mirror of https://github.com/arendst/Tasmota.git
886 lines
32 KiB
C++
886 lines
32 KiB
C++
/*
|
|
xdrv_23_zigbee_9_serial.ino - zigbee: serial communication with MCU
|
|
|
|
Copyright (C) 2021 Theo Arends and Stephan Hadinger
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_ZIGBEE
|
|
|
|
#ifdef USE_ZIGBEE_ZNP
|
|
const uint32_t ZIGBEE_BUFFER_SIZE = 256; // Max ZNP frame is SOF+LEN+CMD1+CMD2+250+FCS = 255
|
|
const uint8_t ZIGBEE_SOF = 0xFE;
|
|
const uint8_t ZIGBEE_SOF_ALT = 0xFF;
|
|
#endif // USE_ZIGBEE_ZNP
|
|
|
|
#ifdef USE_ZIGBEE_EZSP
|
|
const uint32_t ZIGBEE_BUFFER_SIZE = 256;
|
|
const uint8_t ZIGBEE_EZSP_CANCEL = 0x1A; // cancel byte
|
|
const uint8_t ZIGBEE_EZSP_EOF = 0x7E; // end of frame
|
|
const uint8_t ZIGBEE_EZSP_ESCAPE = 0x7D; // escape byte
|
|
|
|
const uint32_t ZIGBEE_LED_RECEIVE = 0; // LED<1> blinks when receiving
|
|
const uint32_t ZIGBEE_LED_SEND = 0; // LED<2> blinks when receiving
|
|
|
|
class EZSP_Serial_t {
|
|
public:
|
|
uint8_t to_send = 0; // 0..7, frame number of next packet to send, nothing to send if equal to to_end
|
|
uint8_t to_end = 0; // 0..7, frame number of next packet to send
|
|
uint8_t to_ack = 0; // 0..7, frame number of last packet acknowledged + 1
|
|
uint8_t from_ack = 0; // 0..7, frame to ack
|
|
uint8_t ezsp_seq = 0; // 0..255, EZSP sequence number
|
|
SBuffer *to_packets[8] = { nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr };
|
|
};
|
|
|
|
|
|
EZSP_Serial_t EZSP_Serial;
|
|
|
|
//
|
|
// Blink Led Status
|
|
//
|
|
const uint32_t Z_LED_STATUS_ON_MILLIS = 50; // keep led on at least 50 ms
|
|
bool Z_LedStatusSet(bool onoff) {
|
|
static bool led_status_on = false;
|
|
static uint32_t led_on_time = 0;
|
|
|
|
if (onoff) {
|
|
SetLedPowerIdx(ZIGBEE_LED_RECEIVE, 1);
|
|
led_status_on = true;
|
|
led_on_time = millis();
|
|
} else if ((led_status_on) && (TimePassedSince(led_on_time) >= Z_LED_STATUS_ON_MILLIS)) {
|
|
SetLedPowerIdx(ZIGBEE_LED_RECEIVE, 0);
|
|
led_status_on = false;
|
|
}
|
|
return led_status_on;
|
|
}
|
|
|
|
#endif // USE_ZIGBEE_EZSP
|
|
|
|
#include <TasmotaSerial.h>
|
|
TasmotaSerial *ZigbeeSerial = nullptr;
|
|
|
|
/********************************************************************************************/
|
|
//
|
|
// Called at event loop, checks for incoming data from the CC2530
|
|
//
|
|
void ZigbeeInputLoop(void) {
|
|
|
|
#ifdef USE_ZIGBEE_ZNP
|
|
static uint32_t zigbee_polling_window = 0; // number of milliseconds since first byte
|
|
static uint8_t fcs = ZIGBEE_SOF;
|
|
static uint32_t zigbee_frame_len = 5; // minimal zigbee frame length, will be updated when buf[1] is read
|
|
// Receive only valid ZNP frames:
|
|
// 00 - SOF = 0xFE
|
|
// 01 - Length of Data Field - 0..250
|
|
// 02 - CMD1 - first byte of command
|
|
// 03 - CMD2 - second byte of command
|
|
// 04..FD - Data Field
|
|
// FE (or last) - FCS Checksum
|
|
|
|
while (ZigbeeSerial->available()) {
|
|
yield();
|
|
uint8_t zigbee_in_byte = ZigbeeSerial->read();
|
|
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZbInput byte=%d len=%d"), zigbee_in_byte, zigbee_buffer->len());
|
|
|
|
if (0 == zigbee_buffer->len()) { // make sure all variables are correctly initialized
|
|
zigbee_frame_len = 5;
