved variables
struct {
uint32_t crc32;
uint16_t version;
NeoPoolResMBitfield resolution;
uint8_t result;
uint16_t npteleperiod;
} NeoPoolSettings;
#define D_NEOPOOL_NAME "NeoPool"
#define D_NEOPOOL_JSON_FILTRATION_NONE ""
#define D_NEOPOOL_JSON_FILTRATION_MANUAL "Manual"
#define D_NEOPOOL_JSON_FILTRATION_AUTO "Auto"
#define D_NEOPOOL_JSON_FILTRATION_HEATING "Heating"
#define D_NEOPOOL_JSON_FILTRATION_SMART "Smart"
#define D_NEOPOOL_JSON_FILTRATION_INTELLIGENT "Intelligent"
#define D_NEOPOOL_JSON_FILTRATION_BACKWASH "Backwash"
#define D_NEOPOOL_JSON_MODULES "Modules"
#define D_NEOPOOL_JSON_POWERUNIT "Powerunit"
#define D_NEOPOOL_JSON_CHLORINE "Chlorine"
#define D_NEOPOOL_JSON_CONDUCTIVITY "Conductivity"
#define D_NEOPOOL_JSON_FILTRATION "Filtration"
#define D_NEOPOOL_JSON_FILTRATION_MODE "Mode"
#define D_NEOPOOL_JSON_FILTRATION_SPEED "Speed"
#define D_NEOPOOL_JSON_HYDROLYSIS "Hydrolysis"
#define D_NEOPOOL_JSON_PERCENT "Percent"
#define D_NEOPOOL_JSON_CELL_RUNTIME "Runtime"
#define D_NEOPOOL_JSON_CELL_RUNTIME_TOTAL "Total"
#define D_NEOPOOL_JSON_CELL_RUNTIME_PART "Part"
#define D_NEOPOOL_JSON_CELL_RUNTIME_POL1 "Pol1"
#define D_NEOPOOL_JSON_CELL_RUNTIME_POL2 "Pol2"
#define D_NEOPOOL_JSON_CELL_RUNTIME_CHANGES "Changes"
#define D_NEOPOOL_JSON_IONIZATION "Ionization"
#define D_NEOPOOL_JSON_LIGHT "Light"
#define D_NEOPOOL_JSON_LIGHT_MODE "Mode"
#define D_NEOPOOL_JSON_REDOX "Redox"
#define D_NEOPOOL_JSON_RELAY "Relay"
#define D_NEOPOOL_JSON_RELAY_PH_ACID "Acid"
#define D_NEOPOOL_JSON_RELAY_PH_BASE "Base"
#define D_NEOPOOL_JSON_RELAY_RX "Redox"
#define D_NEOPOOL_JSON_RELAY_CL "Chlorine"
#define D_NEOPOOL_JSON_RELAY_CD "Conductivity"
#define D_NEOPOOL_JSON_RELAY_HEATING "Heating"
#define D_NEOPOOL_JSON_RELAY_UV "UV"
#define D_NEOPOOL_JSON_RELAY_FILTVALVE "Valve"
#define D_NEOPOOL_JSON_AUX "Aux"
#define D_NEOPOOL_JSON_STATE "State"
#define D_NEOPOOL_JSON_TYPE "Type"
#define D_NEOPOOL_JSON_UNIT "Unit"
#define D_NEOPOOL_JSON_COVER "Cover"
#define D_NEOPOOL_JSON_SHOCK "Boost"
#define D_NEOPOOL_JSON_OFF "OFF"
#define D_NEOPOOL_JSON_ON "ON"
#define D_NEOPOOL_JSON_LOW "Low"
#define D_NEOPOOL_JSON_SETPOINT "Setpoint"
#define D_NEOPOOL_JSON_MIN "Min"
#define D_NEOPOOL_JSON_MAX "Max"
#define D_NEOPOOL_JSON_PHPUMP "Pump"
#define D_NEOPOOL_JSON_FLOW1 "FL1"
#define D_NEOPOOL_JSON_TANK "Tank"
#define D_NEOPOOL_JSON_BIT "Bit"
#define D_NEOPOOL_JSON_NODE_ID "NodeID"
#ifdef NEOPOOL_CONNSTAT
#define D_NEOPOOL_JSON_CONNSTAT "Connection"
#define D_NEOPOOL_JSON_CONNSTAT_MB_REQUESTS "MBRequests"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_0 "MBNoError"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_1 "MBIllegalFunc"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_2 "MBIllegalDataAddr"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_3 "MBIllegalDataValue"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_4 "MBSlaveError"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_5 "MBAck"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_6 "MBSlaveBusy"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_7 "MBNotEnoughData"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_8 "MBMemParityErr"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_9 "MBCRCErr"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_10 "MBGWPath"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_11 "MBGWTarget"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_12 "MBRegErr"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_13 "MBRegData"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_14 "MBTooManyReg"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_15 "MBUnknownErr"
#define D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS "MBNoResponse"
#define D_NEOPOOL_JSON_CONNSTAT_DATA_OOR "DataOutOfRange"
const char kNeoPoolMBResults[] PROGMEM =
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_0 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_1 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_2 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_3 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_4 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_5 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_6 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_7 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_8 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_9 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_10 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_11 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_12 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_13 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_14 "|"
D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS_15
;
#endif
const char kNeoPoolMachineNames[] PROGMEM =
D_NEOPOOL_MACH_NONE "|"
D_NEOPOOL_MACH_HIDROLIFE "|"
D_NEOPOOL_MACH_AQUASCENIC "|"
D_NEOPOOL_MACH_OXILIFE "|"
D_NEOPOOL_MACH_BIONET "|"
D_NEOPOOL_MACH_HIDRONISER "|"
D_NEOPOOL_MACH_UVSCENIC "|"
D_NEOPOOL_MACH_STATION "|"
D_NEOPOOL_MACH_BRILIX "|"
D_NEOPOOL_MACH_GENERIC "|"
D_NEOPOOL_MACH_BAYROL "|"
D_NEOPOOL_MACH_HAY
;
const char kNeoPoolFiltrationMode[] PROGMEM =
D_NEOPOOL_FILTRATION_MANUAL "|"
D_NEOPOOL_FILTRATION_AUTO "|"
D_NEOPOOL_FILTRATION_HEATING "|"
D_NEOPOOL_FILTRATION_SMART "|"
D_NEOPOOL_FILTRATION_INTELLIGENT "|"
D_NEOPOOL_FILTRATION_BACKWASH
;
const char kNeoPoolFiltrationModeCmnd[] PROGMEM =
D_NEOPOOL_JSON_FILTRATION_MANUAL "|"
D_NEOPOOL_JSON_FILTRATION_AUTO "|"
D_NEOPOOL_JSON_FILTRATION_HEATING "|"
D_NEOPOOL_JSON_FILTRATION_SMART "|"
D_NEOPOOL_JSON_FILTRATION_INTELLIGENT "|"
D_NEOPOOL_JSON_FILTRATION_BACKWASH
;
const uint8_t sNeoPoolFiltrationMode[] PROGMEM = {
MBV_PAR_FILT_MANUAL,
MBV_PAR_FILT_AUTO,
MBV_PAR_FILT_HEATING,
MBV_PAR_FILT_SMART,
MBV_PAR_FILT_INTELLIGENT,
MBV_PAR_FILT_BACKWASH };
const char kNeoPoolFiltrationSpeed[] PROGMEM =
D_NEOPOOL_FILTRATION_NONE "|"
D_NEOPOOL_FILTRATION_SLOW "|"
D_NEOPOOL_FILTRATION_MEDIUM "|"
D_NEOPOOL_FILTRATION_FAST
;
const char kNeoPoolBoostCmnd[] PROGMEM =
D_NEOPOOL_JSON_OFF "|"
D_NEOPOOL_JSON_ON "|"
D_NEOPOOL_JSON_REDOX
;
const uint16_t sNeoPoolBoost[] PROGMEM = {
0x0000,
MBMSK_CELL_BOOST_STATE | MBMSK_CELL_BOOST_START | MBMSK_CELL_BOOST_NO_REDOX_CTL,
MBMSK_CELL_BOOST_STATE | MBMSK_CELL_BOOST_START };
const char kNeoPoolpHAlarms[] PROGMEM =
D_NEOPOOL_SETPOINT_OK "|"
D_NEOPOOL_PH_HIGH "|"
D_NEOPOOL_PH_LOW "|"
D_NEOPOOL_PUMP_TIME_EXCEEDED "|"
D_NEOPOOL_PH_HIGH "|"
D_NEOPOOL_PH_LOW
;
#define NEOPOOL_FMT_PH "%*_f"
#define NEOPOOL_FMT_RX "%d"
#define NEOPOOL_FMT_CL "%*_f"
#define NEOPOOL_FMT_CD "%d"
#define NEOPOOL_FMT_ION "%*_f"
#define NEOPOOL_FMT_HIDRO "%*_f"
#define D_NEOPOOL_UNIT_PERCENT "%"
#define D_NEOPOOL_UNIT_GPERH "g/h"
const char HTTP_SNS_NEOPOOL_TIME[] PROGMEM = "{s}%s " D_NEOPOOL_TIME "{m}%s" "{e}";
const char HTTP_SNS_NEOPOOL_VOLTAGE[] PROGMEM = "{s}%s " D_VOLTAGE "{m}%*_f / %*_f / %*_f " D_UNIT_VOLT "{e}";
const char HTTP_SNS_NEOPOOL_HYDROLYSIS[] PROGMEM = "{s}%s " D_NEOPOOL_HYDROLYSIS "{m}" NEOPOOL_FMT_HIDRO " %s ";
const char HTTP_SNS_NEOPOOL_PH[] PROGMEM = "{s}%s " D_PH "{m}" NEOPOOL_FMT_PH;
const char HTTP_SNS_NEOPOOL_REDOX[] PROGMEM = "{s}%s " D_NEOPOOL_REDOX "{m}" NEOPOOL_FMT_RX " " D_UNIT_MILLIVOLT;
const char HTTP_SNS_NEOPOOL_PPM_CHLORINE[] PROGMEM = "{s}%s " D_NEOPOOL_CHLORINE "{m}" NEOPOOL_FMT_CL " " D_UNIT_PARTS_PER_MILLION "{e}";
const char HTTP_SNS_NEOPOOL_CONDUCTIVITY[] PROGMEM = "{s}%s " D_NEOPOOL_CONDUCTIVITY "{m}" NEOPOOL_FMT_CD " " D_UNIT_PERCENT "{e}";
const char HTTP_SNS_NEOPOOL_IONIZATION[] PROGMEM = "{s}%s " D_NEOPOOL_IONIZATION "{m}" NEOPOOL_FMT_ION " " "%s%s" "{e}";
const char HTTP_SNS_NEOPOOL_FILT_MODE[] PROGMEM = "{s}%s " D_NEOPOOL_FILT_MODE "{m}%s" "{e}";
const char HTTP_SNS_NEOPOOL_RELAY[] PROGMEM = "{s}%s " "%s" "{m}%s" "{e}";
const char HTTP_SNS_NEOPOOL_CELL_RUNTIME[] PROGMEM = "{s}%s " D_NEOPOOL_CELL_RUNTIME "{m}%s" "{e}";
const char HTTP_SNS_NEOPOOL_STATUS[] PROGMEM = "<span style=\"background-color:%s;font-size:small;text-align:center;%s;\">&nbsp;%s&nbsp;</span>";
const char HTTP_SNS_NEOPOOL_STATUS_NORMAL[] PROGMEM = "filter:invert(0.1)";
const char HTTP_SNS_NEOPOOL_STATUS_DISABLED[] PROGMEM = "display: none";
const char HTTP_SNS_NEOPOOL_STATUS_INACTIVE[] PROGMEM = "filter:opacity(0.15)";
const char HTTP_SNS_NEOPOOL_STATUS_ACTIVE[] PROGMEM = "filter:invert(1)";
/*********************************************************************************************\
* Commands
*
* NPFiltration {<state> {speed}}
* get/set manual filtration (state = 0..2, speed = 1..3)
* get filtration state if <state> is omitted, otherwise set new state
* 0 - switch filtration pump off
* 1 - switch filtration pump on
* 2 - toggle filtration pump
* for non-standard filtration types additional speed control is possible
*
* NPFiltrationMode {<mode>}
* get/set filtration mode (mode = 0..4|13)
* get mode if <mode> is omitted, otherwise set new mode according:
* 0 - Manual
* 1 - Auto
* 2 - Heating
* 3 - Smart
* 4 - Intelligent
* 13 - Backwash
*
* NPFiltrationSpeed {<speed>}
* (only available for non-standard filtration types)
* get/set manual filtration speed (speed = 1..3)
* get filtration speed if <speed> is omitted, otherwise set new speed
* 1 - low
* 2 - mid
* 3 - high
*
* NPBoost {<mode>}
* get/set hydrolysis/electrolysis boost mode (mode = 0..2)
* get mode if <mode> is omitted, otherwise set new mode according:
* 0|OFF - boost off
* 1|ON - boost on
* 2|REDOX - boost on with redox control
*
* NPTime {<time>}
* get/set system time
* get current time if <time> is omitted, otherwise set time according:
* 0 - sync with Tasmota local time
* 1 - sync with Tasmota utc time
* any other value of <time> will set time as epoch
*
* NPLight {<state> {delay}}
* get/set light (state = 0|1|2|3|4)
* get light state if <state> is omitted, otherwise set new state
* 0 - switch light manual off
* 1 - switch light manual on
* 2 - toggle light
* 3 - switch light to auto mode
* 4 - switch to next program (for RGB-LED lights) (delay = 5..100)
* prg change by switch light of for delay time then switch on
* delay in ms from 0.5 - 10 sec
*
* NPpHMin {<ph>}
* (only available if pH module is installed)
* get/set pH lower limit (ph = 0..14)
* get current limit if <ph> is omitted, otherwise set
*
* NPpHMax {<ph>}
* (only available if pH module is installed)
* get/set pH upper limit (ph = 0..14)
* get current limit if <ph> is omitted, otherwise set
*
* NPpH {<ph>}
* (only available if pH module is installed)
* get/set pH upper limit (ph = 0..14)
* same as NPpHMax
*
* NPRedox {<setpoint>}
* (only available if redox module is installed)
* get/set redox set point in mV (setpoint = 0..100
* get current set point if <setpoint> is omitted, otherwise set
*
* NPHydrolysis {<level> {%}}
* (only available if hydrolysis/electrolysis control is present)
* get/set hydrolysis/electrolysis level
* get current level if <level> is omitted, otherwise set:
* 0..100 in % for NeoPool systems configured to %
* 0..<max> in g/h for NeoPool systems configured for g/h (<max> depends by M_PAR_HIDRO_NOM register value)
* <level> can specified in % on all NeoPool systems by appending the % sign to the value
*
* NPIonization {<level>}
* (only available if ionization control is present)
* get/set ionization target production level (level = 0..x, the upper limit of the range may vary depending on the MBF_PAR_ION_NOM register)
* get current level if <level> is omitted, otherwise set
*
* NPChlorine {<setpoint>}
* (only available if free chlorine probe detector is installed)
* get/set chlorine set point in ppm (setpoint = 0..10)
* get current set point if <setpoint> is omitted, otherwise set
*
* NPControl
* Show information about system controls
*
* NPTelePeriod {time}
* enables/disables auto telemetry SENSOR message when NeoPool values change (time = 0 or 5..3600):
* 0 disable this function off (default), SENSOR message are only reported depending on TelePeriod setting
* 5..3600 set the minimum of seconds between two SENSOR messages for NeoPool measured (sensor) values (Status changes for relays and settings trigger the SENSOR messages immediately, regardless of this time)
* If <time> is set higher than TelePeriod, only status changes for relays and settings will trigger SENSOR message.
