Tasmota/tasmota/tasmota_xdrv_driver/xdrv_63_modbus_bridge.ino

1181 lines
44 KiB
C++

/*
xdrv_63_modbus_bridge.ino - modbus bridge support for Tasmota
Copyright (C) 2021 Theo Arends and Jeroenst
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined(USE_MODBUS_BRIDGE)
/*********************************************************************************************\
* Modbus Bridge using Modbus library (TasmotaModbus)
*
* Can be used trough web/mqtt commands and also via direct TCP connection (when defined)
*
* When USE_MODBUS_BRIDGE_TCP is also defined, this bridge can also be used as an ModbusTCP
* bridge.
*
* Example Commands:
* -- Read Coils --
* ModbusSend {"deviceaddress": 1, "functioncode": 1, "startaddress": 1, "type":"bit", "count":2}
*
* -- Read Input Register --
* ModbusSend {"deviceaddress": 1, "functioncode": 3, "startaddress": 1, "type":"uint16", "count":2}
*
* -- Write multiple coils --
* ModbusSend {"deviceaddress": 1, "functioncode": 15, "startaddress": 1, "type":"bit", "count":4, "values":[1,0,1,1]}
*
* Info for modbusBridgeTCPServer:
* https://ipc2u.com/articles/knowledge-base/detailed-description-of-the-modbus-tcp-protocol-with-command-examples/
*
* Info for modbus serial communications:
* https://ozeki.hu/p_5879-mobdbus-function-code-4-read-input-registers.html
* https://www.modbustools.com/modbus.html
* https://ipc2u.com/articles/knowledge-base/modbus-rtu-made-simple-with-detailed-descriptions-and-examples/
\*********************************************************************************************/
#define XDRV_63 63
#define MBR_MAX_VALUE_LENGTH 30
#define MBR_BAUDRATE TM_MODBUS_BAUDRATE
#define MBR_MAX_REGISTERS 64
#define MBR_RECEIVE_BUFFER_SIZE (MBR_MAX_REGISTERS * 2) + 9 // Addres(1), Function(1), Length(1) or StartAddress(2), N/A or Number of addresses(2),Data(1..n), CRC(2)
#define D_CMND_MODBUS_SEND "Send"
#define D_CMND_MODBUS_SETBAUDRATE "Baudrate"
#define D_CMND_MODBUS_SETSERIALCONFIG "SerialConfig"
#define D_JSON_MODBUS_RECEIVED "ModbusReceived"
#define D_JSON_MODBUS_DEVICE_ADDRESS "DeviceAddress"
#define D_JSON_MODBUS_FUNCTION_CODE "FunctionCode"
#define D_JSON_MODBUS_START_ADDRESS "StartAddress"
#define D_JSON_MODBUS_COUNT "Count"
#define D_JSON_MODBUS_ENDIAN "Endian"
#define D_JSON_MODBUS_TYPE "Type" // allready defined
#define D_JSON_MODBUS_VALUES "Values"
#define D_JSON_MODBUS_LENGTH "Length"
#ifndef USE_MODBUS_BRIDGE_TCP
const char kModbusBridgeCommands[] PROGMEM = "Modbus|" // Prefix
D_CMND_MODBUS_SEND "|" D_CMND_MODBUS_SETBAUDRATE "|" D_CMND_MODBUS_SETSERIALCONFIG;
void (*const ModbusBridgeCommand[])(void) PROGMEM = {
&CmndModbusBridgeSend, &CmndModbusBridgeSetBaudrate, &CmndModbusBridgeSetConfig};
#endif
#ifdef USE_MODBUS_BRIDGE_TCP
#define MODBUS_BRIDGE_TCP_CONNECTIONS 1 // number of maximum parallel connections, only 1 supported with modbus
#define MODBUS_BRIDGE_TCP_BUF_SIZE 255 // size of the buffer, above 132 required for efficient XMODEM
#define D_CMND_MODBUS_TCP_START "TCPStart"
#define D_CMND_MODBUS_TCP_CONNECT "TCPConnect"
#define D_CMND_MODBUS_TCP_MQTT "TCPMqtt"
const char kModbusBridgeCommands[] PROGMEM = "Modbus|" // Prefix
D_CMND_MODBUS_TCP_START "|" D_CMND_MODBUS_TCP_CONNECT "|" D_CMND_MODBUS_TCP_MQTT "|" D_CMND_MODBUS_SEND "|" D_CMND_MODBUS_SETBAUDRATE "|" D_CMND_MODBUS_SETSERIALCONFIG;
void (*const ModbusBridgeCommand[])(void) PROGMEM = {
&CmndModbusTCPStart, &CmndModbusTCPConnect, &CmndModbusTCPMqtt,
&CmndModbusBridgeSend, &CmndModbusBridgeSetBaudrate, &CmndModbusBridgeSetConfig};
struct ModbusBridgeTCP
{
WiFiServer *server_tcp = nullptr;
WiFiClient client_tcp[MODBUS_BRIDGE_TCP_CONNECTIONS];
uint8_t client_next = 0;
uint8_t *tcp_buf = nullptr; // data transfer buffer
IPAddress ip_filter;
uint16_t tcp_transaction_id = 0;
bool output_mqtt = false;
};
ModbusBridgeTCP modbusBridgeTCP;
#endif // USE_MODBUS_BRIDGE_TCP
#include <TasmotaModbus.h>
TasmotaModbus *modbusBridgeModbus = nullptr;
enum class ModbusBridgeError
{
noerror = 0,
nodataexpected = 1,
wrongdeviceaddress = 2,
wrongfunctioncode = 3,
wrongstartaddress = 4,
wrongtype = 5,
wrongdataCount = 6,
wrongcount = 7,
tomanydata = 8
};
enum class ModbusBridgeFunctionCode
{
mb_undefined = 0,
mb_readCoilStatus = 1,
mb_readInputStatus = 2,
mb_readHoldingRegisters = 3,
mb_readInputRegisters = 4,
mb_writeSingleCoil = 5,
mb_writeSingleRegister = 6,
mb_writeMultipleCoils = 15,
mb_writeMultipleRegisters = 16
};
enum class ModbusBridgeType
{
mb_undefined,
mb_uint8,
mb_uint16,
mb_uint32,
mb_int8,
mb_int16,
mb_int32,
mb_float,
mb_raw,
mb_hex,
mb_bit
};
enum class ModbusBridgeEndian
{
mb_undefined,
mb_msb,
mb_lsb
};
struct ModbusBridge
{
unsigned long polling_window = 0;
int in_byte_counter = 0;
ModbusBridgeFunctionCode functionCode = ModbusBridgeFunctionCode::mb_undefined;
ModbusBridgeType type = ModbusBridgeType::mb_undefined;
ModbusBridgeEndian endian = ModbusBridgeEndian::mb_undefined;
uint16_t dataCount = 0; // Number of bits or registers to read/write
uint16_t byteCount = 0; // Number of bytes to read/write
uint16_t startAddress = 0; // First address to read/write
uint8_t deviceAddress = 0; // Modbus address of device to read
uint8_t count = 0; // Number of values to read / write
bool raw = false;