|
|
fcs = ZIGBEE_SOF;
|
|
// there is a rare race condition when an interrupt occurs when receiving the first byte
|
|
// in this case the first bit (lsb) is missed and Tasmota receives 0xFF instead of 0xFE
|
|
// We forgive this mistake, and next bytes are automatically resynchronized
|
|
if (ZIGBEE_SOF_ALT == zigbee_in_byte) {
|
|
AddLog(LOG_LEVEL_INFO, PSTR("ZbInput forgiven first byte %02X (only for statistics)"), zigbee_in_byte);
|
|
zigbee_in_byte = ZIGBEE_SOF;
|
|
}
|
|
}
|
|
|
|
if ((0 == zigbee_buffer->len()) && (ZIGBEE_SOF != zigbee_in_byte)) {
|
|
// waiting for SOF (Start Of Frame) byte, discard anything else
|
|
AddLog(LOG_LEVEL_INFO, PSTR("ZbInput discarding byte %02X"), zigbee_in_byte);
|
|
continue; // discard
|
|
}
|
|
|
|
if (zigbee_buffer->len() < zigbee_frame_len) {
|
|
zigbee_buffer->add8(zigbee_in_byte);
|
|
zigbee_polling_window = millis(); // Wait for more data
|
|
fcs ^= zigbee_in_byte;
|
|
}
|
|
|
|
if (zigbee_buffer->len() >= zigbee_frame_len) {
|
|
zigbee_polling_window = 0; // Publish now
|
|
break;
|
|
}
|
|
|
|
// recalculate frame length
|
|
if (02 == zigbee_buffer->len()) {
|
|
// We just received the Lenght byte
|
|
uint8_t len_byte = zigbee_buffer->get8(1);
|
|
if (len_byte > 250) len_byte = 250; // ZNP spec says len is 250 max
|
|
|
|
zigbee_frame_len = len_byte + 5; // SOF + LEN + CMD1 + CMD2 + FCS = 5 bytes overhead
|
|
}
|
|
}
|
|
|
|
if (zigbee_buffer->len() && (millis() > (zigbee_polling_window + ZIGBEE_POLLING))) {
|
|
// AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "Bytes follow_read_metric = %0d"), ZigbeeSerial->getLoopReadMetric());
|
|
// buffer received, now check integrity
|
|
if (zigbee_buffer->len() != zigbee_frame_len) {
|
|
// Len is not correct, log and reject frame
|
|
AddLog(LOG_LEVEL_INFO, PSTR(D_JSON_ZIGBEEZNPRECEIVED ": received frame of wrong size %_B, len %d, expected %d"), zigbee_buffer, zigbee_buffer->len(), zigbee_frame_len);
|
|
} else if (0x00 != fcs) {
|
|
// FCS is wrong, packet is corrupt, log and reject frame
|
|
AddLog(LOG_LEVEL_INFO, PSTR(D_JSON_ZIGBEEZNPRECEIVED ": received bad FCS frame %_B, %d"), zigbee_buffer, fcs);
|
|
} else {
|
|
// frame is correct
|
|
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(D_JSON_ZIGBEEZNPRECEIVED ": received correct frame %s"), hex_char);
|
|
|
|
SBuffer znp_buffer = zigbee_buffer->subBuffer(2, zigbee_frame_len - 3); // remove SOF, LEN and FCS
|
|
|
|
Response_P(PSTR("{\"" D_JSON_ZIGBEEZNPRECEIVED "\":\"%_B\"}"), &znp_buffer);
|
|
if (Settings->flag3.tuya_serial_mqtt_publish) {
|
|
MqttPublishPrefixTopicRulesProcess_P(TELE, PSTR(D_RSLT_SENSOR));
|
|
} else {
|
|
#ifdef MQTT_DATA_STRING
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "%s"), TasmotaGlobal.mqtt_data.c_str());
|
|
#else
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "%s"), TasmotaGlobal.mqtt_data);
|
|
#endif
|
|
}
|
|
// now process the message
|
|
ZigbeeProcessInput(znp_buffer);
|
|
}
|
|
zigbee_buffer->setLen(0); // empty buffer
|
|
}
|
|
#endif // USE_ZIGBEE_ZNP
|
|
|
|
#ifdef USE_ZIGBEE_EZSP
|
|
static uint32_t zigbee_polling_window = 0; // number of milliseconds since first byte
|
|
static bool escape = false; // was the previous byte an escape?