*
* NPSave
* write data permanently into EEPROM
*
* NPExec
* immediately take over changed data (without writing to EEPROM)
*
* NPEscape
* clears possible errors (like pump exceeded time etc.)
*
* NPResult {<format>}
* get/set addr/data result format read/write commands (format = 0|1):
* get output format if <format> is omitted, otherwise
* 0 - output as decimal numbers
* 1 - output as hexadecimal strings (default)
*
* NPOnError {<repeat>}
* get/set auto-repeat Modbus read/write commands on error (repeat = 0..10):
* get auto-repeat setting if <repeat> is omitted, otherwise
* 0 - disable auto-repeat on read/write error
* 1..10 - repeat commands n times until ok
*
* NPPHRes {<digits>}
* NPCLRes {<digits>}
* NPIonRes {<digits>}
* get/set number of digits in results for PH, CL and ION values
*
*
* NPRead <addr> {<cnt>}
* NPReadL <addr> {<cnt>}
* read 16/32-bit register (cnt = 1..30|1..15), cnt = 1 if omitted
* NPRead read 16-bit register
* NPReadL read 32-bit register
*
* NPWrite <addr> <data> {<data>...}
* NPWriteL <addr> <data> {<data>...}
* NPWrite write 16-bit register (data = 0..65535), <data> max 10 times
* NPWriteL write 32-bit register (data = 0..4294967295), <data> max 10 times
*
* NPBit <addr> <bit> {<data>}
* NPBitL <addr> <bit> {<data>}
* read/write register bit (bit = 0..15, data = 0|1)
* read if <data> is omitted, otherwise set <bit> to new <data>
*
* Examples:
*
* Get/Set filtration mode
* NPFiltrationMode
* RESULT = {"NPFiltrationmode":"Manual"}
* NPFiltrationMode 1
* {"NPFiltrationmode":"Auto"}
*
* Switch light relay on
* NPLight 1
* RESULT = {"NPLight":"ON"}
*
* Read Heating setpoint temperature MBF_PAR_HEATING_TEMP
* Backlog NPResult 0;NPRead 0x416
* RESULT = {"NPResult":0}
* RESULT = {"NPRead":{"Address":1046,"Data":28}}
*
* Read system time MBF_PAR_TIME_* as 32-bit register using decimal output
* Backlog NPResult 0;NPReadL 0x408
* RESULT = {"NPResult":0}
* RESULT = {"NPReadL":{"Address":1032,"Data":1612124540}}
*
* Enable temperature module by setting MBF_PAR_TEMPERATURE_ACTIVE and set it permanently into EEPROM
* Backlog NPWrite 0x40F,1;NPSave
* RESULT = {"NPWrite":{"Address":"0x040F","Data":"0x0001"}}
* RESULT = {"NPSave":"Done"}
*
* Hide auxiliary relay display from main menu by setting bit 3 of MBF_PAR_UICFG_VISUAL_OPTIONS
* NPBit 0x605,3,1
* RESULT = {"NPBit":{"Address":"0x0605","Data":"0x08C8"}}
*
* Read Filtration interval 1-3 settings
* Backlog NPResult 0;NPRead 0x434;NPReadL 0x435,7;NPRead 0x443;NPReadL 0x444,7;NPRead 0x452;NPReadL 0x0453,7
* RESULT = {"NPResult":0}
* RESULT = {"NPRead":{"Address":1076,"Data":1}}
* RESULT = {"NPReadL":{"Address":1077,"Data":[28800,0,86400,14400,0,1,0]}}
* RESULT = {"NPRead":{"Address":1091,"Data":1}}
* RESULT = {"NPReadL":{"Address":1092,"Data":[43200,0,86400,21600,0,1,0]}}
* RESULT = {"NPRead":{"Address":1106,"Data":1}}
* RESULT = {"NPReadL":{"Address":1107,"Data":[0,0,86400,0,0,1,0]}} *
*
* Set filtration interval 1 to daily 9:00 - 12:30 (9:00: 3600 * 9 ≙ 32400 / 12:30 ≙ 3,5h = 12600)
* NPWriteL 0x435,32400 0 86400 12600
* RESULT = {"NPWriteL":{"Address":1077,"Data":[32400,0,86400,12600]}}
*
*********************************************************************************************/
#define D_PRFX_NEOPOOL "NP"
#define D_CMND_NP_RESULT "Result"
#define D_CMND_NP_READ "Read"
#define D_CMND_NP_READL "ReadL"
#define D_CMND_NP_WRITE "Write"
#define D_CMND_NP_WRITEL "WriteL"
#define D_CMND_NP_BIT "Bit"
#define D_CMND_NP_BITL "BitL"
#define D_CMND_NP_FILTRATION "Filtration"
#define D_CMND_NP_FILTRATIONMODE "Filtrationmode"
#define D_CMND_NP_FILTRATIONSPEED "Filtrationspeed"
#define D_CMND_NP_BOOST "Boost"
#define D_CMND_NP_TIME "Time"
#define D_CMND_NP_LIGHT "Light"
#define D_CMND_NP_PHMIN "pHMin"
#define D_CMND_NP_PHMAX "pHMax"
#define D_CMND_NP_PH "pH"
#define D_CMND_NP_REDOX "Redox"
#define D_CMND_NP_HYDROLYSIS "Hydrolysis"
#define D_CMND_NP_IONIZATION "Ionization"
#define D_CMND_NP_CHLORINE "Chlorine"
#define D_CMND_NP_CONTROL "Control"
#define D_CMND_NP_TELEPERIOD "TelePeriod"
#define D_CMND_NP_SAVE "Save"
#define D_CMND_NP_EXEC "Exec"
#define D_CMND_NP_ESCAPE "Escape"
#define D_CMND_NP_ONERROR "OnError"
#define D_CMND_NP_PHRES "PHRes"
#define D_CMND_NP_CLRES "CLRes"
#define D_CMND_NP_IONRES "IONRes"
#ifdef NEOPOOL_EMULATE_GPERH
#define D_CMND_NP_GPERH "gPerh"
#endif
const char kNPCommands[] PROGMEM = D_PRFX_NEOPOOL "|" // Prefix
D_CMND_NP_RESULT "|"
D_CMND_NP_READ "|"
D_CMND_NP_READL "|"
D_CMND_NP_WRITE "|"
D_CMND_NP_WRITEL "|"
D_CMND_NP_BIT "|"
D_CMND_NP_BITL "|"
D_CMND_NP_FILTRATION "|"
D_CMND_NP_FILTRATIONMODE "|"
D_CMND_NP_FILTRATIONSPEED "|"
D_CMND_NP_BOOST "|"
D_CMND_NP_TIME "|"
D_CMND_NP_LIGHT "|"
D_CMND_NP_PHMIN "|"
D_CMND_NP_PHMAX "|"
D_CMND_NP_PH "|"
D_CMND_NP_REDOX "|"
D_CMND_NP_HYDROLYSIS "|"
D_CMND_NP_IONIZATION "|"
D_CMND_NP_CHLORINE "|"
D_CMND_NP_CONTROL "|"
D_CMND_NP_TELEPERIOD "|"
D_CMND_NP_SAVE "|"
D_CMND_NP_EXEC "|"
D_CMND_NP_ESCAPE "|"
D_CMND_NP_ONERROR "|"
D_CMND_NP_PHRES "|"
D_CMND_NP_CLRES "|"
D_CMND_NP_IONRES
#ifdef NEOPOOL_EMULATE_GPERH
"|" D_CMND_NP_GPERH
#endif
;
void (* const NPCommand[])(void) PROGMEM = {
&CmndNeopoolResult,
&CmndNeopoolReadReg,
&CmndNeopoolReadReg,
&CmndNeopoolWriteReg,
&CmndNeopoolWriteReg,
&CmndNeopoolBit,
&CmndNeopoolBit,
&CmndNeopoolFiltration,
&CmndNeopoolFiltrationMode,
&CmndNeopoolFiltrationSpeed,
&CmndNeopoolBoost,
&CmndNeopoolTime,
&CmndNeopoolLight,
&CmndNeopoolpHMin,
&CmndNeopoolpHMax,
&CmndNeopoolpHMax,
&CmndNeopoolRedox,
&CmndNeopoolHydrolysis,
&CmndNeopoolIonization,
&CmndNeopoolChlorine,
&CmndNeopoolControl,
&CmndNeopoolTelePeriod,
&CmndNeopoolSave,
&CmndNeopoolExec,
&CmndNeopoolEscape,
&CmndNeopoolOnError,
&CmndNeopoolPHRes,
&CmndNeopoolCLRes,
&CmndNeopoolIONRes
#ifdef NEOPOOL_EMULATE_GPERH
,&CmndNeopoolgPerh
#endif
};
/*********************************************************************************************/
void NeoPoolPoll(void) // Poll modbus register
{
if (!neopool_poll) {
return;
};
if (neopoll_cmd_delay) {
neopoll_cmd_delay--;
if (0 == neopoll_cmd_delay && nullptr != neopoll_cmd) {
void (* do_cmd)(void) = neopoll_cmd;
neopoll_cmd = nullptr;
do_cmd();
}
}
bool data_ready = NeoPoolModbus->ReceiveReady();
if (data_ready && nullptr != NeoPoolReg[neopool_read_state].data) {
uint8_t *buffer = (uint8_t *)malloc(5+(NeoPoolReg[neopool_read_state].cnt)*2);
if (nullptr != buffer) {
uint8_t error = NeoPoolModbus->ReceiveBuffer(buffer, NeoPoolReg[neopool_read_state].cnt); // cnt x 16bit register
#ifdef NEOPOOL_CONNSTAT
NeoPoolModbusErrorCount(error);
#endif
if (0 == error) {
neopool_failed_count = 0;
neopool_error = false;
for (uint32_t i = 0; i < NeoPoolReg[neopool_read_state].cnt; i++) {
NeoPoolReg[neopool_read_state].data[i] = (buffer[i*2+3] << 8) | buffer[i*2+4];
}
}
#ifdef DEBUG_TASMOTA_SENSOR
else {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: modbus receive error %d"), error);
}
#endif // DEBUG_TASMOTA_SENSOR
free(buffer);
}
#ifdef DEBUG_TASMOTA_SENSOR
else {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: modbus block 0x%04X - 0x%04X skipped"), NeoPoolReg[neopool_read_state].addr, NeoPoolReg[neopool_read_state].addr+NeoPoolReg[neopool_read_state].cnt);
}
#endif // DEBUG_TASMOTA_SENSOR
++neopool_read_state %= nitems(NeoPoolReg);
}
if (nullptr != NeoPoolReg[neopool_read_state].data) {
if (0 == neopool_send_retry || data_ready) {
neopool_send_retry = SENSOR_MAX_MISS; // controller sometimes takes long time to answer
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: modbus send(%d, %d, 0x%04X, %d)"), NEOPOOL_MODBUS_ADDRESS, NEOPOOL_READ_REGISTER, NeoPoolReg[neopool_read_state].addr, NeoPoolReg[neopool_read_state].cnt);
#endif // DEBUG_TASMOTA_SENSOR
NeoPoolModbus->Send(NEOPOOL_MODBUS_ADDRESS, NEOPOOL_READ_REGISTER, NeoPoolReg[neopool_read_state].addr, NeoPoolReg[neopool_read_state].cnt);
#ifdef NEOPOOL_CONNSTAT
NeoPoolStats.mb_requests++;
#endif
} else {
if (1 == neopool_send_retry) {
neopool_failed_count++;
if (neopool_failed_count > 2) {
neopool_failed_count = 0;
neopool_error = true;
NeoPoolInitData();
}
}
neopool_send_retry--;
}
}
}
/*********************************************************************************************/
void NeoPoolInit(void) {
NeoPoolSettingsLoad(false);
neopool_active = false;
if (PinUsed(GPIO_NEOPOOL_RX) && PinUsed(GPIO_NEOPOOL_TX)) {
NeoPoolModbus = new TasmotaModbus(Pin(GPIO_NEOPOOL_RX), Pin(GPIO_NEOPOOL_TX));
uint8_t result = NeoPoolModbus->Begin(NEOPOOL_MODBUS_SPEED);
if (result) {
if (2 == result) {
ClaimSerial();
}
if (NeoPoolInitData()) { // Claims heap space
neopool_active = true;
}
}
#ifdef DEBUG_TASMOTA_SENSOR
else {
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: NeoPoolInit Modbus init failed %d"), result);
}
#endif // DEBUG_TASMOTA_SENSOR
}
#ifdef DEBUG_TASMOTA_SENSOR
else {
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: NeoPoolInit no GPIOs assigned"));
}
#endif // DEBUG_TASMOTA_SENSOR
}
bool NeoPoolInitData(void)
{
bool result = true;
neopool_error = true;
neopool_power_module_version = 0;
#ifdef NEOPOOL_CONNSTAT
memset(&NeoPoolStats, 0, sizeof(NeoPoolStats));
#endif
memset(neopool_power_module_nodeid, 0, sizeof(neopool_power_module_nodeid));
for (uint32_t i = 0; i < nitems(NeoPoolReg); i++) {
if (nullptr == NeoPoolReg[i].data) {
NeoPoolReg[i].data = (uint16_t *)malloc(sizeof(uint16_t)*NeoPoolReg[i].cnt);
if (nullptr != NeoPoolReg[i].data) {
memset(NeoPoolReg[i].data, 0, sizeof(uint16_t)*NeoPoolReg[i].cnt);
}
else {
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: NeoPoolInitData - NeoPoolReg[%d].data out of memory"), i);
#endif // DEBUG_TASMOTA_SENSOR
result = false;
}
}
}
if (!result) {
// release partially reserved memory on init error
for (uint32_t i = 0; i < nitems(NeoPoolReg); i++) {
if (nullptr != NeoPoolReg[i].data) {
free(NeoPoolReg[i].data);
NeoPoolReg[i].data = nullptr;
}
}
}
return result;
}
/*********************************************************************************************/
#ifdef DEBUG_TASMOTA_SENSOR
void NeoPoolLogRW(const char *name, uint16_t addr, uint16_t *data, uint16_t cnt)
{
char *log_data = (char *)malloc(cnt*7+1);
*log_data = 0;
for (uint32_t i = 0; i < cnt; i++) {
char h[8];
snprintf_P(h, sizeof(h), PSTR("%s0x%04X"), i ? PSTR(",") : PSTR(""), data[i]);
strncat(log_data, h, cnt*7+1);
}
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: %s(0x%04X, %d) = [%s]"), name, addr, cnt, log_data);
free(log_data);
}
#endif // DEBUG_TASMOTA_SENSOR
void NeoPool250msSetStatus(bool status)
{
neopool_poll = status;
if (!status) {
NeoPoolModbus->flush();
// clear rec buffer from possible prev periodical communication
uint32_t timeoutMS = millis() + 100 * NEOPOOL_READ_TIMEOUT; // Max delay before we timeout
while (NeoPoolModbus->available() && millis() < timeoutMS) {
NeoPoolModbus->read();
SleepDelay(0);
}
}
}
#ifdef NEOPOOL_CONNSTAT
void NeoPoolModbusErrorCount(uint8_t error)
{
if (NeoPoolStats.time < 86400L) {
NeoPoolStats.time = Rtc.local_time;
}
if (error < nitems(NeoPoolStats.mb_results) - 1) {
NeoPoolStats.mb_results[error]++;
} else {
NeoPoolStats.mb_results[nitems(NeoPoolStats.mb_results) - 1]++;