uint8_t *buffer = nullptr; // Buffer for storing read / write data
bool enabled = false;
};
ModbusBridge modbusBridge;
/********************************************************************************************/
//
// Helper functions
//
uint16_t ModbusBridgeSwapEndian16(uint16_t num)
{
return (num>>8) | (num<<8);
}
void ModbusBridgeAllocError(const char* s)
{
AddLog(LOG_LEVEL_ERROR, PSTR("MBS: could not allocate %s buffer"), s);
}
/********************************************************************************************/
//
// Applies serial configuration to modbus serial port
//
bool ModbusBridgeBegin(void) {
if ((Settings->modbus_sbaudrate < 1) || (Settings->modbus_sbaudrate > (115200 / 300))) {
Settings->modbus_sbaudrate = (uint8_t)((uint32_t)MBR_BAUDRATE / 300);
}
if (Settings->modbus_sconfig > TS_SERIAL_8O2) {
Settings->modbus_sconfig = TS_SERIAL_8N1;
}
int result = modbusBridgeModbus->Begin(Settings->modbus_sbaudrate * 300, ConvertSerialConfig(Settings->modbus_sconfig)); // Reinitialize modbus port with new baud rate
if (result) {
if (2 == result) {
ClaimSerial();
}
AddLog(LOG_LEVEL_DEBUG, PSTR("MBS: MBR %s ser init at %d baud"), (2 == result ? "HW" : "SW"), Settings->modbus_sbaudrate * 300);
if (nullptr == modbusBridge.buffer) {
modbusBridge.buffer = (uint8_t *)malloc(MBR_RECEIVE_BUFFER_SIZE);
}
if (nullptr == modbusBridge.buffer) {
ModbusBridgeAllocError(PSTR("BUFFER"));
result = false;
}
}
return result;
}
void ModbusBridgeSetConfig(uint32_t serial_config)
{
if (serial_config > TS_SERIAL_8O2)
{
serial_config = TS_SERIAL_8N1;
}
if (serial_config != Settings->modbus_sconfig)
{
Settings->modbus_sconfig = serial_config;
ModbusBridgeBegin();
}
}
void ModbusBridgeSetBaudrate(uint32_t baudrate)
{
if ((baudrate >= 300) && (baudrate <= 115200))
{
if (baudrate / 300 != Settings->modbus_sbaudrate)
{
Settings->modbus_sbaudrate = baudrate / 300;
ModbusBridgeBegin();
}
}
}
/********************************************************************************************/
//
// Handles data received from tasmota modbus wrapper and send this to (TCP and/or) MQTT client
//
void ModbusBridgeHandle(void)
{
bool data_ready = modbusBridgeModbus->ReceiveReady();
if (data_ready)
{
if (modbusBridge.byteCount == 0) modbusBridge.byteCount = modbusBridge.dataCount * 2;
if (nullptr == modbusBridge.buffer) // If buffer is not initialized do not process received data
{
ModbusBridgeAllocError(PSTR("read"));
modbusBridge.dataCount = 0;
modbusBridge.byteCount = 0;
return;
}
memset(modbusBridge.buffer, 0, MBR_RECEIVE_BUFFER_SIZE);
uint32_t error = modbusBridgeModbus->ReceiveBuffer(modbusBridge.buffer, 0, MBR_RECEIVE_BUFFER_SIZE - 9);
#ifdef USE_MODBUS_BRIDGE_TCP
for (uint32_t i = 0; i < nitems(modbusBridgeTCP.client_tcp); i++)
{
WiFiClient &client = modbusBridgeTCP.client_tcp[i];
if (client)
{
uint8_t header[9];
uint8_t nrOfBytes = 8;
header[0] = modbusBridgeTCP.tcp_transaction_id >> 8;
header[1] = modbusBridgeTCP.tcp_transaction_id;
header[2] = 0;
header[3] = 0;
header[6] = modbusBridge.buffer[0]; // Send slave address
header[7] = modbusBridge.buffer[1]; // Send function code
if (error)
{
header[4] = 0; // Message Length Hi-Byte
header[5] = 3; // Message Length Low-Byte
header[7] = modbusBridge.buffer[1] | 0x80; // Send function code
header[8] = error;
nrOfBytes += 1;
client.write(header, 9);
}
else if (modbusBridge.buffer[1] <= 4)
{
uint8_t received_data_bytes = modbusBridgeModbus->ReceiveCount() - 5;
header[4] = received_data_bytes >> 8;
header[5] = received_data_bytes + 3;
header[8] = received_data_bytes;
client.write(header, 9);
nrOfBytes += 1;
client.write(modbusBridge.buffer + 3, received_data_bytes); // Don't send CRC
nrOfBytes += received_data_bytes;
}
else
{
header[4] = 0; // Message Length Hi-Byte
header[5] = 6; // Message Length Low-Byte
client.write(header, 8);
client.write(modbusBridge.buffer + 2, 4); // Don't send CRC
nrOfBytes += 4;
}
client.flush();
AddLog(LOG_LEVEL_DEBUG, PSTR("MBS: MBRTCP from Modbus deviceAddress %d, writing %d bytes to client"), modbusBridge.buffer[0], nrOfBytes);
}
}
#endif
modbusBridge.byteCount = 0;
if (error)
{
AddLog(LOG_LEVEL_DEBUG, PSTR("MBS: MBR Driver receive error %d"), error);
modbusBridge.dataCount = 0;
return;
}
ModbusBridgeError errorcode = ModbusBridgeError::noerror;
if (modbusBridge.deviceAddress == 0)
{
#ifdef USE_MODBUS_BRIDGE_TCP
// If tcp client connected don't log error and exit this function (do not process)
if (nitems(modbusBridgeTCP.client_tcp) && !modbusBridgeTCP.output_mqtt)
{
return;
}
#endif
errorcode = ModbusBridgeError::nodataexpected;
}
else if (modbusBridge.deviceAddress != (uint8_t)modbusBridge.buffer[0])
errorcode = ModbusBridgeError::wrongdeviceaddress;
else if ((uint8_t)modbusBridge.functionCode != (uint8_t)modbusBridge.buffer[1])
errorcode = ModbusBridgeError::wrongfunctioncode;
else if ((uint8_t)modbusBridge.functionCode < 5)
{
// Do not check buffer[2] but received bytes for correct length but use the nr of received bytes
uint8_t received_data_bytes = modbusBridgeModbus->ReceiveCount() - 5;
if ((uint8_t)modbusBridge.functionCode < 3)
{
// Check if returned number of bits matches the requested number of bits
if ((uint8_t)(((modbusBridge.dataCount - 1) >> 3) + 1) > received_data_bytes)