|
|
bool frame_complete = false; // frame is ready and complete
|
|
// Receive only valid EZSP frames:
|
|
// 1A - Cancel - cancel all previous bytes
|
|
// 7D - Escape byte - following byte is escaped
|
|
// 7E - end of frame
|
|
|
|
Z_LedStatusSet(false);
|
|
|
|
while (ZigbeeSerial->available()) {
|
|
Z_LedStatusSet(true); // turn on receive LED<1>
|
|
|
|
yield();
|
|
uint8_t zigbee_in_byte = ZigbeeSerial->read();
|
|
// AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: ZbInput byte=0x%02X len=%d"), zigbee_in_byte, zigbee_buffer->len());
|
|
|
|
// if (0 == zigbee_buffer->len()) { // make sure all variables are correctly initialized
|
|
// escape = false;
|
|
// frame_complete = false;
|
|
// }
|
|
|
|
if ((0x11 == zigbee_in_byte) || (0x13 == zigbee_in_byte)) {
|
|
continue; // ignore reserved bytes XON/XOFF
|
|
}
|
|
|
|
if (ZIGBEE_EZSP_ESCAPE == zigbee_in_byte) {
|
|
// AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: Escape byte received"));
|
|
escape = true;
|
|
continue;
|
|
}
|
|
|
|
if (ZIGBEE_EZSP_CANCEL == zigbee_in_byte) {
|
|
// AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: ZbInput byte=0x1A, cancel byte received, discarding %d bytes"), zigbee_buffer->len());
|
|
zigbee_buffer->setLen(0); // empty buffer
|
|
escape = false;
|
|
frame_complete = false;
|
|
continue; // re-loop
|
|
}
|
|
|
|
if (ZIGBEE_EZSP_EOF == zigbee_in_byte) {
|
|
// end of frame
|
|
frame_complete = true;
|
|
break;
|
|
}
|
|
|
|
if (zigbee_buffer->len() < ZIGBEE_BUFFER_SIZE) {
|
|
if (escape) {
|
|
// invert bit 5
|
|
zigbee_in_byte ^= 0x20;
|
|
escape = false;
|
|
}
|
|
|
|
zigbee_buffer->add8(zigbee_in_byte);
|
|
zigbee_polling_window = millis(); // Wait for more data
|
|
} // adding bytes
|
|
} // while (ZigbeeSerial->available())
|
|
|
|
uint32_t frame_len = zigbee_buffer->len();
|
|
if (frame_complete || (frame_len && (millis() > (zigbee_polling_window + ZIGBEE_POLLING)))) {
|
|
// AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "Bytes follow_read_metric = %0d"), ZigbeeSerial->getLoopReadMetric());
|
|
if ((frame_complete) && (frame_len >= 3)) {
|
|
// frame received and has at least 3 bytes (without EOF), checking CRC
|
|
// AddLog(LOG_LEVEL_INFO, PSTR(D_JSON_ZIGBEE_EZSP_RECEIVED ": received raw frame %s"), hex_char);
|
|
uint16_t crc = 0xFFFF; // frame CRC
|
|
// compute CRC
|
|
for (uint32_t i=0; i<frame_len-2; i++) {
|
|
crc = crc ^ ((uint16_t)zigbee_buffer->get8(i) << 8);
|
|
for (uint32_t i=0; i<8; i++) {
|
|
if (crc & 0x8000) {
|
|
crc = (crc << 1) ^ 0x1021; // polynom is x^16 + x^12 + x^5 + 1, CCITT standard
|
|
} else {
|
|