}
}
#endif
uint8_t NeoPoolReadRegisterData(uint16_t addr, uint16_t *data, uint16_t cnt)
{
bool data_ready;
uint32_t timeoutMS;
uint16_t *origin = data;
NeoPool250msSetStatus(false);
*data = 0;
NeoPoolModbus->Send(NEOPOOL_MODBUS_ADDRESS, NEOPOOL_READ_REGISTER, addr, cnt);
#ifdef NEOPOOL_CONNSTAT
NeoPoolStats.mb_requests++;
#endif
timeoutMS = millis() + cnt * NEOPOOL_READ_TIMEOUT; // Max delay before we timeout
while (!(data_ready = NeoPoolModbus->ReceiveReady()) && millis() < timeoutMS) { delay(1); }
if (data_ready) {
uint8_t *buffer = (uint8_t*)malloc(5+cnt*2);
if (buffer != nullptr) {
uint8_t error = NeoPoolModbus->ReceiveBuffer(buffer, cnt);
#ifdef NEOPOOL_CONNSTAT
NeoPoolModbusErrorCount(error);
#endif
if (error) {
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: addr 0x%04X read data error %d"), addr, error);
#endif // DEBUG_TASMOTA_SENSOR
NeoPool250msSetStatus(true);
free(buffer);
return NEOPOOL_MODBUS_ERROR_RW_DATA;
}
for(uint64_t i = 0; i < cnt; i++) {
*data++ = (buffer[i*2+3] << 8) | buffer[i*2+4];
}
NeoPool250msSetStatus(true);
delay(2);
free(buffer);
#ifdef DEBUG_TASMOTA_SENSOR
NeoPoolLogRW("NeoPoolReadRegister", addr, origin, cnt);
#endif // DEBUG_TASMOTA_SENSOR
return NEOPOOL_MODBUS_OK;
}
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: addr 0x%04X read out of memory"), addr);
#endif // DEBUG_TASMOTA_SENSOR
return NEOPOOL_MODBUS_ERROR_OUT_OF_MEM;
}
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: addr 0x%04X read data timeout"), addr);
#endif // DEBUG_TASMOTA_SENSOR
NeoPool250msSetStatus(true);
return NEOPOOL_MODBUS_ERROR_TIMEOUT;
}
uint8_t NeoPoolWriteRegisterData(uint16_t addr, uint16_t *data, uint16_t cnt)
{
uint8_t *frame;
uint32_t numbytes;
bool data_ready;
uint32_t timeoutMS;
#ifdef DEBUG_TASMOTA_SENSOR
NeoPoolLogRW("NeoPoolWriteRegister", addr, data, cnt);
#endif // DEBUG_TASMOTA_SENSOR
NeoPool250msSetStatus(false);
numbytes = 7+cnt*2;
frame = (uint8_t*)malloc(numbytes+2);
if (nullptr == frame) {
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: addr 0x%04X write out of memory"), addr);
#endif // DEBUG_TASMOTA_SENSOR
return NEOPOOL_MODBUS_ERROR_OUT_OF_MEM;
}
// Function 16 (10hex) Write Multiple Registers
// Header
frame[0] = NEOPOOL_MODBUS_ADDRESS;
frame[1] = NEOPOOL_WRITE_REGISTER;
frame[2] = (uint8_t)(addr >> 8); // addr MSB
frame[3] = (uint8_t)(addr); // addr LSB
frame[4] = (uint8_t)(cnt >> 8); // register quantity MSB
frame[5] = (uint8_t)(cnt); // register quantity LSB
frame[6] = (uint8_t)(cnt * 2); // byte count
for (uint32_t i = 0; i < cnt; i++) {
#ifdef NEOPOOL_EMULATE_GPERH
frame[7+i*2] = (uint8_t)(NeoPoolEmulateSetData(addr + i, data[i]) >> 8); // data MSB
frame[8+i*2] = (uint8_t)(NeoPoolEmulateSetData(addr + i, data[i])); // data LSB
#else
frame[7+i*2] = (uint8_t)(data[i] >> 8); // data MSB
frame[8+i*2] = (uint8_t)(data[i]); // data LSB
#endif
}
uint16_t crc = NeoPoolModbus->CalculateCRC(frame, numbytes);
frame[numbytes] = (uint8_t)(crc);
frame[numbytes+1] = (uint8_t)(crc >> 8);
NeoPoolModbus->flush();
NeoPoolModbus->write(frame, numbytes+2);
#ifdef NEOPOOL_CONNSTAT
NeoPoolStats.mb_requests++;
#endif
timeoutMS = millis() + 1 * NEOPOOL_READ_TIMEOUT; // Max delay before we timeout
while (!(data_ready = NeoPoolModbus->ReceiveReady()) && millis() < timeoutMS) { delay(1); }
free(frame);
if (data_ready) {
uint8_t buffer[9];
uint8_t error = NeoPoolModbus->ReceiveBuffer(buffer, 1);
#ifdef NEOPOOL_CONNSTAT
NeoPoolModbusErrorCount(error);
#endif
if (0 != error && 9 != error) { // ReceiveBuffer can't handle 0x10 code result
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: addr 0x%04X write data response error %d"), addr, error);
#endif // DEBUG_TASMOTA_SENSOR
NeoPool250msSetStatus(true);
return NEOPOOL_MODBUS_ERROR_RW_DATA;
}
if (9 == error) {
// clear buffer before we leave
while (NeoPoolModbus->available()) {
NeoPoolModbus->read();
}
}
NeoPool250msSetStatus(true);
delay(2);
if (MBF_SAVE_TO_EEPROM == addr) {
// EEPROM write can take some time, wait until device is ready
timeoutMS = millis() + 1000; // Max delay for save eeprom cmnd
uint16_t tmp;
while (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_NOTIFICATION, &tmp, 1) && millis() < timeoutMS);
}
return NEOPOOL_MODBUS_OK;
}
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: addr 0x%04X write data response timeout"), addr);
#endif // DEBUG_TASMOTA_SENSOR
NeoPool250msSetStatus(true);
return NEOPOOL_MODBUS_ERROR_TIMEOUT;
}
uint8_t NeoPoolReadRegisterRaw(uint16_t addr, uint16_t *data, uint16_t cnt)
{
uint8_t repeat = neopool_repeat_on_error;
uint8_t result;
do {
result = NeoPoolReadRegisterData(addr, data, cnt);
SleepDelay(0);
} while(repeat-- > 0 && NEOPOOL_MODBUS_OK != result);
return result;
}
uint8_t NeoPoolReadRegister(uint16_t addr, uint16_t *data, uint16_t cnt)
{
uint8_t result = NeoPoolReadRegisterRaw(addr, data, cnt);
#ifdef NEOPOOL_EMULATE_GPERH
if (NEOPOOL_MODBUS_OK == result) {
for (uint32_t i = 0; i < cnt; i++) {
data[i] = NeoPoolEmulateGetData(addr + i, data[i]);
}
}
#endif
return result;
}
uint8_t NeoPoolWriteRegister(uint16_t addr, uint16_t *data, uint16_t cnt)
{
uint8_t repeat = neopool_repeat_on_error;
uint8_t result;
do {
result = NeoPoolWriteRegisterData(addr, data, cnt);
SleepDelay(0);
} while(repeat-- > 0 && NEOPOOL_MODBUS_OK != result);
return result;
}
uint8_t NeoPoolWriteRegisterWord(uint16_t addr, uint16_t data)
{
return NeoPoolWriteRegister(addr, &data, 1);
}
uint16_t NeoPoolGetCacheData(uint16_t addr, int32_t timeout)
{
uint16_t data = 0;
bool datavalid = false;
uint16_t i;
// search in regular data storage
for (i = 0; !datavalid && i < nitems(NeoPoolReg); i++) {
if (nullptr != NeoPoolReg[i].data && addr >= NeoPoolReg[i].addr && addr < NeoPoolReg[i].addr+NeoPoolReg[i].cnt) {
data = NeoPoolReg[i].data[addr - NeoPoolReg[i].addr];
datavalid = true;
}
}
if (!datavalid) {
// not found in regular data storage, search within cache
if (timeout < 0) {
timeout = NEOPOOL_CACHE_INVALID_TIME * 1000;
}
for (i = 0; !datavalid && i < NeoPoolDataCount; i++) {
if (nullptr != NeoPoolData && addr == NeoPoolData[i].addr) {
if (millis() < NeoPoolData[i].ts) {
data = NeoPoolData[i].data;
} else {
NeoPoolReadRegisterRaw(addr, &data, 1);
NeoPoolData[i].data = data;
NeoPoolData[i].ts = millis() + timeout;
}
datavalid = true;
}
}
if (!datavalid) {
// no cache hit, read origin from modbus register and store result within cache
NeoPoolReadRegisterRaw(addr, &data, 1);
datavalid = true;
if (nullptr == NeoPoolData) {
NeoPoolDataCount = 1;
NeoPoolData = (TNeoPoolData*)malloc(sizeof(TNeoPoolData) * NeoPoolDataCount);
} else {
NeoPoolDataCount++;
NeoPoolData = (TNeoPoolData*)realloc(NeoPoolData, sizeof(TNeoPoolData) * NeoPoolDataCount);
}
if (nullptr != NeoPoolData) {
NeoPoolData[NeoPoolDataCount-1].addr = addr;
NeoPoolData[NeoPoolDataCount-1].data = data;
NeoPoolData[NeoPoolDataCount-1].ts = millis() + timeout;
} else {
NeoPoolDataCount = 0;
}
}
}
#ifdef NEOPOOL_EMULATE_GPERH
return NeoPoolEmulateGetData(addr, data);
#else
return data;
#endif
}
uint16_t NeoPoolGetData(uint16_t addr)
{
uint16_t data = NeoPoolGetCacheData(addr, -1);
#ifdef NEOPOOL_RANGE_CHECKS
for (uint16_t i = 0; i < nitems(NeoPoolRangeCheck); i++) {
if (MBF_HIDRO_CURRENT == NeoPoolRangeCheck[i].addr && NEOPOOL_UNDEF_UINT16 == NeoPoolRangeCheck[i].max) {
// get hydrolsysis max value
uint16_t max = NeoPoolGetCacheData(MBF_PAR_HIDRO_NOM, -1);
if (0 != max) {
NeoPoolRangeCheck[i].max = max;
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: ConnStat - use hydrolysis max = %d"), NeoPoolRangeCheck[i].max);
#endif
}
}
if (NeoPoolRangeCheck[i].addr == addr) {
uint16_t prev_data = data;
// check out of range
if (data < NeoPoolRangeCheck[i].min || data > NeoPoolRangeCheck[i].max) {
#ifdef NEOPOOL_CONNSTAT
NeoPoolStats.value_out_of_range++;
#endif
// use previous value if defined
if (NEOPOOL_UNDEF_UINT16 != NeoPoolRangeCheck[i].prev) {
data = NeoPoolRangeCheck[i].prev;
} else {
// limit to min/max as long as no valid previous value is present
if (data < NeoPoolRangeCheck[i].min) {
data = NeoPoolRangeCheck[i].min;
} else {
data = NeoPoolRangeCheck[i].max;
}
}
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: ConnStat - Addr 0x%04X data out of range [%d-%d]: received %d, corrected using %d"),
NeoPoolRangeCheck[i].addr,
NeoPoolRangeCheck[i].min,
NeoPoolRangeCheck[i].max,
prev_data,
data);
#endif
}
else {
// remeber origin value
NeoPoolRangeCheck[i].prev = data;
}
}
}
#endif // NEOPOOL_RANGE_CHECKS
return data;
}
uint32_t NeoPoolGetDataLong(uint16_t addr)
{
return ((uint32_t)NeoPoolGetData(addr) + ((uint32_t)NeoPoolGetData(addr+1) << 16));
}
#ifdef NEOPOOL_EMULATE_GPERH
uint16_t NeoPoolEmulateGetData(uint16_t addr, uint16_t data)
{
if (neopool_system_gperh) {
// emulate g/h device
switch(addr) {
case MBF_PAR_UICFG_MACH_VISUAL_STYLE:
data &= ~((MBMSK_VS_FORCE_UNITS_GRH | MBMSK_VS_FORCE_UNITS_PERCENTAGE));
data |= MBMSK_VS_FORCE_UNITS_GRH;
break;
case MBF_HIDRO_CURRENT:
case MBF_PAR_HIDRO:
case MBF_PAR_HIDRO_NOM:
// [0..1000] -> [0(NEOPOOL_EMULATE_GPERH * 10)
data = data * NEOPOOL_EMULATE_GPERH / 100;
break;
}
}
return data;
}
uint16_t NeoPoolEmulateSetData(uint16_t addr, uint16_t data)
{
if (neopool_system_gperh) {
// emulate g/h device
switch(addr) {
case MBF_PAR_HIDRO:
// [0..(NEOPOOL_EMULATE_GPERH * 10)] -> [0..1000]
data = (data * 100) / NEOPOOL_EMULATE_GPERH;
break;
}
}
return data;
}
#endif
uint32_t NeoPoolGetFiltrationSpeed()
{
switch((NeoPoolGetData(MBF_RELAY_STATE) & MBMSK_RELAY_FILTSPEED) >> MBSHFT_RELAY_FILTSPEED) {
case 1:
return 1;
case 2:
return 2;
case 4:
return 3;
}
switch((NeoPoolGetData(MBF_PAR_FILTRATION_CONF) & MBMSK_PAR_FILTRATION_CONF_DEF_SPEED) >> MBSHFT_PAR_FILTRATION_CONF_DEF_SPEED) {
case MBV_PAR_FILTRATION_SPEED_SLOW:
return 1;
case MBV_PAR_FILTRATION_SPEED_MEDIUM:
return 2;
case MBV_PAR_FILTRATION_SPEED_FAST:
return 3;
}
return 0;
}
bool NeoPoolIsHydrolysis(void)
{
return (((NeoPoolGetData(MBF_PAR_MODEL) & MBMSK_MODEL_HIDRO)) ||
(NeoPoolGetData(MBF_HIDRO_STATUS) & (MBMSK_HIDRO_STATUS_CTRL_ACTIVE | MBMSK_HIDRO_STATUS_CTRL_ACTIVE)));
}
bool NeoPoolIsHydrolysisInPercent(void)
{
// determine type of units are used to display the hydrolysis/electrolysis:
// 1. If MBMSK_VS_FORCE_UNITS_PERCENTAGE bit of MBF_PAR_UICFG_MACH_VISUAL_STYLE register is set, "%" is displayed
if (NeoPoolGetData(MBF_PAR_UICFG_MACH_VISUAL_STYLE) & MBMSK_VS_FORCE_UNITS_PERCENTAGE) {
return true;
}
// 2. If MBMSK_VS_FORCE_UNITS_GRH bit of MBF_PAR_UICFG_MACH_VISUAL_STYLE register is set, "gr/h" is displayed
if (NeoPoolGetData(MBF_PAR_UICFG_MACH_VISUAL_STYLE) & MBMSK_VS_FORCE_UNITS_GRH) {
return false;
}
// 3. If neither of the above two bits is set:
// a. If MBF_PAR_UICFG_MACHINE is MACH_HIDROLIFE or MACH_BIONET, then "gr/h" is displayed
if (NeoPoolGetData(MBF_PAR_UICFG_MACHINE) == MBV_PAR_MACH_HIDROLIFE || NeoPoolGetData(MBF_PAR_UICFG_MACHINE) == MBV_PAR_MACH_BIONET) {
return false;
}
// b. If MBF_PAR_UICFG_MACHINE is MACH_GENERIC and MBMSK_ELECTROLISIS bit of MBF_PAR_UICFG_MACH_VISUAL_STYLE is set, "gr/h" is displayed.