errorcode = ModbusBridgeError::wrongdataCount;
}
else
{
if ((modbusBridge.type == ModbusBridgeType::mb_int8 || modbusBridge.type == ModbusBridgeType::mb_uint8) && ((uint8_t)modbusBridge.dataCount > received_data_bytes))
errorcode = ModbusBridgeError::wrongdataCount;
else if ((modbusBridge.type == ModbusBridgeType::mb_bit) && ((uint8_t)modbusBridge.dataCount > received_data_bytes))
errorcode = ModbusBridgeError::wrongdataCount;
else if ((modbusBridge.type == ModbusBridgeType::mb_int16 || modbusBridge.type == ModbusBridgeType::mb_uint16) && ((uint8_t)modbusBridge.dataCount > received_data_bytes))
errorcode = ModbusBridgeError::wrongdataCount;
else if ((modbusBridge.type == ModbusBridgeType::mb_int32 || modbusBridge.type == ModbusBridgeType::mb_uint32 || modbusBridge.type == ModbusBridgeType::mb_float) && ((uint8_t)modbusBridge.dataCount > received_data_bytes))
errorcode = ModbusBridgeError::wrongdataCount;
}
}
if (errorcode == ModbusBridgeError::noerror)
{
if (modbusBridge.type == ModbusBridgeType::mb_raw)
{
// Ouput raw data as decimal bytes
Response_P(PSTR("{\"" D_JSON_MODBUS_RECEIVED "\":{\"RAW\":["));
for (uint8_t i = 0; i < modbusBridgeModbus->ReceiveCount(); i++)
{
ResponseAppend_P(PSTR("%d"), modbusBridge.buffer[i]);
if (i < modbusBridgeModbus->ReceiveCount() - 1)
ResponseAppend_P(PSTR(","));
}
ResponseAppend_P(PSTR("]}"));
ResponseJsonEnd();
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_MODBUS_RECEIVED));
}
else if (modbusBridge.type == ModbusBridgeType::mb_hex)
{
// Output raw data as hexadecimal bytes
Response_P(PSTR("{\"" D_JSON_MODBUS_RECEIVED "\":{\"HEX\":["));
for (uint8_t i = 0; i < modbusBridgeModbus->ReceiveCount(); i++)
{
ResponseAppend_P(PSTR("0x%02X"), modbusBridge.buffer[i]);
if (i < modbusBridgeModbus->ReceiveCount() - 1)
ResponseAppend_P(PSTR(","));
}
ResponseAppend_P(PSTR("]}"));
ResponseJsonEnd();
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_MODBUS_RECEIVED));
}
else if ((modbusBridge.buffer[1] > 0) && (modbusBridge.buffer[1] < 7))
{
// Read and process Registers
uint8_t dataOffset = 3;
Response_P(PSTR("{\"" D_JSON_MODBUS_RECEIVED "\":{"));
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_DEVICE_ADDRESS "\":%d,"), modbusBridge.buffer[0]);
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_FUNCTION_CODE "\":%d,"), modbusBridge.buffer[1]);
if (modbusBridge.buffer[1] < 5)
{
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_START_ADDRESS "\":%d,"), modbusBridge.startAddress);
}
else
{
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_START_ADDRESS "\":%d,"), (modbusBridge.buffer[2] << 8) + modbusBridge.buffer[3]);
dataOffset = 4;
}
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_LENGTH "\":%d,"), modbusBridgeModbus->ReceiveCount());
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_COUNT "\":%d,"), modbusBridge.count);
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_VALUES "\":["));
uint8_t data_count = modbusBridge.count;
if ((uint8_t)modbusBridge.functionCode < 3)
{
// Calculate number of values to return in bitmode
if (modbusBridge.type == ModbusBridgeType::mb_int8 || modbusBridge.type == ModbusBridgeType::mb_uint8)
data_count = (uint8_t)(((modbusBridge.count - 1) >> 3) + 1);
else if (modbusBridge.type == ModbusBridgeType::mb_int16 || modbusBridge.type == ModbusBridgeType::mb_uint16)
data_count = (uint8_t)(((modbusBridge.count - 1) >> 4) + 1);
else if (modbusBridge.type == ModbusBridgeType::mb_int32 || modbusBridge.type == ModbusBridgeType::mb_uint32 || modbusBridge.type == ModbusBridgeType::mb_float)
data_count = (uint8_t)(((modbusBridge.count - 1) >> 5) + 1);
}
// Copy modbus data to requested variables type
for (uint8_t count = 0; count < data_count; count++)
{
char svalue[MBR_MAX_VALUE_LENGTH + 1] = "";
if (modbusBridge.type == ModbusBridgeType::mb_float)
{
// Convert next 4 bytes to float
float value = 0;
if (modbusBridge.endian == ModbusBridgeEndian::mb_lsb)
{
// In lsb mode swap bytes
if (modbusBridge.buffer[2] - (count * 4))
((uint8_t *)&value)[0] = modbusBridge.buffer[dataOffset + (count * 4)]; // Get float values
if ((modbusBridge.buffer[2] - (count * 4)) >> 1)
((uint8_t *)&value)[1] = modbusBridge.buffer[dataOffset + 1 + (count * 4)];
if ((modbusBridge.buffer[2] - (count * 4) - 1) >> 1)
((uint8_t *)&value)[2] = modbusBridge.buffer[dataOffset + 2 + (count * 4)];
if ((modbusBridge.buffer[2] - (count * 4)) >> 2)
((uint8_t *)&value)[3] = modbusBridge.buffer[dataOffset + 3 + (count * 4)];
}
else
{
((uint8_t *)&value)[3] = modbusBridge.buffer[dataOffset + (count * 4)]; // Get float values
((uint8_t *)&value)[2] = modbusBridge.buffer[dataOffset + 1 + (count * 4)];
((uint8_t *)&value)[1] = modbusBridge.buffer[dataOffset + 2 + (count * 4)];
((uint8_t *)&value)[0] = modbusBridge.buffer[dataOffset + 3 + (count * 4)];
}
ext_snprintf_P(svalue, sizeof(svalue), "%*_f", 10, &value);
}
else if (modbusBridge.type == ModbusBridgeType::mb_bit)
{
uint8_t bits_left = modbusBridge.count - ((count/8) * 8);
uint8_t value = 0;
if (bits_left < 8)
{
uint8_t bits_skip = 8 - bits_left;
value = (uint8_t)(modbusBridge.buffer[dataOffset + ((count + bits_skip) >> 3)]);
}
else
{
value = (uint8_t)(modbusBridge.buffer[dataOffset + (count >> 3)]);
}