crc <<= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint16_t crc_received = zigbee_buffer->get8(frame_len - 2) << 8 | zigbee_buffer->get8(frame_len - 1);
|
|
// remove 2 last bytes
|
|
|
|
if (crc_received != crc) {
|
|
AddLog(LOG_LEVEL_INFO, PSTR(D_JSON_ZIGBEE_EZSP_RECEIVED ": bad crc (received 0x%04X, computed 0x%04X) %_B"), crc_received, crc, zigbee_buffer);
|
|
} else {
|
|
// copy buffer
|
|
SBuffer ezsp_buffer = zigbee_buffer->subBuffer(0, frame_len - 2); // CRC
|
|
|
|
// CRC is correct, apply de-stuffing if DATA frame
|
|
if (0 == (ezsp_buffer.get8(0) & 0x80)) {
|
|
// DATA frame
|
|
uint8_t rand = 0x42;
|
|
for (uint32_t i=1; i<ezsp_buffer.len(); i++) {
|
|
ezsp_buffer.set8(i, ezsp_buffer.get8(i) ^ rand);
|
|
if (rand & 1) { rand = (rand >> 1) ^ 0xB8; }
|
|
else { rand = (rand >> 1); }
|
|
}
|
|
}
|
|
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "{\"" D_JSON_ZIGBEE_EZSP_RECEIVED "2\":\"%_B\"}"), &ezsp_buffer);
|
|
// now process the message
|
|
ZigbeeProcessInputRaw(ezsp_buffer);
|
|
}
|
|
} else {
|
|
// the buffer timed-out, print error and discard
|
|
AddLog(LOG_LEVEL_INFO, PSTR(D_JSON_ZIGBEE_EZSP_RECEIVED ": time-out, discarding %_B"), zigbee_buffer);
|
|
}
|
|
zigbee_buffer->setLen(0); // empty buffer
|
|
escape = false;
|
|
frame_complete = false;
|
|
}
|
|
|
|
#endif // USE_ZIGBEE_EZSP
|
|
|
|
}
|
|
|
|
/********************************************************************************************/
|
|
|
|
// Initialize internal structures
|
|
void ZigbeeInitSerial(void)
|
|
{
|
|
// AddLog(LOG_LEVEL_INFO, PSTR("ZigbeeInit Mem1 = %d"), ESP_getFreeHeap());
|
|
zigbee.active = false;
|
|
if (PinUsed(GPIO_ZIGBEE_RX) && PinUsed(GPIO_ZIGBEE_TX)) {
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "GPIOs Rx:%d Tx:%d"), Pin(GPIO_ZIGBEE_RX), Pin(GPIO_ZIGBEE_TX));
|
|
// if TasmotaGlobal.seriallog_level is 0, we allow GPIO 13/15 to switch to Hardware Serial
|
|
ZigbeeSerial = new TasmotaSerial(Pin(GPIO_ZIGBEE_RX), Pin(GPIO_ZIGBEE_TX), TasmotaGlobal.seriallog_level ? 1 : 2, 0, 256); // set a receive buffer of 256 bytes
|
|
ZigbeeSerial->begin(115200);
|
|
if (ZigbeeSerial->hardwareSerial()) {
|
|
ClaimSerial();
|
|
uint32_t aligned_buffer = ((uint32_t)TasmotaGlobal.serial_in_buffer + 3) & ~3;
|
|
zigbee_buffer = new PreAllocatedSBuffer(sizeof(TasmotaGlobal.serial_in_buffer) - 3, (char*) aligned_buffer);
|
|
} else {
|
|
// AddLog(LOG_LEVEL_INFO, PSTR("ZigbeeInit Mem2 = %d"), ESP_getFreeHeap());
|
|
zigbee_buffer = new SBuffer(ZIGBEE_BUFFER_SIZE);
|
|
// AddLog(LOG_LEVEL_INFO, PSTR("ZigbeeInit Mem3 = %d"), ESP_getFreeHeap());
|
|
}
|
|
|
|