if (NeoPoolGetData(MBF_PAR_UICFG_MACHINE) == MBV_PAR_MACH_GENERIC && (NeoPoolGetData(MBF_PAR_UICFG_MACH_VISUAL_STYLE) & MBMSK_ELECTROLISIS)) {
return false;
}
// c. If none of the above cases, "%" is displayed.
return true;
}
bool NeoPoolIspHModule(void)
{
return (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_MEASURE_ACTIVE);
}
bool NeoPoolIsRedox(void)
{
return (NeoPoolGetData(MBF_RX_STATUS) & MBMSK_RX_STATUS_MEASURE_ACTIVE);
}
bool NeoPoolIsChlorine(void)
{
return (NeoPoolGetData(MBF_CL_STATUS) & MBMSK_CL_STATUS_MEASURE_ACTIVE);
}
bool NeoPoolIsConductivity(void)
{
return (NeoPoolGetData(MBF_CD_STATUS) & MBMSK_CD_STATUS_MEASURE_ACTIVE);
}
bool NeoPoolIsIonization(void)
{
return (NeoPoolGetData(MBF_PAR_MODEL) & MBMSK_MODEL_ION);
}
/*********************************************************************************************/
void NeoPoolAppendModules(void)
{
ResponseAppend_P(PSTR("\"" D_NEOPOOL_JSON_MODULES "\":"));
ResponseAppend_P(PSTR("{\"" D_JSON_PH "\":%d"), NeoPoolIspHModule());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_REDOX "\":%d"), NeoPoolIsRedox());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_HYDROLYSIS "\":%d"), NeoPoolIsHydrolysis());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CHLORINE "\":%d"), NeoPoolIsChlorine());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CONDUCTIVITY "\":%d"), NeoPoolIsConductivity());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_IONIZATION "\":%d"), NeoPoolIsIonization());
ResponseJsonEnd();
}
void NeoPoolShow(bool json)
{
char neopool_type[60];
char stemp[200];
float fvalue;
if (neopool_error) {
return;
}
GetTextIndexed(neopool_type, sizeof(neopool_type), NeoPoolGetData(MBF_PAR_UICFG_MACHINE), kNeoPoolMachineNames);
*stemp = 0;
if (json) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_NAME "\":{"));
// Time
ResponseAppend_P(PSTR("\"" D_JSON_TIME "\":\"%s\","), GetDT(NeoPoolGetDataLong(MBF_PAR_TIME_LOW)).c_str());
// Type
ResponseAppend_P(PSTR("\"" D_JSON_TYPE "\":\"%s\","), neopool_type);
// Modules
NeoPoolAppendModules();
// Temperature
if (NeoPoolGetData(MBF_PAR_TEMPERATURE_ACTIVE)) {
fvalue = ConvertTemp((float)NeoPoolGetData(MBF_MEASURE_TEMPERATURE)/10);
ResponseAppend_P(PSTR(",\"" D_TEMPERATURE "\":%*_f"), Settings->flag2.temperature_resolution, &fvalue);
}
// Voltage
{
float f5volt = (float)NeoPoolGetData(MBF_VOLT_5)/620.69;
float f12volt = (float)NeoPoolGetData(MBF_VOLT_12)/1000;
float f24_36volt = (float)NeoPoolGetData(MBF_VOLT_24_36)/1000;
float f420mA = (float)NeoPoolGetData(MBF_AMP_4_20_MICRO)/100;
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_POWERUNIT "\":{"));
if (neopool_power_module_version ||
NEOPOOL_MODBUS_OK == NeoPoolReadRegister(MBF_POWER_MODULE_VERSION, &neopool_power_module_version, 1)) {
ResponseAppend_P(PSTR("\"" D_JSON_VERSION "\":\"V%d.%d\","),
(neopool_power_module_version >> 8),
neopool_power_module_version & 0xff
);
}
if (neopool_power_module_nodeid[0] ||
NEOPOOL_MODBUS_OK == NeoPoolReadRegister(MBF_POWER_MODULE_NODEID, neopool_power_module_nodeid, nitems(neopool_power_module_nodeid))) {
if (Settings->flag6.neopool_outputsensitive) {
ResponseAppend_P(PSTR("\"" D_NEOPOOL_JSON_NODE_ID "\":\"%04X %04X %04X %04X %04X %04X\","),
neopool_power_module_nodeid[0],
neopool_power_module_nodeid[1],
neopool_power_module_nodeid[2],
neopool_power_module_nodeid[3],
neopool_power_module_nodeid[4],
neopool_power_module_nodeid[5]
);
}
else {
ResponseAppend_P(PSTR("\"" D_NEOPOOL_JSON_NODE_ID "\":\"XXXX XXXX XXXX XXXX XXXX %04X\","),
neopool_power_module_nodeid[5]
);
}
}
ResponseAppend_P(PSTR("\"5V\":%*_f,\"12V\":%*_f,\"24-30V\":%*_f,\"4-20mA\":%*_f}"),
Settings->flag2.voltage_resolution, &f5volt,
Settings->flag2.voltage_resolution, &f12volt,
Settings->flag2.voltage_resolution, &f24_36volt,
Settings->flag2.current_resolution, &f420mA);
}
// pH
if (NeoPoolIspHModule()) {
fvalue = (float)NeoPoolGetData(MBF_MEASURE_PH)/100;
ResponseAppend_P(PSTR(",\"" D_PH "\":{\"" D_JSON_DATA "\":" NEOPOOL_FMT_PH), NeoPoolSettings.resolution.ph, &fvalue);
// S1
float fphmin = (float)NeoPoolGetData(MBF_PAR_PH2)/100;
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_MIN "\":" NEOPOOL_FMT_PH), NeoPoolSettings.resolution.ph, &fphmin);
float fphmax = (float)NeoPoolGetData(MBF_PAR_PH1)/100;
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_MAX "\":" NEOPOOL_FMT_PH), NeoPoolSettings.resolution.ph, &fphmax);
// S2
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_STATE "\":%d"), (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_ALARM));
// S3
int phpump = 0;
if (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_CTRL_ACTIVE) {
if (NeoPoolGetData(MBF_PH_STATUS) & (MBMSK_PH_STATUS_ACID_PUMP_ACTIVE | MBMSK_PH_STATUS_BASE_PUMP_ACTIVE)) {
phpump = 1;
} else {
phpump = 2;
}
}
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_PHPUMP "\":%d"), phpump);
// S4
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_FLOW1 "\":%d"), (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_CTRL_BY_FL) ? 0 : 1);
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_TANK "\":%d"), (MBV_PH_ACID_BASE_ALARM6 == (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_ALARM)) ? 0 : 1);
ResponseJsonEnd();
}
// Redox
if (NeoPoolIsRedox()) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_REDOX "\":{"));
ResponseAppend_P(PSTR("\"" D_JSON_DATA "\":" NEOPOOL_FMT_RX), NeoPoolGetData(MBF_MEASURE_RX));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_SETPOINT "\":" NEOPOOL_FMT_RX), NeoPoolGetData(MBF_PAR_RX1));
ResponseJsonEnd();
}
// Chlorine
if (NeoPoolIsChlorine()) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CHLORINE "\":{"));
fvalue = (float)NeoPoolGetData(MBF_MEASURE_CL)/100;
ResponseAppend_P(PSTR("\"" D_JSON_DATA "\":" NEOPOOL_FMT_CL), NeoPoolSettings.resolution.cl, &fvalue);
fvalue = (float)NeoPoolGetData(MBF_PAR_CL1)/100;
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_SETPOINT "\":" NEOPOOL_FMT_CL), NeoPoolSettings.resolution.cl, &fvalue);
ResponseJsonEnd();
}
// Conductivity
if (NeoPoolIsConductivity()) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_CONDUCTIVITY "\":" NEOPOOL_FMT_CD), NeoPoolGetData(MBF_MEASURE_CONDUCTIVITY));
}
// Ionization
if (NeoPoolIsIonization()) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_IONIZATION "\":{"));
fvalue = (float)NeoPoolGetData(MBF_ION_CURRENT);
ResponseAppend_P(PSTR("\"" D_JSON_DATA "\":" NEOPOOL_FMT_ION), NeoPoolSettings.resolution.ion, &fvalue);
fvalue = (float)NeoPoolGetData(MBF_PAR_ION);
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_SETPOINT "\":" NEOPOOL_FMT_ION), NeoPoolSettings.resolution.ion, &fvalue);
fvalue = (float)NeoPoolGetData(MBF_PAR_ION_NOM);
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_MAX "\":" NEOPOOL_FMT_ION), NeoPoolSettings.resolution.ion, &fvalue);
ResponseJsonEnd();
}
// Hydrolysis
if (NeoPoolIsHydrolysis()) {
int decimals = NeoPoolIsHydrolysisInPercent() ? 0 : 1;
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_HYDROLYSIS "\":{"));
uint16_t data = NeoPoolGetData(MBF_HIDRO_CURRENT);
fvalue = (float)data / 10;
ResponseAppend_P(PSTR( "\"" D_JSON_DATA "\":" NEOPOOL_FMT_HIDRO), decimals, &fvalue);
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_UNIT "\":\"%s\""), NeoPoolIsHydrolysisInPercent() ? PSTR(D_NEOPOOL_UNIT_PERCENT) : PSTR(D_NEOPOOL_UNIT_GPERH));
uint16_t setpoint = NeoPoolGetData(MBF_PAR_HIDRO);
fvalue = (float)setpoint / 10;
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_SETPOINT "\":" NEOPOOL_FMT_HIDRO), decimals, &fvalue);
uint16_t max = NeoPoolGetData(MBF_PAR_HIDRO_NOM);
fvalue = (float)max / 10;
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_MAX "\":" NEOPOOL_FMT_HIDRO), decimals, &fvalue);
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_PERCENT "\":{"));
ResponseAppend_P(PSTR( "\"" D_JSON_DATA "\":%d"), data * 100 / max);
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_SETPOINT "\":%d"), setpoint * 100 / max);
ResponseJsonEnd();
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CELL_RUNTIME "\":{"));
ResponseAppend_P(PSTR( "\"" D_NEOPOOL_JSON_CELL_RUNTIME_TOTAL "\":\"%s\""), GetDuration(NeoPoolGetDataLong(MBF_CELL_RUNTIME_LOW)).c_str());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CELL_RUNTIME_PART "\":\"%s\""), GetDuration(NeoPoolGetDataLong(MBF_CELL_RUNTIME_PART_LOW)).c_str());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CELL_RUNTIME_POL1 "\":\"%s\""), GetDuration(NeoPoolGetDataLong(MBF_CELL_RUNTIME_POLA_LOW)).c_str());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CELL_RUNTIME_POL2 "\":\"%s\""), GetDuration(NeoPoolGetDataLong(MBF_CELL_RUNTIME_POLB_LOW)).c_str());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CELL_RUNTIME_CHANGES "\":%ld"), NeoPoolGetDataLong(MBF_CELL_RUNTIME_POL_CHANGES_LOW));
ResponseJsonEnd();
// S1
const char *state = PSTR("");
if (0 == (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_MODULE_ACTIVE)) {
state = PSTR(D_NEOPOOL_STATUS_OFF);
} else if (0 == (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_FL1)) {
state = PSTR(D_NEOPOOL_STATUS_FLOW);
} else if (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_POL1) {
state = PSTR(D_NEOPOOL_POLARIZATION "1");
} else if (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_POL2) {
state = PSTR(D_NEOPOOL_POLARIZATION "2");
} else {
state = PSTR(D_NEOPOOL_STATUS_OFF);
}
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_STATE "\":\"%s\""), state);
// S2
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_COVER "\":%d"), (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_COVER) ? 1 : 0 );
// S3
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_SHOCK "\":%d"), (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_SHOCK_ENABLED) ? ((NeoPoolGetData(MBF_CELL_BOOST) & MBMSK_CELL_BOOST_NO_REDOX_CTL) ? 1 : 2) : 0 );
// S4
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_LOW "\":%d"), (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_LOW) ? 1 : 0 );
// S5
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_FLOW1 "\":%d"), (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_FL1) ? 0 : 1);
// S6