snprintf(svalue, MBR_MAX_VALUE_LENGTH, "%d", ((value >> (count & 7)) & 1));
}
else
{
if ((modbusBridge.type == ModbusBridgeType::mb_int32) ||
(modbusBridge.type == ModbusBridgeType::mb_uint32))
{
uint32_t value = 0;
if (modbusBridge.endian == ModbusBridgeEndian::mb_lsb)
{
// In lsb mode swap bytes
if (modbusBridge.buffer[2] - (count * 4))
((uint8_t *)&value)[0] = modbusBridge.buffer[dataOffset + (count * 4)]; // Get uint values
if (modbusBridge.buffer[2] - ((count * 4) - 1))
((uint8_t *)&value)[1] = modbusBridge.buffer[dataOffset + 1 + (count * 4)];
if (modbusBridge.buffer[2] - ((count * 4) - 2))
((uint8_t *)&value)[2] = modbusBridge.buffer[dataOffset + 2 + (count * 4)];
if (modbusBridge.buffer[2] - ((count * 4) - 3))
((uint8_t *)&value)[3] = modbusBridge.buffer[dataOffset + 3 + (count * 4)];
}
else
{
((uint8_t *)&value)[3] = modbusBridge.buffer[dataOffset + (count * 4)]; // Get uint values
((uint8_t *)&value)[2] = modbusBridge.buffer[dataOffset + 1 + (count * 4)];
((uint8_t *)&value)[1] = modbusBridge.buffer[dataOffset + 2 + (count * 4)];
((uint8_t *)&value)[0] = modbusBridge.buffer[dataOffset + 3 + (count * 4)];
}
if (modbusBridge.type == ModbusBridgeType::mb_int32)
snprintf(svalue, MBR_MAX_VALUE_LENGTH, "%d", (int32_t)value);
else
snprintf(svalue, MBR_MAX_VALUE_LENGTH, "%u", value);
}
else if ((modbusBridge.type == ModbusBridgeType::mb_int16) ||
(modbusBridge.type == ModbusBridgeType::mb_uint16))
{
uint16_t value = 0;
if (modbusBridge.endian == ModbusBridgeEndian::mb_lsb)
{
// In lsb mode swap bytes
if (modbusBridge.buffer[2] - (count * 2))
((uint8_t *)&value)[0] = modbusBridge.buffer[dataOffset + (count * 2)];
if (modbusBridge.buffer[2] - ((count * 2) - 1))
((uint8_t *)&value)[1] = modbusBridge.buffer[dataOffset + 1 + (count * 2)];
}
else
{
((uint8_t *)&value)[1] = modbusBridge.buffer[dataOffset + (count * 2)];
((uint8_t *)&value)[0] = modbusBridge.buffer[dataOffset + 1 + (count * 2)];
}
if (modbusBridge.type == ModbusBridgeType::mb_int16)
snprintf(svalue, MBR_MAX_VALUE_LENGTH, "%d", (int16_t)value);
else
snprintf(svalue, MBR_MAX_VALUE_LENGTH, "%u", value);
}
else if ((modbusBridge.type == ModbusBridgeType::mb_int8) ||
(modbusBridge.type == ModbusBridgeType::mb_uint8))
{
uint8_t value = modbusBridge.buffer[dataOffset + (count * 1)];
if (modbusBridge.type == ModbusBridgeType::mb_int8)
snprintf(svalue, MBR_MAX_VALUE_LENGTH, "%d", (int8_t)value);
else
snprintf(svalue, MBR_MAX_VALUE_LENGTH, "%u", value);
}
}
ResponseAppend_P(PSTR("%s"), svalue);
if (count < data_count - 1)
ResponseAppend_P(PSTR(","));
}
ResponseAppend_P(PSTR("]}"));
ResponseJsonEnd();
if (errorcode == ModbusBridgeError::noerror)
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_MODBUS_RECEIVED));
}
else if ((modbusBridge.buffer[1] == 15) || (modbusBridge.buffer[1] == 16)) // Write Multiple Registers
{
Response_P(PSTR("{\"" D_JSON_MODBUS_RECEIVED "\":{"));
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_DEVICE_ADDRESS "\":%d,"), modbusBridge.buffer[0]);
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_FUNCTION_CODE "\":%d,"), modbusBridge.buffer[1]);
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_START_ADDRESS "\":%d,"), (modbusBridge.buffer[2] << 8) + modbusBridge.buffer[3]);
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_LENGTH "\":%d,"), modbusBridgeModbus->ReceiveCount());
ResponseAppend_P(PSTR("\"" D_JSON_MODBUS_COUNT "\":%d"), (modbusBridge.buffer[4] << 8) + modbusBridge.buffer[5]);
ResponseAppend_P(PSTR("}"));
ResponseJsonEnd();
if (errorcode == ModbusBridgeError::noerror)
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_MODBUS_RECEIVED));
}
else
errorcode = ModbusBridgeError::wrongfunctioncode;
}
if (errorcode != ModbusBridgeError::noerror)
{
AddLog(LOG_LEVEL_DEBUG, PSTR("MBS: MBR Recv Error %d"), (uint8_t)errorcode);
}
modbusBridge.deviceAddress = 0;
}
}
/********************************************************************************************/
//
// Inits the tasmota modbus driver, sets serialport and if TCP enabled allocates a TCP buffer
//
void ModbusBridgeInit(void) {
if (PinUsed(GPIO_MBR_RX) && PinUsed(GPIO_MBR_TX)) {
modbusBridgeModbus = new TasmotaModbus(Pin(GPIO_MBR_RX), Pin(GPIO_MBR_TX), Pin(GPIO_MBR_TX_ENA));
if (ModbusBridgeBegin()) {
modbusBridge.enabled = true;
#ifdef USE_MODBUS_BRIDGE_TCP
// If TCP bridge is enabled allocate a TCP receive buffer
if (nullptr == modbusBridgeTCP.tcp_buf) modbusBridgeTCP.tcp_buf = (uint8_t *)malloc(MODBUS_BRIDGE_TCP_BUF_SIZE);
if (nullptr == modbusBridgeTCP.tcp_buf) {
ModbusBridgeAllocError(PSTR("TCP"));
return;
}
#ifdef MODBUS_BRIDGE_TCP_DEFAULT_PORT
else {
AddLog(LOG_LEVEL_INFO, PSTR("MBS: MBRTCP Starting server on port %d"), MODBUS_BRIDGE_TCP_DEFAULT_PORT);
modbusBridgeTCP.server_tcp = new WiFiServer(MODBUS_BRIDGE_TCP_DEFAULT_PORT);
modbusBridgeTCP.server_tcp->begin(); // start TCP server
modbusBridgeTCP.server_tcp->setNoDelay(true);
}
#endif // MODBUS_BRIDGE_TCP_DEFAULT_PORT
#endif // USE_MODBUS_BRIDGE_TCP
}
}
}
#ifdef USE_MODBUS_BRIDGE_TCP
/********************************************************************************************/
//
// Handles data for TCP server and TCP client. Sends requests to Modbus Devices
//
void ModbusTCPHandle(void)
{
uint8_t c;
bool busy; // did we transfer some data?