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_REDOX "\":%d"), (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_REDOX_ENABLED) ? 1 : 0);
ResponseJsonEnd();
}
// Filtration
if (0 != NeoPoolGetData(MBF_PAR_FILT_GPIO)) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_FILTRATION "\":"));
ResponseAppend_P(PSTR("{\"" D_NEOPOOL_JSON_STATE "\":%d"), (NeoPoolGetData(MBF_RELAY_STATE) >> (NeoPoolGetData(MBF_PAR_FILT_GPIO)-1)) & 1);
uint16_t speed = NeoPoolGetFiltrationSpeed();
if (speed) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_FILTRATION_SPEED "\":%d"), (speed < 3) ? speed : 3);
}
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_FILTRATION_MODE "\":%d}"), NeoPoolGetData(MBF_PAR_FILT_MODE));
}
// Light
if (0 != NeoPoolGetData(MBF_PAR_LIGHTING_GPIO)) {
ResponseAppend_P(PSTR(",\"" D_JSON_LIGHT "\":%d"), (NeoPoolGetData(MBF_RELAY_STATE) >> (NeoPoolGetData(MBF_PAR_LIGHTING_GPIO)-1)) & 1);
}
// Relays
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY "\":{\"" D_NEOPOOL_JSON_STATE "\":["));
for(uint16_t i = 0; i < NEOPOOL_RELAY_MAX; i++) {
ResponseAppend_P(PSTR("%s%d"), i ? PSTR(",") : PSTR(""), (NeoPoolGetData(MBF_RELAY_STATE) >> i) & 1);
}
ResponseAppend_P(PSTR("]"));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_AUX "\":["));
for(uint16_t i = 3; i < NEOPOOL_RELAY_MAX; i++) {
ResponseAppend_P(PSTR("%s%d"), i > 3 ? PSTR(",") : PSTR(""), (NeoPoolGetData(MBF_RELAY_STATE) >> i) & 1);
}
ResponseAppend_P(PSTR("]"));
if (0 != NeoPoolGetData(MBF_PAR_PH_ACID_RELAY_GPIO)) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_PH_ACID "\":%d"), (NeoPoolGetData(MBF_RELAY_STATE) >> (NeoPoolGetData(MBF_PAR_PH_ACID_RELAY_GPIO)-1)) & 1);
}
if (0 != NeoPoolGetData(MBF_PAR_PH_BASE_RELAY_GPIO)) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_PH_BASE "\":%d"), (NeoPoolGetData(MBF_RELAY_STATE) >> (NeoPoolGetData(MBF_PAR_PH_BASE_RELAY_GPIO)-1)) & 1);
}
if (0 != NeoPoolGetData(MBF_PAR_RX_RELAY_GPIO)) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_RX "\":%d"), (NeoPoolGetData(MBF_RELAY_STATE) >> (NeoPoolGetData(MBF_PAR_RX_RELAY_GPIO)-1)) & 1);
}
if (0 != NeoPoolGetData(MBF_PAR_CL_RELAY_GPIO)) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_CL "\":%d"), (NeoPoolGetData(MBF_RELAY_STATE) >> (NeoPoolGetData(MBF_PAR_CL_RELAY_GPIO)-1)) & 1);
}
if (0 != NeoPoolGetData(MBF_PAR_CD_RELAY_GPIO)) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_CD " \":%d"), (NeoPoolGetData(MBF_RELAY_STATE) >> NeoPoolGetData(MBF_PAR_CD_RELAY_GPIO)) & 1);
}
if (0 != NeoPoolGetData(MBF_PAR_HEATING_GPIO)) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_HEATING " \":%d"), (NeoPoolGetData(MBF_RELAY_STATE) >> NeoPoolGetData(MBF_PAR_HEATING_GPIO)) & 1);
}
if (0 != NeoPoolGetData(MBF_PAR_UV_RELAY_GPIO)) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_UV " \":%d"), (NeoPoolGetData(MBF_RELAY_STATE) >> NeoPoolGetData(MBF_PAR_UV_RELAY_GPIO)) & 1);
}
if (0 != NeoPoolGetData(MBF_PAR_FILTVALVE_GPIO)) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_FILTVALVE " \":%d"), (NeoPoolGetData(MBF_RELAY_STATE) >> NeoPoolGetData(MBF_PAR_FILTVALVE_GPIO)) & 1);
}
ResponseJsonEnd();
#ifdef NEOPOOL_CONNSTAT
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CONNSTAT "\":{"));
ResponseAppend_P(PSTR( "\"" D_JSON_TIME "\":\"%s\""), GetDT(NeoPoolStats.time).c_str());
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CONNSTAT_MB_REQUESTS "\":%d"), NeoPoolStats.mb_requests);
uint32_t mb_sum = 0;
for(uint16_t i = 0; i < nitems(NeoPoolStats.mb_results); i++) {
char mbresult[32];
GetTextIndexed(mbresult, sizeof(mbresult), i, kNeoPoolMBResults);
ResponseAppend_P(PSTR(",\"%s\":%d"), mbresult,NeoPoolStats.mb_results[i]);
mb_sum += NeoPoolStats.mb_results[i];
}
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CONNSTAT_MB_RESULTS "\":%d"), NeoPoolStats.mb_requests - mb_sum);
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_CONNSTAT_DATA_OOR "\":%d"), NeoPoolStats.value_out_of_range);
ResponseJsonEnd();
#endif
ResponseJsonEnd();
#ifdef USE_WEBSERVER
} else {
char bg_color[10];
snprintf_P(bg_color, sizeof(bg_color), PSTR("#%02x%02x%02x"),
Settings->web_color[COL_BACKGROUND][0], // R
Settings->web_color[COL_BACKGROUND][1], // G
Settings->web_color[COL_BACKGROUND][2] // B
);
// Time
String nptime = GetDT(NeoPoolGetDataLong(MBF_PAR_TIME_LOW));
WSContentSend_PD(HTTP_SNS_NEOPOOL_TIME, neopool_type, nptime.substring(0, nptime.length()-3).c_str());
// Temperature
if (NeoPoolGetData(MBF_PAR_TEMPERATURE_ACTIVE)) {
fvalue = ConvertTemp((float)NeoPoolGetData(MBF_MEASURE_TEMPERATURE)/10);
WSContentSend_PD(HTTP_SNS_F_TEMP, neopool_type, Settings->flag2.temperature_resolution, &fvalue, TempUnit());
}
// Voltage
{
float f5volt = (float)NeoPoolGetData(MBF_VOLT_5)/620.69;
float f12volt = (float)NeoPoolGetData(MBF_VOLT_12)/1000;
float f24_36volt = (float)NeoPoolGetData(MBF_VOLT_24_36)/1000;
WSContentSend_PD(HTTP_SNS_NEOPOOL_VOLTAGE, neopool_type,
Settings->flag2.voltage_resolution, &f5volt,
Settings->flag2.voltage_resolution, &f12volt,
Settings->flag2.voltage_resolution, &f24_36volt);
}
// Hydrolysis
if (NeoPoolIsHydrolysis()) {
// Data
int decimals = NeoPoolIsHydrolysisInPercent() ? 0 : 1;
fvalue = (float)NeoPoolGetData(MBF_HIDRO_CURRENT)/10;
WSContentSend_PD(HTTP_SNS_NEOPOOL_HYDROLYSIS, neopool_type, decimals, &fvalue,
NeoPoolIsHydrolysisInPercent() ? PSTR(D_NEOPOOL_UNIT_PERCENT) : PSTR(D_NEOPOOL_UNIT_GPERH));
// S1
float fhidromax = (float)NeoPoolGetData(MBF_PAR_HIDRO)/10;
ext_snprintf_P(stemp, sizeof(stemp), PSTR(NEOPOOL_FMT_HIDRO " %s"), decimals, &fhidromax,
NeoPoolIsHydrolysisInPercent() ? PSTR(D_NEOPOOL_UNIT_PERCENT) : PSTR(D_NEOPOOL_UNIT_GPERH));
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_INACTIVE, stemp);
WSContentSend_PD(PSTR(" "));
// S2
if (0 == (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_MODULE_ACTIVE)) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_NORMAL, PSTR(D_NEOPOOL_STATUS_OFF));
} else if (0 == (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_FL1)) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_ACTIVE, PSTR(D_NEOPOOL_STATUS_FLOW));
} else if (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_POL1) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_NORMAL, PSTR(D_NEOPOOL_POLARIZATION "1"));
} else if (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_POL2) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_NORMAL, PSTR(D_NEOPOOL_POLARIZATION "2"));
} else {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_NORMAL, PSTR(D_NEOPOOL_STATUS_OFF));
}
WSContentSend_PD(PSTR(" "));
// S3
if (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_COVER) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_ACTIVE, PSTR(D_NEOPOOL_COVER));
} else {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_DISABLED, PSTR(D_NEOPOOL_COVER));
}
WSContentSend_PD(PSTR(" "));
// S4
if (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_SHOCK_ENABLED) {
if ((NeoPoolGetData(MBF_CELL_BOOST) & MBMSK_CELL_BOOST_NO_REDOX_CTL) == 0) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_ACTIVE, PSTR(D_NEOPOOL_SHOCK "+" D_NEOPOOL_REDOX));
} else {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_ACTIVE, PSTR(D_NEOPOOL_SHOCK));
}
} else {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_DISABLED, PSTR(D_NEOPOOL_SHOCK));
}
WSContentSend_PD(PSTR(" "));
// S5
if (NeoPoolGetData(MBF_HIDRO_STATUS) & MBMSK_HIDRO_STATUS_LOW) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_ACTIVE, PSTR(D_NEOPOOL_LOW));
} else {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_DISABLED, PSTR(D_NEOPOOL_LOW));
}
WSContentSend_PD(PSTR("{e}"));
}
// pH
if (NeoPoolIspHModule()) {
// Data
fvalue = (float)NeoPoolGetData(MBF_MEASURE_PH)/100;
WSContentSend_PD(HTTP_SNS_NEOPOOL_PH, neopool_type, NeoPoolSettings.resolution.ph, &fvalue);
WSContentSend_PD(PSTR("&nbsp;"));
// S1
float fphmax = (float)NeoPoolGetData(MBF_PAR_PH1)/100;
ext_snprintf_P(stemp, sizeof(stemp), PSTR(NEOPOOL_FMT_PH), NeoPoolSettings.resolution.ph, &fphmax);
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color,
(((uint16_t)(fvalue*10) > (uint16_t)(fphmax*10)) ? HTTP_SNS_NEOPOOL_STATUS_ACTIVE : HTTP_SNS_NEOPOOL_STATUS_INACTIVE), stemp);
WSContentSend_PD(PSTR(" "));
// S2
if ((NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_ALARM) > 0) {
GetTextIndexed(stemp, sizeof(stemp), NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_ALARM, kNeoPoolpHAlarms);
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_ACTIVE, stemp);
}
WSContentSend_PD(PSTR(" "));
// S3
if (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_CTRL_ACTIVE) {
if (MBV_PH_ACID_BASE_ALARM6 == (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_ALARM)) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_ACTIVE, PSTR(D_NEOPOOL_STATUS_TANK));
} else if (NeoPoolGetData(MBF_PH_STATUS) & (MBMSK_PH_STATUS_ACID_PUMP_ACTIVE | MBMSK_PH_STATUS_BASE_PUMP_ACTIVE)) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_ACTIVE, PSTR(D_NEOPOOL_STATUS_ON));
} else if (MBV_PH_ACID_BASE_ALARM0 != (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_ALARM)) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_NORMAL, PSTR(D_NEOPOOL_STATUS_WAIT));
}
} else {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_DISABLED, PSTR(D_NEOPOOL_STATUS_OFF));
}
WSContentSend_PD(PSTR(" "));
// S4
if (0 == (NeoPoolGetData(MBF_PH_STATUS) & MBMSK_PH_STATUS_CTRL_BY_FL)) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_ACTIVE, PSTR(D_NEOPOOL_FLOW1));
} else {
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color, HTTP_SNS_NEOPOOL_STATUS_DISABLED, PSTR(D_NEOPOOL_FLOW1));
}
WSContentSend_PD(PSTR("{e}"));
}
// Redox
// Status/Alarm: S1 S2
// S1: 0
// S2: FL1
if (NeoPoolIsRedox()) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_REDOX, neopool_type, NeoPoolGetData(MBF_MEASURE_RX));
WSContentSend_PD(PSTR("&nbsp;"));
// S1
ext_snprintf_P(stemp, sizeof(stemp), PSTR(NEOPOOL_FMT_RX " " D_UNIT_MILLIVOLT), NeoPoolGetData(MBF_PAR_RX1));
WSContentSend_PD(HTTP_SNS_NEOPOOL_STATUS, bg_color,
(NeoPoolGetData(MBF_HIDRO_CURRENT) ? HTTP_SNS_NEOPOOL_STATUS_ACTIVE : HTTP_SNS_NEOPOOL_STATUS_INACTIVE),
stemp);
WSContentSend_PD(PSTR("{e}"));