int32_t buf_len;
// check for a new client connection
if ((modbusBridgeTCP.server_tcp) && (modbusBridgeTCP.server_tcp->hasClient()))
{
WiFiClient new_client = modbusBridgeTCP.server_tcp->available();
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_TCP "MBS: MBRTCP Got connection from %s"), new_client.remoteIP().toString().c_str());
// Check for IP filtering if it's enabled.
if (modbusBridgeTCP.ip_filter)
{
if (modbusBridgeTCP.ip_filter != new_client.remoteIP())
{
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_TCP "MBS: MBRTCP Rejected due to filtering"));
new_client.stop();
}
else
{
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_TCP "MBS: MBRTCP Allowed through filter"));
}
}
// find an empty slot
uint32_t i;
for (i = 0; i < nitems(modbusBridgeTCP.client_tcp); i++)
{
WiFiClient &client = modbusBridgeTCP.client_tcp[i];
if (!client)
{
client = new_client;
break;
}
}
if (i >= nitems(modbusBridgeTCP.client_tcp))
{
i = modbusBridgeTCP.client_next++ % nitems(modbusBridgeTCP.client_tcp);
WiFiClient &client = modbusBridgeTCP.client_tcp[i];
client.stop();
client = new_client;
}
}
do
{
busy = false; // exit loop if no data was transferred
// handle data received from TCP
for (uint32_t i = 0; i < nitems(modbusBridgeTCP.client_tcp); i++)
{
WiFiClient &client = modbusBridgeTCP.client_tcp[i];
buf_len = 0;
while (client && (buf_len < MODBUS_BRIDGE_TCP_BUF_SIZE) && (client.available()))
{
c = client.read();
if (c >= 0)
{
modbusBridgeTCP.tcp_buf[buf_len++] = c;
busy = true;
}
}
if (buf_len >= 12)
{
uint8_t mbdeviceaddress = (uint8_t)modbusBridgeTCP.tcp_buf[6];
uint8_t mbfunctioncode = (uint8_t)modbusBridgeTCP.tcp_buf[7];
uint16_t mbstartaddress = (uint16_t)((((uint16_t)modbusBridgeTCP.tcp_buf[8]) << 8) | ((uint16_t)modbusBridgeTCP.tcp_buf[9]));
uint16_t *writeData = nullptr;
uint16_t count = 0;
modbusBridgeTCP.tcp_transaction_id = (uint16_t)((((uint16_t)modbusBridgeTCP.tcp_buf[0]) << 8) | ((uint16_t)modbusBridgeTCP.tcp_buf[1]));
if (mbfunctioncode <= 2) // Multiple Coils, Inputs
{
count = (uint16_t)((((uint16_t)modbusBridgeTCP.tcp_buf[10]) << 8) | ((uint16_t)modbusBridgeTCP.tcp_buf[11]));
modbusBridge.byteCount = ((count - 1) >> 3) + 1;
modbusBridge.dataCount = count;
modbusBridge.type = ModbusBridgeType::mb_bit;
}
else if (mbfunctioncode <= 4) // Multiple Holding or input registers
{
count = (uint16_t)((((uint16_t)modbusBridgeTCP.tcp_buf[10]) << 8) | ((uint16_t)modbusBridgeTCP.tcp_buf[11]));
modbusBridge.byteCount = count * 2;
modbusBridge.dataCount = count;
modbusBridge.type = ModbusBridgeType::mb_uint16;
}
else // Write coil(s) or register(s)
{
// For functioncode 15 & 16 ignore bytecount, modbusBridgeModbus does calculate this
uint8_t dataStartByte = mbfunctioncode <= 6 ? 10 : 13;
uint16_t byteCount = (buf_len - dataStartByte);
modbusBridge.byteCount = 2;
modbusBridge.dataCount = 1;
modbusBridge.type = ModbusBridgeType::mb_uint16;
writeData = (uint16_t *)malloc(byteCount+1);
if (nullptr == writeData)
{
ModbusBridgeAllocError(PSTR("write"));
return;
}
if ((mbfunctioncode == 15) || (mbfunctioncode == 16)) count = (uint16_t)((((uint16_t)modbusBridgeTCP.tcp_buf[10]) << 8) | ((uint16_t)modbusBridgeTCP.tcp_buf[11]));
else count = 1;
for (uint16_t dataPointer = 0; dataPointer < byteCount; dataPointer++)
{
if (dataPointer % 2 == 0)
{
writeData[dataPointer / 2] = (uint16_t)(((uint16_t)modbusBridgeTCP.tcp_buf[dataStartByte + dataPointer]) << 8);
}
else
{
writeData[dataPointer / 2] |= ((uint16_t)modbusBridgeTCP.tcp_buf[dataStartByte + dataPointer]);
}
}
}
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("MBS: MBRTCP to Modbus TransactionId:%d, deviceAddress:%d, functionCode:%d, startAddress:%d, count:%d, recvCount:%d, recvBytes:%d"),
modbusBridgeTCP.tcp_transaction_id, mbdeviceaddress, mbfunctioncode, mbstartaddress, count, modbusBridge.dataCount, modbusBridge.byteCount);
modbusBridgeModbus->Send(mbdeviceaddress, mbfunctioncode, mbstartaddress, count, writeData);
if (modbusBridgeTCP.output_mqtt)
{
modbusBridge.deviceAddress = mbdeviceaddress;
modbusBridge.functionCode = (ModbusBridgeFunctionCode)mbfunctioncode;
modbusBridge.startAddress = mbstartaddress;
modbusBridge.count = count;
}
free(writeData);
}
}
yield(); // avoid WDT if heavy traffic
} while (busy);
}
#endif
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void CmndModbusBridgeSend(void)
{
uint16_t *writeData = nullptr;
uint8_t writeDataSize = 0;
bool bitMode = false;
ModbusBridgeError errorcode = ModbusBridgeError::noerror;