}
// Chlorine
if (NeoPoolIsChlorine()) {
fvalue = (float)NeoPoolGetData(MBF_MEASURE_CL)/100;
WSContentSend_PD(HTTP_SNS_NEOPOOL_PPM_CHLORINE, neopool_type, NeoPoolSettings.resolution.ph, &fvalue);
}
// Conductivity
if (NeoPoolIsConductivity()) {
WSContentSend_PD(HTTP_SNS_NEOPOOL_CONDUCTIVITY, neopool_type, NeoPoolGetData(MBF_MEASURE_CONDUCTIVITY));
}
// Ionization
if (NeoPoolIsIonization()) {
char spol[100];
snprintf_P(spol, sizeof(spol), PSTR(" " D_NEOPOOL_POLARIZATION "%d"), (NeoPoolGetData(MBF_ION_STATUS) & (MBMSK_ION_STATUS_POL1 | MBMSK_ION_STATUS_POL2)) >> 13);
snprintf_P(stemp, sizeof(stemp), PSTR("%s%s%s"),
(NeoPoolGetData(MBF_ION_STATUS) & (MBMSK_ION_STATUS_POL1 | MBMSK_ION_STATUS_POL2)) ? spol : PSTR(""),
NeoPoolGetData(MBF_ION_STATUS) & MBMSK_ION_STATUS_ON_TARGET ? PSTR(" " D_NEOPOOL_SETPOINT_OK) : PSTR(""),
NeoPoolGetData(MBF_ION_STATUS) & MBMSK_ION_STATUS_PROGTIME_EXCEEDED ? PSTR(" " D_NEOPOOL_PR_OFF) : PSTR("")
);
fvalue = (float)NeoPoolGetData(MBF_ION_CURRENT);
WSContentSend_PD(HTTP_SNS_NEOPOOL_IONIZATION, neopool_type,
NeoPoolSettings.resolution.ion, &fvalue,
stemp,
NeoPoolGetData(MBF_ION_STATUS) & MBMSK_ION_STATUS_LOW ? PSTR(" " D_NEOPOOL_LOW) : PSTR("")
);
}
// Filtration mode
GetTextIndexed(stemp, sizeof(stemp), NeoPoolGetData(MBF_PAR_FILT_MODE) <= MBV_PAR_FILT_INTELLIGENT ? NeoPoolGetData(MBF_PAR_FILT_MODE) : nitems(kNeoPoolFiltrationMode)-1, kNeoPoolFiltrationMode);
WSContentSend_PD(HTTP_SNS_NEOPOOL_FILT_MODE, neopool_type, stemp);
// Relays
for (uint32_t i = 0; i < NEOPOOL_RELAY_MAX; i++) {
char sdesc[24];
memset(sdesc, 0, nitems(sdesc));
memset(stemp, 0, nitems(stemp));
if (0 != NeoPoolGetData(MBF_PAR_PH_ACID_RELAY_GPIO) && i == NeoPoolGetData(MBF_PAR_PH_ACID_RELAY_GPIO)-1) {
strncpy_P(sdesc, PSTR(D_NEOPOOL_RELAY_PH_ACID), sizeof(sdesc));
} else if (0 != NeoPoolGetData(MBF_PAR_PH_BASE_RELAY_GPIO) && i == NeoPoolGetData(MBF_PAR_PH_BASE_RELAY_GPIO)-1) {
strncpy_P(sdesc, PSTR(D_NEOPOOL_RELAY_PH_BASE), sizeof(sdesc));
} else if (0 != NeoPoolGetData(MBF_PAR_RX_RELAY_GPIO) && i == NeoPoolGetData(MBF_PAR_RX_RELAY_GPIO)-1) {
strncpy_P(sdesc, PSTR(D_NEOPOOL_RELAY_RX), sizeof(sdesc));
} else if (0 != NeoPoolGetData(MBF_PAR_CL_RELAY_GPIO) && i == NeoPoolGetData(MBF_PAR_CL_RELAY_GPIO)-1) {
strncpy_P(sdesc, PSTR(D_NEOPOOL_RELAY_CL), sizeof(sdesc));
} else if (0 != NeoPoolGetData(MBF_PAR_CD_RELAY_GPIO) && i == NeoPoolGetData(MBF_PAR_CD_RELAY_GPIO)-1) {
strncpy_P(sdesc, PSTR(D_NEOPOOL_RELAY_CD), sizeof(sdesc));
} else if (0 != NeoPoolGetData(MBF_PAR_FILT_GPIO) && i == NeoPoolGetData(MBF_PAR_FILT_GPIO)-1) {
char smotorspeed[32];
strncpy_P(sdesc, PSTR(D_NEOPOOL_RELAY_FILTRATION), sizeof(sdesc));
GetTextIndexed(smotorspeed, sizeof(smotorspeed), NeoPoolGetFiltrationSpeed(), kNeoPoolFiltrationSpeed);
snprintf_P(stemp, sizeof(stemp), PSTR("%s%s%s%s"), ((NeoPoolGetData(MBF_RELAY_STATE) & (1<<i))?D_ON:D_OFF), *smotorspeed ? PSTR(" (") : PSTR(""), smotorspeed, *smotorspeed ? PSTR(")") : PSTR(""));
} else if (0 != NeoPoolGetData(MBF_PAR_LIGHTING_GPIO) && i == NeoPoolGetData(MBF_PAR_LIGHTING_GPIO)-1) {
strncpy_P(sdesc, PSTR(D_NEOPOOL_RELAY_LIGHT), sizeof(sdesc));
} else if (0 != NeoPoolGetData(MBF_PAR_HEATING_GPIO) && i == NeoPoolGetData(MBF_PAR_HEATING_GPIO)-1) {
strncpy_P(sdesc, PSTR(D_NEOPOOL_RELAY_HEATING), sizeof(sdesc));
} else if (0 != NeoPoolGetData(MBF_PAR_UV_RELAY_GPIO) && i == NeoPoolGetData(MBF_PAR_UV_RELAY_GPIO)-1) {
strncpy_P(sdesc, PSTR(D_NEOPOOL_RELAY_UV), sizeof(sdesc));
} else if (0 != NeoPoolGetData(MBF_PAR_FILTVALVE_GPIO) && i == NeoPoolGetData(MBF_PAR_FILTVALVE_GPIO)-1) {
strncpy_P(sdesc, PSTR(D_NEOPOOL_RELAY_VALVE), sizeof(sdesc));
} else if (i > 2) {
// Aux
char sname[(MBF_PAR_UICFG_MACH_NAME_AUX2 - MBF_PAR_UICFG_MACH_NAME_AUX1) * 2 + 1];
uint16_t base = MBF_PAR_UICFG_MACH_NAME_AUX1 + ((i - 3) * (MBF_PAR_UICFG_MACH_NAME_AUX2 - MBF_PAR_UICFG_MACH_NAME_AUX1));
for (uint16_t k = 0; k < (MBF_PAR_UICFG_MACH_NAME_AUX2 - MBF_PAR_UICFG_MACH_NAME_AUX1); k++) {
uint16_t data = NeoPoolGetData(base + k);
sname[k*2] = (char)(data >> 8);
sname[k*2 + 1] = (char)(data & 0xFF);
}
if (*sname) {
snprintf_P(sdesc, sizeof(sdesc), PSTR(D_NEOPOOL_RELAY_AUX " %d (%s)"), i-2, sname);
} else {
snprintf_P(sdesc, sizeof(sdesc), PSTR(D_NEOPOOL_RELAY_AUX " %d"), i-2);
}
} else {
// unassigned relay
snprintf_P(sdesc, sizeof(sdesc), PSTR(D_NEOPOOL_RELAY " %d"), i+1);
}
WSContentSend_PD(HTTP_SNS_NEOPOOL_RELAY, neopool_type, sdesc,
'\0' == *stemp ? ((NeoPoolGetData(MBF_RELAY_STATE) & (1<<i))?PSTR(D_ON):PSTR(D_OFF)) : stemp);
}
{
// Cell runtime
WSContentSend_PD(HTTP_SNS_NEOPOOL_CELL_RUNTIME, neopool_type,
GetDuration(NeoPoolGetDataLong(MBF_CELL_RUNTIME_LOW)).c_str());
}
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Command implementation
\*********************************************************************************************/
void NeopoolReadWriteResponse(uint16_t addr, uint16_t *data, uint16_t cnt, bool fbits32, int16_t bit)
{
const char *data_fmt;
uint32_t ldata;
Response_P(PSTR("{\"%s\":{\"" D_JSON_ADDRESS "\":"), XdrvMailbox.command);
ResponseAppend_P(NEOPOOL_RESULT_HEX == NeoPoolSettings.result ? PSTR("\"0x%04X\"") : PSTR("%d"), addr);
ResponseAppend_P(PSTR(",\"" D_JSON_DATA "\":"));
data_fmt = PSTR("%ld");
if (NEOPOOL_RESULT_HEX == NeoPoolSettings.result) {
data_fmt = fbits32 ? PSTR("\"0x%08X\"") : PSTR("\"0x%04X\"");
}
ldata = (uint32_t)data[0];
if (fbits32) {
ldata |= (uint32_t)data[1] << 16;
}
if ( cnt > 1 ) {
char sdel[2] = {0};
ResponseAppend_P(PSTR("["));
for(uint16_t i=0; i<cnt; i++) {
ResponseAppend_P(PSTR("%s"), sdel);
ldata = (uint32_t)data[(fbits32+1)*i];
if (fbits32) {
ldata |= (uint32_t)data[(fbits32+1)*i+1] << 16;
}
ResponseAppend_P(data_fmt, ldata);
*sdel = ',';
}
ResponseAppend_P(PSTR("]"));
} else {
ResponseAppend_P(data_fmt, ldata);
}
if (bit >= 0) {
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_BIT "%d\":%ld"), bit, (ldata>>bit) & 1);
}
ResponseJsonEndEnd();
}
void NeopoolCmndError(void)
{
Response_P(PSTR("{\"" D_JSON_COMMAND "\":\"" D_JSON_ERROR "\"}"));
}
void NeopoolResponseError(void)
{
ResponseCmndChar(PSTR(D_JSON_ERROR));
}
void CmndNeopoolResult(void)
{
if (XdrvMailbox.data_len && XdrvMailbox.payload >= 0 && XdrvMailbox.payload < NEOPOOL_RESULT_MAX) {
NeoPoolSettings.result = XdrvMailbox.payload;
}
ResponseCmndNumber(NeoPoolSettings.result);
}
void CmndNeopoolReadReg(void)
{
uint16_t addr, data[30] = { 0 }, cnt = 1;
uint32_t value[2] = { 0 };
uint32_t params_cnt = ParseParameters(nitems(value), value);
bool fbits32 = !strcasecmp_P(XdrvMailbox.command, PSTR(D_PRFX_NEOPOOL D_CMND_NP_READL));
cnt = 1;
if (2 == params_cnt) {
cnt = value[1];
}
if (params_cnt && cnt < (fbits32 ? (nitems(data)/2) : nitems(data))) {
addr = value[0];
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(addr, data, fbits32 ? (cnt*2) : cnt)) {
NeopoolResponseError();
return;
}
}
NeopoolReadWriteResponse(addr, data, cnt, fbits32, -1);
}
void CmndNeopoolWriteReg(void)
{
uint16_t addr, data[20] = { 0 }, cnt;
uint32_t value[(nitems(data)/2)+1] = { 0 };
uint32_t params_cnt = ParseParameters(nitems(value), value);
bool fbits32 = !strcasecmp_P(XdrvMailbox.command, PSTR(D_PRFX_NEOPOOL D_CMND_NP_WRITEL));
if (params_cnt > 1) {
addr = value[0];
cnt = params_cnt-1;
for (uint32_t i = 0; i < cnt; i++) {
if (fbits32) {
data[i*2] = value[i+1]; // LSB
data[i*2+1] = value[i+1]>>16; // MSB
} else {
data[i] = value[i+1];
}
}
if (NEOPOOL_MODBUS_OK != NeoPoolWriteRegister(addr, data, fbits32 ? cnt*2 : cnt)) {
NeopoolResponseError();
return;
}
}
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(addr, data, fbits32 ? (cnt*2) : cnt)) {
NeopoolResponseError();
return;
}
NeopoolReadWriteResponse(addr, data, cnt, fbits32, -1);
}
void CmndNeopoolBit(void)
{
uint16_t addr, data;
uint16_t bit;
uint32_t value[3] = { 0 };
uint32_t params_cnt = ParseParameters(nitems(value), value);
bool fbits32 = !strcasecmp_P(XdrvMailbox.command, PSTR(D_PRFX_NEOPOOL D_CMND_NP_BITL));
uint16_t tempdata[2];
if (params_cnt >= 2) {
addr = value[0];
bit = (uint16_t)value[1];
if (bit >= 0 && bit < 16<<fbits32) {
if (3 == params_cnt) {
data = value[2];
if (data >=0 && data <= 1 && NEOPOOL_MODBUS_OK == NeoPoolReadRegister(addr, tempdata, 1<<fbits32)) {
if (fbits32) {
uint32_t tempdata32 = tempdata[0] | (tempdata[1]<<16);
tempdata32 &= ~(1<<bit);
tempdata32 |= data<<bit;
tempdata[0] = (uint16_t)tempdata32;
tempdata[1] = (uint16_t)(tempdata32>>16);
} else {
tempdata[0] &= ~(1<<bit);
tempdata[0] |= (data<<bit);
}
if (NEOPOOL_MODBUS_OK != NeoPoolWriteRegister(addr, tempdata, 1<<fbits32)) {
NeopoolResponseError();
return;
}
} else {
NeopoolResponseError();
return;
}
}
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(addr, &data, 1)) {
NeopoolResponseError();
return;
}
NeopoolReadWriteResponse(addr, &data, 1, fbits32, bit);
return;
}
}
NeopoolCmndError();
}
void CmndNeopoolFiltrationRes(uint16_t data)
{
uint16_t speed = NeoPoolGetFiltrationSpeed();
if (speed) {
Response_P(PSTR("{\"%s\":\"%s\",\"" D_NEOPOOL_JSON_FILTRATION_SPEED "\":\"%d\"}"),
XdrvMailbox.command,
GetStateText(data),
(speed < 3) ? speed : 3);
} else {
ResponseCmndStateText(data);
}
}
void CmndNeopoolFiltration(void)
{
uint16_t addr = MBF_PAR_FILT_MANUAL_STATE;
uint16_t data;
uint16_t filtration_conf;
uint32_t value[2] = { 0 };
uint32_t params_cnt = ParseParameters(nitems(value), value);
if (XdrvMailbox.data_len) {
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_FILTRATION_CONF, &filtration_conf, 1)) {
NeopoolResponseError();
return;
}
if (params_cnt > 2 || (params_cnt > 1 && (MBV_PAR_FILTRATION_TYPE_STANDARD == (filtration_conf & MBMSK_PAR_FILTRATION_CONF_TYPE)))) {
// no speed control for standard filtration types
NeopoolCmndError();
return;
}
if (params_cnt > 1) {
if (value[1] >= 1 && value[1] <= 3) {
// Set filtration speed first
NeoPoolWriteRegisterWord(MBF_PAR_FILTRATION_CONF,
(filtration_conf & ~MBMSK_PAR_FILTRATION_CONF_DEF_SPEED) | ((value[1] - 1) << MBSHFT_PAR_FILTRATION_CONF_DEF_SPEED));
NeoPoolWriteRegisterWord(MBF_EXEC, 1);
} else {
NeopoolCmndError();
return;
}
}
if (value[0] >= 0 && value[0] <= 2) {
// Set MBF_PAR_FILT_MODE
if (NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(MBF_PAR_FILT_MODE, MBV_PAR_FILT_MANUAL)) {
NeopoolResponseError();
return;
}
if (2 == value[0]) {
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_FILTRATION_STATE, &data, 1)) {
NeopoolResponseError();
return;
}
value[0] = data ? 0 : 1;
}
// Set filtration mode to manual
if (NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(MBF_PAR_FILT_MANUAL_STATE, value[0])) {
NeopoolResponseError();
return;
}
CmndNeopoolFiltrationRes(value[0]);
return;
} else {
NeopoolCmndError();
return;
}
}
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_FILTRATION_STATE, &data, 1)) {
NeopoolResponseError();
return;
}
CmndNeopoolFiltrationRes(data);
}
void CmndNeopoolFiltrationMode(void)
{
uint16_t addr = MBF_PAR_FILT_MODE;
uint16_t data;
char stemp[80];
if (XdrvMailbox.data_len) {
char command[CMDSZ];
int mode = GetCommandCode(command, sizeof(command), XdrvMailbox.data, kNeoPoolFiltrationModeCmnd);
if (mode >= 0) {
XdrvMailbox.payload = pgm_read_byte(sNeoPoolFiltrationMode + mode);
}
if ((XdrvMailbox.payload >= MBV_PAR_FILT_MANUAL && XdrvMailbox.payload <= MBV_PAR_FILT_INTELLIGENT) ||
MBV_PAR_FILT_BACKWASH == XdrvMailbox.payload) {
// Set MBF_PAR_FILT_MODE
if (NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(addr, XdrvMailbox.payload)) {
NeopoolResponseError();
return;
}
} else {
NeopoolCmndError();
return;
}
}
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(addr, &data, 1)) {
NeopoolResponseError();
return;
}
ResponseCmndChar(GetTextIndexed(stemp, sizeof(stemp), data < MBV_PAR_FILT_INTELLIGENT ? data : nitems(kNeoPoolFiltrationModeCmnd)-1, kNeoPoolFiltrationMode));
}
void CmndNeopoolFiltrationSpeed(void)
{
uint16_t speed;
uint16_t filtration_conf;
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_FILTRATION_CONF, &filtration_conf, 1)) {
NeopoolResponseError();
return;
}
if (MBV_PAR_FILTRATION_TYPE_STANDARD == (filtration_conf & MBMSK_PAR_FILTRATION_CONF_TYPE)) {
// no speed control for standard filtration types
NeopoolCmndError();
return;
}
speed = NeoPoolGetFiltrationSpeed();
if (XdrvMailbox.data_len) {
if (XdrvMailbox.payload >= 1 && XdrvMailbox.payload <= 3) {
speed = XdrvMailbox.payload;
// Set filtration speed
if (NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(MBF_PAR_FILTRATION_CONF,
(filtration_conf & ~MBMSK_PAR_FILTRATION_CONF_DEF_SPEED) | ((speed - 1) << MBSHFT_PAR_FILTRATION_CONF_DEF_SPEED))) {
NeopoolResponseError();
return;
}
NeoPoolWriteRegisterWord(MBF_EXEC, 1);
} else {
NeopoolCmndError();
return;
}
}
ResponseCmndNumber(speed);
}
void CmndNeopoolBoost(void)
{
uint16_t data;
if (XdrvMailbox.data_len) {
char command[CMDSZ];
int mode = GetCommandCode(command, sizeof(command), XdrvMailbox.data, kNeoPoolBoostCmnd);
if (mode < 0) {
mode = XdrvMailbox.payload;
}
if (mode >= 0 && mode < nitems(sNeoPoolBoost)) {
uint16_t boostflags = pgm_read_word(sNeoPoolBoost + mode);
if (CmndNeopoolSetParam(MBF_CELL_BOOST, boostflags, 1, 0, (float)0xFFFF)) {
if (NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(MBF_NOTIFICATION, 0x7F)) {
NeopoolResponseError();
return;
}
}
} else {
NeopoolCmndError();
return;
}
}
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_CELL_BOOST, &data, 1)) {
NeopoolResponseError();
return;
}
for(uint16_t i=0; i < nitems(kNeoPoolBoostCmnd); i++) {
if (data == pgm_read_word(sNeoPoolBoost + i)) {
char stemp[80];
ResponseCmndChar(GetTextIndexed(stemp, sizeof(stemp), i, kNeoPoolBoostCmnd));
return;
}
}
NeopoolCmndError();
}
void CmndNeopoolTime(void)
{
uint16_t data[2];
uint32_t np_time;
if (XdrvMailbox.data_len) {
np_time = XdrvMailbox.payload;
if (0 == XdrvMailbox.payload) {
np_time = Rtc.local_time;
}
if (1 == XdrvMailbox.payload) {
np_time = Rtc.utc_time;
}
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: set time to %ld"), np_time);
#endif // DEBUG_TASMOTA_SENSOR
data[0] = np_time;
data[1] = np_time>>16;
NeoPoolWriteRegister(MBF_PAR_TIME_LOW, data, 2);
NeoPoolWriteRegisterWord(MBF_ACTION_COPY_TO_RTC, 1);
}
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_TIME_LOW, data, 2)) {
NeopoolResponseError();
return;
}
np_time = (uint32_t)data[0] | ((uint32_t)data[1] << 16);
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: time read %ld"), np_time);
#endif // DEBUG_TASMOTA_SENSOR
ResponseCmndChar(GetDT(NeoPoolGetDataLong(MBF_PAR_TIME_LOW)).c_str());
}
void CmndNeopoolLight(void)
{
uint16_t data, set;
uint16_t timer_val[] = {MBV_PAR_CTIMER_ALWAYS_OFF, MBV_PAR_CTIMER_ALWAYS_ON, POWER_TOGGLE, MBV_PAR_CTIMER_ENABLED};
uint32_t value[2] = { 0 };
uint32_t params_cnt = ParseParameters(nitems(value), value);
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_LIGHTING_GPIO, &neopool_light_relay, 1) ||
NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_RELAY_STATE, &data, 1)) {
NeopoolResponseError();
return;
}
if (neopool_light_relay >= 1 && neopool_light_relay <= NEOPOOL_RELAY_MAX) {
// get/set light
if (1 == params_cnt && XdrvMailbox.payload >= 0 && XdrvMailbox.payload < nitems(timer_val)) {
if (POWER_TOGGLE == timer_val[XdrvMailbox.payload]) {
XdrvMailbox.payload = ((data >>= (neopool_light_relay - 1)) & 1) ? POWER_OFF : POWER_ON;
}
NeoPoolWriteRegisterWord((uint16_t)MBF_PAR_TIMER_BLOCK_LIGHT_INT + (uint16_t)MBV_TIMER_OFFMB_TIMER_ENABLE, timer_val[XdrvMailbox.payload]);
NeoPoolWriteRegisterWord(MBF_EXEC, 1);
// data >>= (neopool_light_relay - 1);
ResponseCmndStateText(XdrvMailbox.payload);
return;
}
// set next light program
if (nitems(timer_val) == XdrvMailbox.payload) {
if (NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(MBF_SET_MANUAL_CTRL, 1)) {
NeopoolResponseError();
return;
}
if (params_cnt > 1) {
if (value[1] >= NEOPOOL_LIGHT_PRG_DELAY_MIN and value[1] <= NEOPOOL_LIGHT_PRG_DELAY_MAX) {
// use given delay
neopool_light_prg_delay = value[1];
} else {
NeopoolCmndError();
return;
}
} else {
// use default delay
neopool_light_prg_delay = NEOPOOL_LIGHT_PRG_DELAY;
}
if (data & 1<<(neopool_light_relay-1)) {
// light already on, start programming immediately
CmndNeopoolLightPrgWaitStart();
} else {
// light currently off: must first switched on and wait for inital prg delay NEOPOOL_LIGHT_PRG_WAIT
data |= 1<<(neopool_light_relay-1);
if (NEOPOOL_MODBUS_OK != NeoPoolWriteRegister(MBF_RELAY_STATE, &data, 1)) {
NeopoolResponseError();
return;
}
neopoll_cmd = &CmndNeopoolLightPrgWaitStart;
neopoll_cmd_delay = NEOPOOL_LIGHT_PRG_WAIT * 4 / 10;
}
ResponseCmndDone();
return;
}
if (0 == params_cnt) {
ResponseCmndStateText((data >>= (neopool_light_relay - 1)) & 1);
return;
}
}
NeopoolCmndError();
}
void CmndNeopoolLightPrgWaitStart(void)
{
uint16_t data;
// start prg sequence with light off
if (NEOPOOL_MODBUS_OK == NeoPoolReadRegister(MBF_RELAY_STATE, &data, 1)) {
if (NEOPOOL_MODBUS_OK == NeoPoolWriteRegisterWord(MBF_RELAY_STATE, data & ~(1<<(neopool_light_relay-1)))) {
neopoll_cmd = &CmndNeopoolLightPrgEnd;
// then wait for given prg sequence delay
neopoll_cmd_delay = neopool_light_prg_delay * 4 / 10;
}
}
}
void CmndNeopoolLightPrgEnd(void)
{
// exit manual ctrl
NeoPoolWriteRegisterWord(MBF_SET_MANUAL_CTRL, 0);
// switch light on to finish prg sequence
NeoPoolWriteRegisterWord((uint16_t)MBF_PAR_TIMER_BLOCK_LIGHT_INT + (uint16_t)MBV_TIMER_OFFMB_TIMER_ENABLE, MBV_PAR_CTIMER_ALWAYS_ON);
NeoPoolWriteRegisterWord(MBF_EXEC, 1);
}
bool CmndNeopoolSetParam(uint16_t reg, uint16_t data, uint16_t factor, float min, float max)
{
if (data >= min*(float)factor && data <= max*(float)factor) {
if (NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(reg, data) ||
NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(MBF_EXEC, 1) ||
NEOPOOL_MODBUS_OK != NeoPoolWriteRegisterWord(MBF_SAVE_TO_EEPROM, 1)) {
NeopoolResponseError();
return false;
} else {
return true;
}
} else {
return false;
}
return true;
}
bool CmndNeopoolSetParam(uint16_t reg, uint16_t factor, float min, float max)
{
uint16_t data;
if (XdrvMailbox.data_len) {
return CmndNeopoolSetParam(reg, (int)(CharToFloat(XdrvMailbox.data) * (float)factor), factor, min, max);
}
return true;
}
void CmndNeopoolGetParam(uint16_t reg, uint16_t factor, uint16_t decimals, const char* unit)
{
uint16_t data;
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(reg, &data, 1)) {
NeopoolResponseError();
return;
}
float fvalue = (float)(data) / (float)factor;
if (nullptr == unit) {
ResponseCmndFloat(fvalue, decimals);
}
else {
Response_P(PSTR("{\"%s\":%*_f,\"" D_NEOPOOL_JSON_UNIT "\":\"%s\"}"), XdrvMailbox.command, decimals, &fvalue, unit);
}
}
void CmndNeopoolGetParam(uint16_t reg, uint16_t factor, uint16_t decimals)
{
CmndNeopoolGetParam(reg, factor, decimals, nullptr);
}
void CmndNeopoolpHMin(void)
{
if (NeoPoolIspHModule()) {
uint16_t data;
// read pH max
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_PH1, &data, 1)) {
NeopoolResponseError();
return;
}
if (CmndNeopoolSetParam(MBF_PAR_PH2, 100, 0, (float)data/100)) {
CmndNeopoolGetParam(MBF_PAR_PH2, 100, NeoPoolSettings.resolution.ph);
}
} else {
NeopoolCmndError();
}
}
void CmndNeopoolpHMax(void)
{
if (NeoPoolIspHModule()) {
uint16_t data;
// read pH min
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_PH2, &data, 1)) {
NeopoolResponseError();
return;
}
if (CmndNeopoolSetParam(MBF_PAR_PH1, 100, (float)data/100, 14)) {
CmndNeopoolGetParam(MBF_PAR_PH1, 100, NeoPoolSettings.resolution.ph);
}
} else {
NeopoolCmndError();
}
}
void CmndNeopoolRedox(void)
{
if (NeoPoolIsRedox()) {
if (CmndNeopoolSetParam(MBF_PAR_RX1, 1, 0, 1000)) {
CmndNeopoolGetParam(MBF_PAR_RX1, 1, 0);
}
} else {
NeopoolCmndError();
}
}
void CmndNeopoolHydrolysisSet(uint16_t max, const char* unit)
{
// set value in percent or g/h
if (CmndNeopoolSetParam(MBF_PAR_HIDRO, 10, 0, (float)max/10)) {
CmndNeopoolGetParam(MBF_PAR_HIDRO, 10, NeoPoolIsHydrolysisInPercent() ? 0 : 1, unit);
} else {
NeopoolCmndError();
}
}
void CmndNeopoolHydrolysis(void)
{
if (NeoPoolIsHydrolysis()) {
if (XdrvMailbox.data_len) {
uint16_t max;
// read hydrolysis maximum production level
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_HIDRO_NOM, &max, 1)) {
NeopoolResponseError();
return;
}
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: NPHydrolysis - MBF_PAR_HIDRO_NOM = %d"), max);