JsonParser parser(XdrvMailbox.data);
JsonParserObject root = parser.getRootObject();
if (!root)
return;
modbusBridge.deviceAddress = root.getUInt(PSTR(D_JSON_MODBUS_DEVICE_ADDRESS), 0);
uint8_t functionCode = root.getUInt(PSTR(D_JSON_MODBUS_FUNCTION_CODE), 0);
modbusBridge.startAddress = root.getULong(PSTR(D_JSON_MODBUS_START_ADDRESS), 0);
const char *stype = root.getStr(PSTR(D_JSON_MODBUS_TYPE), "uint8");
modbusBridge.count = root.getUInt(PSTR(D_JSON_MODBUS_COUNT), 1); // Number of values to read / write
const char *sendian = root.getStr(PSTR(D_JSON_MODBUS_ENDIAN), "undefined");
modbusBridge.endian = ModbusBridgeEndian::mb_undefined;
// If functioncode is 1, 2 or 15, the count is not the number of registers but the number
// of bits to read or write, so calculate the number data bytes to read/write.
if ((functionCode == 1) || (functionCode == 2) || (functionCode == 15))
{
bitMode = true;
modbusBridge.endian = ModbusBridgeEndian::mb_lsb;
}
// Change endianess when specified
if (strcmp (sendian,"msb") == 0) modbusBridge.endian = ModbusBridgeEndian::mb_msb;
if (strcmp (sendian,"lsb") == 0) modbusBridge.endian = ModbusBridgeEndian::mb_lsb;
if (modbusBridge.deviceAddress == 0)
errorcode = ModbusBridgeError::wrongdeviceaddress;
else if ((functionCode > (uint8_t)ModbusBridgeFunctionCode::mb_writeSingleRegister) &&
(functionCode != (uint8_t)ModbusBridgeFunctionCode::mb_writeMultipleCoils) &&
(functionCode != (uint8_t)ModbusBridgeFunctionCode::mb_writeMultipleRegisters))
errorcode = ModbusBridgeError::wrongfunctioncode; // Invalid function code
else
{
modbusBridge.functionCode = static_cast<ModbusBridgeFunctionCode>(functionCode);
if (modbusBridge.functionCode == ModbusBridgeFunctionCode::mb_undefined)
errorcode = ModbusBridgeError::wrongfunctioncode;
}
modbusBridge.type = ModbusBridgeType::mb_undefined;
if (bitMode) modbusBridge.byteCount = (modbusBridge.count + 7) / 8;
if (strcmp(stype, "int8") == 0)
{
modbusBridge.type = ModbusBridgeType::mb_int8;
modbusBridge.dataCount = bitMode ? modbusBridge.count : ((modbusBridge.count - 1) / 2) + 1;
}
else if (strcmp(stype, "int16") == 0)
{
modbusBridge.type = ModbusBridgeType::mb_int16;
modbusBridge.dataCount = modbusBridge.count;
}
else if (strcmp(stype, "int32") == 0)
{
modbusBridge.type = ModbusBridgeType::mb_int32;
modbusBridge.dataCount = bitMode ? modbusBridge.count : 2 * modbusBridge.count;
}
else if ((strcmp(stype, "uint8") == 0))
{
modbusBridge.type = ModbusBridgeType::mb_uint8;
modbusBridge.dataCount = bitMode ? modbusBridge.count : ((modbusBridge.count - 1) / 2) + 1;
}
else if ((strcmp(stype, "uint16") == 0) || (strcmp(stype, "") == 0)) // Default is uint16
{
modbusBridge.type = ModbusBridgeType::mb_uint16;
modbusBridge.dataCount = modbusBridge.count;
}
else if (strcmp(stype, "uint32") == 0)
{
modbusBridge.type = ModbusBridgeType::mb_uint32;
modbusBridge.dataCount = bitMode ? modbusBridge.count : 2 * modbusBridge.count;
}
else if (strcmp(stype, "float") == 0)
{
modbusBridge.type = ModbusBridgeType::mb_float;
modbusBridge.dataCount = bitMode ? modbusBridge.count : 2 * modbusBridge.count;
}
else if (strcmp(stype, "raw") == 0)
{
modbusBridge.type = ModbusBridgeType::mb_raw;
modbusBridge.dataCount = bitMode ? modbusBridge.count : ((modbusBridge.count - 1) / 2) + 1;
}
else if (strcmp(stype, "hex") == 0)
{
modbusBridge.type = ModbusBridgeType::mb_hex;
modbusBridge.dataCount = bitMode ? modbusBridge.count : ((modbusBridge.count - 1) / 2) + 1;
}
else if (strcmp(stype, "bit") == 0)
{
modbusBridge.type = ModbusBridgeType::mb_bit;
modbusBridge.dataCount = bitMode ? modbusBridge.count : ((modbusBridge.count - 1) / 16) + 1 ;
}
else
errorcode = ModbusBridgeError::wrongtype;
// Prevent buffer overflow due to usage of to many registers
if ((!bitMode) && (modbusBridge.dataCount > MBR_MAX_REGISTERS))
errorcode = ModbusBridgeError::wrongcount;
if ((bitMode) && (modbusBridge.dataCount > MBR_MAX_REGISTERS * 8))
errorcode = ModbusBridgeError::wrongcount;
// Get Json data for writing
JsonParserArray jsonDataArray = root[PSTR(D_JSON_MODBUS_VALUES)].getArray();
writeDataSize = jsonDataArray.size();
// Check if number of supplied data items is valid
switch (modbusBridge.functionCode)
{
case ModbusBridgeFunctionCode::mb_writeMultipleCoils:
// In writeMultipleCoil mode the amount of given data bits is less or equal to the count
switch (modbusBridge.type)
{
case ModbusBridgeType::mb_bit:
if (modbusBridge.count > writeDataSize) errorcode = ModbusBridgeError::wrongcount;
break;