// only set if param is given
if (NeoPoolIsHydrolysisInPercent()) {
// % system
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: NPHydrolysis - %% system, always set value in %%"));
// always set value in %
CmndNeopoolHydrolysisSet(max, PSTR(D_NEOPOOL_UNIT_PERCENT));
} else {
// g/h system
TrimSpace(XdrvMailbox.data);
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: NPHydrolysis - g/h system, param = '%s'"), XdrvMailbox.data);
bool ispercent = false;
if ('%' == *(XdrvMailbox.data + strlen(XdrvMailbox.data) - 1)) {
ispercent = true;
*(XdrvMailbox.data + strlen(XdrvMailbox.data) - 1) = '\0';
}
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: NPHydrolysis - g/h system, param = '%s', using percent: %s"), XdrvMailbox.data, ispercent ? PSTR("true") : PSTR("false"));
if (*XdrvMailbox.data) {
// only set if param is given (without the possible %)
if (ispercent) {
// set value in precent based on max g/h
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: NPHydrolysis - g/h system, set value in %% = %d"), max * TextToInt(XdrvMailbox.data) / 100);
// max * (float)% / 100
if (CmndNeopoolSetParam(MBF_PAR_HIDRO, (int)((float)max * CharToFloat(XdrvMailbox.data) / 100), 1, 0, max)) {
CmndNeopoolGetParam(MBF_PAR_HIDRO, 10, 1, PSTR(D_NEOPOOL_UNIT_GPERH));
} else {
NeopoolCmndError();
}
}
else {
// set value in g/h
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: NPHydrolysis - g/h system, set value in g/h"));
CmndNeopoolHydrolysisSet(max, PSTR(D_NEOPOOL_UNIT_GPERH));
}
} // XdrvMailbox.data
} // g/h system
} // XdrvMailbox.data_len
else {
CmndNeopoolGetParam(MBF_PAR_HIDRO, 10, 0, NeoPoolIsHydrolysisInPercent() ? PSTR(D_NEOPOOL_UNIT_PERCENT) : PSTR(D_NEOPOOL_UNIT_GPERH));
}
} // NeoPoolIsHydrolysis()
}
void CmndNeopoolIonization(void)
{
if (NeoPoolIsIonization()) {
uint16_t data;
// read ionization maximum production level
if (NEOPOOL_MODBUS_OK != NeoPoolReadRegister(MBF_PAR_ION_NOM, &data, 1)) {
NeopoolResponseError();
return;
}
if (CmndNeopoolSetParam(MBF_PAR_ION, 1, 0, (float)data)) {
CmndNeopoolGetParam(MBF_PAR_ION, 1, NeoPoolSettings.resolution.ion);
}
} else {
NeopoolCmndError();
}
}
void CmndNeopoolChlorine(void)
{
if (NeoPoolIsChlorine()) {
if (CmndNeopoolSetParam(MBF_PAR_CL1, 100, 0, 10)) {
CmndNeopoolGetParam(MBF_PAR_CL1, 100, NeoPoolSettings.resolution.cl);
}
} else {
NeopoolCmndError();
}
}
void CmndNeopoolControl(void)
{
Response_P(PSTR("{"));
NeoPoolAppendModules();
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY "\":{"));
ResponseAppend_P(PSTR( "\"" D_NEOPOOL_JSON_RELAY_PH_ACID "\":%d"), NeoPoolGetData(MBF_PAR_PH_ACID_RELAY_GPIO));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_PH_BASE "\":%d"), NeoPoolGetData(MBF_PAR_PH_BASE_RELAY_GPIO));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_RX "\":%d"), NeoPoolGetData(MBF_PAR_RX_RELAY_GPIO));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_CL "\":%d"), NeoPoolGetData(MBF_PAR_CL_RELAY_GPIO));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_CD "\":%d"), NeoPoolGetData(MBF_PAR_CD_RELAY_GPIO));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_HEATING "\":%d"), NeoPoolGetData(MBF_PAR_HEATING_GPIO));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_UV "\":%d"), NeoPoolGetData(MBF_PAR_UV_RELAY_GPIO));
ResponseAppend_P(PSTR(",\"" D_NEOPOOL_JSON_RELAY_FILTVALVE "\":%d"), NeoPoolGetData(MBF_PAR_FILTVALVE_GPIO));
ResponseJsonEndEnd();
}
void CmndNeopoolTelePeriod(void)
{
if (XdrvMailbox.data_len && ((XdrvMailbox.payload == 0 || (XdrvMailbox.payload >= 5 && XdrvMailbox.payload <= 3600)))) {
NeoPoolSettings.npteleperiod = XdrvMailbox.payload;
}
ResponseCmndNumber(NeoPoolSettings.npteleperiod);
}
void CmndNeopoolSave(void)
{
if (NEOPOOL_MODBUS_OK == NeoPoolWriteRegisterWord(MBF_SAVE_TO_EEPROM, 1)) {
ResponseCmndDone();
} else {
NeopoolResponseError();
}
}
void CmndNeopoolExec(void)
{
if (NEOPOOL_MODBUS_OK == NeoPoolWriteRegisterWord(MBF_EXEC, 1)) {
ResponseCmndDone();
} else {
NeopoolResponseError();
}
}
void CmndNeopoolEscape(void)
{
if (NEOPOOL_MODBUS_OK == NeoPoolWriteRegisterWord(MBF_ESCAPE, 1)) {
ResponseCmndDone();
} else {
NeopoolResponseError();
}
}
void CmndNeopoolOnError(void)
{
if (XdrvMailbox.data_len && XdrvMailbox.payload >= 0 && XdrvMailbox.payload <= NEOPOOL_MAX_REPEAT_ON_ERROR) {
neopool_repeat_on_error = XdrvMailbox.payload;
}
ResponseCmndNumber(neopool_repeat_on_error);
}
void CmndNeopoolPHRes(void)
{
if (XdrvMailbox.data_len && XdrvMailbox.payload >= 0 && XdrvMailbox.payload <= 3) {
NeoPoolSettings.resolution.ph = XdrvMailbox.payload;
}
ResponseCmndNumber(NeoPoolSettings.resolution.ph);
}
void CmndNeopoolCLRes(void)
{
if (XdrvMailbox.data_len && XdrvMailbox.payload >= 0 && XdrvMailbox.payload <= 3) {
NeoPoolSettings.resolution.cl = XdrvMailbox.payload;
}
ResponseCmndNumber(NeoPoolSettings.resolution.cl);
}
void CmndNeopoolIONRes(void)
{
if (XdrvMailbox.data_len && XdrvMailbox.payload >= 0 && XdrvMailbox.payload <= 3) {
NeoPoolSettings.resolution.ion = XdrvMailbox.payload;
}
ResponseCmndNumber(NeoPoolSettings.resolution.ion);
}
#ifdef NEOPOOL_EMULATE_GPERH
void CmndNeopoolgPerh(void)
{
if (XdrvMailbox.data_len && XdrvMailbox.payload >= 0 && XdrvMailbox.payload <= 1) {
neopool_system_gperh = XdrvMailbox.payload;
}
ResponseCmndNumber(neopool_system_gperh);
}
#endif
void NeopoolMqttShow(void) {
int tele_period_save = TasmotaGlobal.tele_period;
TasmotaGlobal.tele_period = 2;
ResponseClear();
ResponseAppendTime();
NeoPoolShow(true);
TasmotaGlobal.tele_period = tele_period_save;
ResponseJsonEnd();
MqttPublishTeleSensor();
}
void NeopoolCheckChanges(void) {
bool data_changed = false;
if ( 0 == NeoPoolSettings.npteleperiod ) {
return;
}
if (nullptr == NeoPoolRegCheckData) {
// alloc mem for compare data
NeoPoolRegCheckData = (uint16_t *)malloc(sizeof(*NeoPoolReg) * nitems(NeoPoolRegCheck));
if (nullptr != NeoPoolRegCheckData) {
memset(NeoPoolRegCheckData, 0, sizeof(*NeoPoolReg) * nitems(NeoPoolRegCheck));
}
#ifdef DEBUG_TASMOTA_SENSOR
else {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NEO: NeopoolCheckChanges - out of memory"));
}
#endif // DEBUG_TASMOTA_SENSOR
}
for (uint32_t i = 0; nullptr != NeoPoolRegCheckData && i < nitems(NeoPoolRegCheck); i++) {
uint16_t data = NeoPoolGetData(pgm_read_word(NeoPoolRegCheck + i) & 0x0FFF);
if (NeoPoolRegCheckData[i] != data) {
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: NeopoolCheckChanges() addr 0x%04X: data stored %d (0x%04X), data read %d (0x%04X)"),
pgm_read_word(NeoPoolRegCheck + i) & 0x0FFF,
NeoPoolRegCheckData[i], NeoPoolRegCheckData[i],
data, data);
#endif // DEBUG_TASMOTA_SENSOR
if (0 == (pgm_read_word(NeoPoolRegCheck + i) & 0xF000) || millis() > NeoPoolRegCheckDataTimeout) {
// changes only for undelayed measured value or time overrun
NeoPoolRegCheckData[i] = data;
data_changed = true;
}
}
}
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: NeopoolCheckChanges() %s"), data_changed ? PSTR("true") : PSTR("false"));
#endif // DEBUG_TASMOTA_SENSOR
if (data_changed) {
NeoPoolRegCheckDataTimeout = millis() + (NeoPoolSettings.npteleperiod * 1000);
NeopoolMqttShow();
}
}
void NeoPoolSettingsLoad(bool erase) {
char filename[20];
memset(&NeoPoolSettings, 0x00, sizeof(NeoPoolSettings));
NeoPoolSettings.crc32 = GetCfgCrc32((uint8_t*)&NeoPoolSettings +4, sizeof(NeoPoolSettings) -4);
NeoPoolSettings.version = NEOPOOL_SETTING_VERSION;
NeoPoolSettings.resolution.ph = NEOPOOL_DEFAULT_PHRES;
NeoPoolSettings.resolution.cl = NEOPOOL_DEFAULT_CLRES;
NeoPoolSettings.resolution.ion = NEOPOOL_DEFAULT_IONRES;
NeoPoolSettings.result = NEOPOOL_DEFAULT_RESULT;
NeoPoolSettings.npteleperiod = NEOPOOL_DEFAULT_NPTELEPERIOD;
#ifdef USE_UFILESYS
snprintf_P(filename, sizeof(filename), PSTR(TASM_FILE_SENSOR), XSNS_83);
if (erase) {
TfsDeleteFile(filename); // Use defaults
}
else if (TfsLoadFile(filename, (uint8_t*)&NeoPoolSettings, sizeof(NeoPoolSettings))) {
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: Settings loaded from file '%s'"), filename);
#endif // DEBUG_TASMOTA_SENSOR
}
else {
#ifdef DEBUG_TASMOTA_SENSOR
// File system not ready: No flash space reserved for file system
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: Use default settings as file system not ready or file '%s' not found"), filename);
#endif // DEBUG_TASMOTA_SENSOR
NeoPoolSettingsSave();
}
#else // USE_UFILESYS
AddLog(LOG_LEVEL_INFO, PSTR("NEO: No file system found, NeoPool uses default values and must be set manually"));
#endif // USE_UFILESYS
}
void NeoPoolSettingsSave(void) {
#ifdef USE_UFILESYS
uint32_t crc32 = GetCfgCrc32((uint8_t*)&NeoPoolSettings +4, sizeof(NeoPoolSettings) -4); // Skip crc32
if (crc32 != NeoPoolSettings.crc32) {
NeoPoolSettings.crc32 = crc32;
char filename[20];
snprintf_P(filename, sizeof(filename), PSTR(TASM_FILE_SENSOR), XSNS_83);
if (TfsSaveFile(filename, (const uint8_t*)&NeoPoolSettings, sizeof(NeoPoolSettings))) {
#ifdef DEBUG_TASMOTA_SENSOR
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: saved to file '%s'"), filename);
#endif // DEBUG_TASMOTA_SENSOR
}
#ifdef DEBUG_TASMOTA_SENSOR
else {
// File system not ready: No flash space reserved for file system
AddLog(LOG_LEVEL_DEBUG, PSTR("NEO: ERROR file system not ready or unable to save file '%s'"), filename);
}
#endif // DEBUG_TASMOTA_SENSOR
}
#endif // USE_UFILESYS
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns83(uint32_t function)
{
bool result = false;
if (FUNC_INIT == function) {
NeoPoolInit();
} else if (neopool_active) {
switch (function) {
case FUNC_PRE_INIT:
NeoPoolSettingsLoad(false);
break;
case FUNC_SAVE_SETTINGS:
NeoPoolSettingsSave();
break;
case FUNC_EVERY_250_MSECOND:
NeoPoolPoll();
break;
case FUNC_EVERY_SECOND:
NeopoolCheckChanges();
break;
case FUNC_COMMAND:
result = DecodeCommand(kNPCommands, NPCommand);
break;
case FUNC_JSON_APPEND:
NeoPoolShow(true);
break;
case FUNC_AFTER_TELEPERIOD:
// remember time of last regular SENSOR publish
NeoPoolRegCheckDataTimeout = millis() + (NeoPoolSettings.npteleperiod * 1000);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
NeoPoolShow(false);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_NEOPOOL