case ModbusBridgeType::mb_uint8:
case ModbusBridgeType::mb_int8:
case ModbusBridgeType::mb_raw:
case ModbusBridgeType::mb_hex:
if (modbusBridge.count > writeDataSize * 8) errorcode = ModbusBridgeError::wrongcount;
break;
case ModbusBridgeType::mb_uint16:
case ModbusBridgeType::mb_int16:
if (modbusBridge.count > writeDataSize * 16) errorcode = ModbusBridgeError::wrongcount;
break;
case ModbusBridgeType::mb_uint32:
case ModbusBridgeType::mb_int32:
if (modbusBridge.count > writeDataSize * 32) errorcode = ModbusBridgeError::wrongcount;
break;
}
break;
case ModbusBridgeFunctionCode::mb_writeSingleRegister:
case ModbusBridgeFunctionCode::mb_writeSingleCoil:
if (modbusBridge.count != 1) errorcode = ModbusBridgeError::wrongcount;
break;
case ModbusBridgeFunctionCode::mb_writeMultipleRegisters:
if (modbusBridge.count != writeDataSize) errorcode = ModbusBridgeError::wrongcount;
break;
}
// If write data is specified in JSON copy it into writeData array
if ((errorcode == ModbusBridgeError::noerror) && (jsonDataArray.isArray()))
{
if (modbusBridge.dataCount > 40)
{
errorcode = ModbusBridgeError::tomanydata;
}
else
{
writeData = (uint16_t *)malloc(modbusBridge.dataCount * 2);
if (nullptr == writeData)
{
ModbusBridgeAllocError(PSTR("write"));
return;
}
for (uint8_t jsonDataArrayPointer = 0; jsonDataArrayPointer < writeDataSize; jsonDataArrayPointer++)
{
if (errorcode != ModbusBridgeError::noerror) break;
switch (modbusBridge.type)
{
case ModbusBridgeType::mb_bit:
{
// Initialize current data/register to 0
if (jsonDataArrayPointer % 16 == 0)
{
writeData[jsonDataArrayPointer / 15] = 0;
}
// Swap low and high bytes according to modbus specification
uint16_t bitValue = (jsonDataArray[jsonDataArrayPointer].getUInt(0) == 1) ? 1 : 0;
uint8_t bitPointer = (jsonDataArrayPointer % 16) + 8;
if (bitPointer > 15) bitPointer -= 16;
writeData[jsonDataArrayPointer / 16] += bitValue << bitPointer;
}
break;
case ModbusBridgeType::mb_int8:
if (jsonDataArrayPointer % 2)
writeData[jsonDataArrayPointer / 2] += (int8_t)jsonDataArray[jsonDataArrayPointer].getInt(0);
else
writeData[jsonDataArrayPointer / 2] = (int8_t)jsonDataArray[jsonDataArrayPointer / 2].getInt(0) << 8;
if (modbusBridge.dataCount != writeDataSize / 2) errorcode = ModbusBridgeError::wrongcount;
break;
case ModbusBridgeType::mb_hex:
case ModbusBridgeType::mb_raw:
case ModbusBridgeType::mb_uint8:
if (jsonDataArrayPointer % 2)
writeData[jsonDataArrayPointer / 2] += (uint8_t)jsonDataArray[jsonDataArrayPointer].getUInt(0);
else
writeData[jsonDataArrayPointer / 2] = (uint8_t)jsonDataArray[jsonDataArrayPointer].getUInt(0) << 8;
if (modbusBridge.dataCount != writeDataSize / 2) errorcode = ModbusBridgeError::wrongcount;
break;
case ModbusBridgeType::mb_int16:
writeData[jsonDataArrayPointer] = modbusBridge.endian != ModbusBridgeEndian::mb_lsb ? jsonDataArray[jsonDataArrayPointer].getInt(0)
: ModbusBridgeSwapEndian16(jsonDataArray[jsonDataArrayPointer].getInt(0));
break;
case ModbusBridgeType::mb_uint16:
writeData[jsonDataArrayPointer] = modbusBridge.endian != ModbusBridgeEndian::mb_lsb ? jsonDataArray[jsonDataArrayPointer].getUInt(0)
: ModbusBridgeSwapEndian16(jsonDataArray[jsonDataArrayPointer].getUInt(0));
break;
case ModbusBridgeType::mb_int32:
writeData[(jsonDataArrayPointer * 2)] = modbusBridge.endian != ModbusBridgeEndian::mb_lsb ? ModbusBridgeSwapEndian16(jsonDataArray[jsonDataArrayPointer].getInt(0))
: (int16_t)(jsonDataArray[jsonDataArrayPointer].getInt(0) >> 16);
writeData[(jsonDataArrayPointer * 2) + 1] = modbusBridge.endian != ModbusBridgeEndian::mb_lsb ? ModbusBridgeSwapEndian16(jsonDataArray[jsonDataArrayPointer].getInt(0) >> 16)
: (uint16_t)(jsonDataArray[jsonDataArrayPointer].getInt(0));
break;
case ModbusBridgeType::mb_uint32:
writeData[(jsonDataArrayPointer * 2)] = modbusBridge.endian != ModbusBridgeEndian::mb_lsb ? ModbusBridgeSwapEndian16(jsonDataArray[jsonDataArrayPointer].getUInt(0))
: (uint16_t)(jsonDataArray[jsonDataArrayPointer].getUInt(0) >> 16);
writeData[(jsonDataArrayPointer * 2) + 1] = modbusBridge.endian != ModbusBridgeEndian::mb_lsb ? ModbusBridgeSwapEndian16(jsonDataArray[jsonDataArrayPointer].getUInt(0) >> 16)
: (uint16_t)(jsonDataArray[jsonDataArrayPointer].getUInt(0));
break;
case ModbusBridgeType::mb_float:
// TODO
default:
errorcode = ModbusBridgeError::wrongtype;
break;
}
}
}
// Adapt data according to modbus protocol
if (modbusBridge.functionCode == ModbusBridgeFunctionCode::mb_writeSingleCoil)
{
writeData[0] = writeData[0] ? 0xFF00 : 0x0000; // High Byte
}
}
// Handle errorcode and exit function when an error has occured
if (errorcode != ModbusBridgeError::noerror)
{
AddLog(LOG_LEVEL_DEBUG, PSTR("MBS: MBR Send Error %u"), (uint8_t)errorcode);
free(writeData);
return;
}
// If writing a single coil or single register, the register count is always 1. We also prevent writing data out of range
if ((modbusBridge.functionCode == ModbusBridgeFunctionCode::mb_writeSingleCoil) || (modbusBridge.functionCode == ModbusBridgeFunctionCode::mb_writeSingleRegister))
modbusBridge.dataCount = 1;
uint8_t error = modbusBridgeModbus->Send(modbusBridge.deviceAddress, (uint8_t)modbusBridge.functionCode, modbusBridge.startAddress, modbusBridge.dataCount, writeData);
free(writeData);
if (error)
{
AddLog(LOG_LEVEL_DEBUG, PSTR("MBS: MBR Driver send error %u"), error);
return;
}
ResponseCmndDone();
}
void CmndModbusBridgeSetBaudrate(void)
{
ModbusBridgeSetBaudrate(XdrvMailbox.payload);
ResponseCmndNumber(Settings->modbus_sbaudrate * 300);
}
void CmndModbusBridgeSetConfig(void)
{
// See TasmotaModusConfig for possible options
// ModbusConfig 0..23 where 3 equals 8N1
// ModbusConfig 8N1
if (XdrvMailbox.data_len > 0)
{
if (XdrvMailbox.data_len < 3)
{ // Use 0..23 as serial config option
if ((XdrvMailbox.payload >= TS_SERIAL_5N1) && (XdrvMailbox.payload <= TS_SERIAL_8O2))
{
ModbusBridgeSetConfig(XdrvMailbox.payload);
}
}
else if ((XdrvMailbox.payload >= 5) && (XdrvMailbox.payload <= 8))
{
int8_t serial_config = ParseSerialConfig(XdrvMailbox.data);
if (serial_config >= 0)
{
ModbusBridgeSetConfig(serial_config);
}
}
}
ResponseCmndChar(GetSerialConfig(Settings->modbus_sconfig).c_str());
}
#ifdef USE_MODBUS_BRIDGE_TCP
//
// Command `TCPStart`
// Params: port,<IPv4 allow>
//
void CmndModbusTCPStart(void)
{
int32_t tcp_port = XdrvMailbox.payload;
if (ArgC() == 2)
{
char sub_string[XdrvMailbox.data_len];
modbusBridgeTCP.ip_filter.fromString(ArgV(sub_string, 2));
}
else
{
// Disable whitelist if previously set
modbusBridgeTCP.ip_filter = (uint32_t)0;
}
if (modbusBridgeTCP.server_tcp)
{
AddLog(LOG_LEVEL_INFO, PSTR("MBS: MBRTCP Stopping server"));
modbusBridgeTCP.server_tcp->stop();
delete modbusBridgeTCP.server_tcp;
modbusBridgeTCP.server_tcp = nullptr;
for (uint32_t i = 0; i < nitems(modbusBridgeTCP.client_tcp); i++)
{
WiFiClient &client = modbusBridgeTCP.client_tcp[i];
client.stop();
}
}
if (tcp_port > 0)
{
AddLog(LOG_LEVEL_INFO, PSTR("MBS: MBRTCP Starting server on port %d"), tcp_port);
if (modbusBridgeTCP.ip_filter)
{
AddLog(LOG_LEVEL_INFO, PSTR("MBS: MBRTCP Filtering %s"), modbusBridgeTCP.ip_filter.toString().c_str());
}
modbusBridgeTCP.server_tcp = new WiFiServer(tcp_port);
modbusBridgeTCP.server_tcp->begin(); // start TCP server
modbusBridgeTCP.server_tcp->setNoDelay(true);
}
ResponseCmndDone();
}
//
// Command `Connect`
// Params: port,<IPv4>
//
void CmndModbusTCPConnect(void)
{
int32_t tcp_port = XdrvMailbox.payload;
if (ArgC() == 2)
{
char sub_string[XdrvMailbox.data_len];
WiFiClient new_client;
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_TCP "MBS: MBRTCP Connecting to %s on port %d"), ArgV(sub_string, 2), tcp_port);
if (new_client.connect(ArgV(sub_string, 2), tcp_port))
{
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_TCP "MBS: MBRTCP connected!"));
}
else
{
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_TCP "MBS: MBRTCP error connecting!"));
}
// find an empty slot
uint32_t i;
for (i = 0; i < nitems(modbusBridgeTCP.client_tcp); i++)
{
WiFiClient &client = modbusBridgeTCP.client_tcp[i];
if (!client)
{
client = new_client;
break;
}
}
if (i >= nitems(modbusBridgeTCP.client_tcp))
{
i = modbusBridgeTCP.client_next++ % nitems(modbusBridgeTCP.client_tcp);
WiFiClient &client = modbusBridgeTCP.client_tcp[i];
client.stop();
client = new_client;
}
}
else
{
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_TCP "MBS: MBR Usage: port,ip_address"));
}
ResponseCmndDone();
}
void CmndModbusTCPMqtt(void)
{
modbusBridgeTCP.output_mqtt = XdrvMailbox.payload;
ResponseCmndDone();
}
#endif
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv63(uint32_t function)
{
bool result = false;
if (FUNC_PRE_INIT == function) {
ModbusBridgeInit();
} else if (modbusBridge.enabled) {
switch (function) {
case FUNC_LOOP:
ModbusBridgeHandle();
#ifdef USE_MODBUS_BRIDGE_TCP
ModbusTCPHandle();
#endif
break;
case FUNC_COMMAND:
result = DecodeCommand(kModbusBridgeCommands, ModbusBridgeCommand);
break;
case FUNC_ACTIVE:
result = true;
break;
}
}
return result;
}
#endif // USE_MODBUS_BRIDGE