if (PinUsed(GPIO_ZIGBEE_RST)) {
|
|
pinMode(Pin(GPIO_ZIGBEE_RST), OUTPUT);
|
|
digitalWrite(Pin(GPIO_ZIGBEE_RST), 1);
|
|
}
|
|
if (PinUsed(GPIO_ZIGBEE_RST, 1)) {
|
|
pinMode(Pin(GPIO_ZIGBEE_RST, 1), OUTPUT);
|
|
digitalWrite(Pin(GPIO_ZIGBEE_RST, 1), 1);
|
|
}
|
|
|
|
zigbee.active = true;
|
|
zigbee.init_phase = true; // start the state machine
|
|
zigbee.state_machine = true; // start the state machine
|
|
ZigbeeSerial->flush();
|
|
}
|
|
// AddLog(LOG_LEVEL_INFO, PSTR("ZigbeeInit Mem9 = %d"), ESP_getFreeHeap());
|
|
}
|
|
|
|
#ifdef USE_ZIGBEE_ZNP
|
|
|
|
// flush any ongoing frame, sending 256 times 0xFF
|
|
void ZigbeeZNPFlush(void) {
|
|
if (ZigbeeSerial) {
|
|
for (uint32_t i = 0; i < 256; i++) {
|
|
ZigbeeSerial->write(0xFF);
|
|
}
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE D_JSON_ZIGBEEZNPSENT " 0xFF x 255"));
|
|
}
|
|
}
|
|
|
|
void ZigbeeZNPSend(const uint8_t *msg, size_t len) {
|
|
if ((len < 2) || (len > 252)) {
|
|
// abort, message cannot be less than 2 bytes for CMD1 and CMD2
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR(D_JSON_ZIGBEEZNPSENT ": bad message len %d"), len);
|
|
return;
|
|
}
|
|
uint8_t data_len = len - 2; // removing CMD1 and CMD2
|
|
|
|
if (ZigbeeSerial) {
|
|
uint8_t fcs = data_len;
|
|
|
|
ZigbeeSerial->write(ZIGBEE_SOF); // 0xFE
|
|
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend SOF %02X"), ZIGBEE_SOF);
|
|
ZigbeeSerial->write(data_len);
|
|
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend LEN %02X"), data_len);
|
|
for (uint32_t i = 0; i < len; i++) {
|
|
uint8_t b = pgm_read_byte(msg + i);
|
|
ZigbeeSerial->write(b);
|
|
fcs ^= b;
|
|
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend byt %02X"), b);
|
|
}
|
|
ZigbeeSerial->write(fcs); // finally send fcs checksum byte
|
|
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend FCS %02X"), fcs);
|
|
}
|
|
// Now send a MQTT message to report the sent message
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE D_JSON_ZIGBEEZNPSENT " %*_H"), len, msg);
|
|
}
|
|
|
|
//
|
|
// Same code for `ZbZNPSend` and `ZbZNPReceive`
|
|
// building the complete message (intro, length)
|
|
//
|
|
void CmndZbZNPSendOrReceive(bool send)
|
|
{
|
|
if (ZigbeeSerial && (XdrvMailbox.data_len > 0)) {
|
|
uint8_t code;
|
|
|
|
char *codes = RemoveSpace(XdrvMailbox.data);
|
|
int32_t size = strlen(XdrvMailbox.data);
|
|
|
|
SBuffer buf((size+1)/2);
|
|
|
|
while (size > 1) {
|
|
char stemp[3];
|
|
strlcpy(stemp, codes, sizeof(stemp));
|
|
code = strtol(stemp, nullptr, 16);
|
|
buf.add8(code);
|
|
size -= 2;
|
|
codes += 2;
|
|
}
|
|
if (send) {
|
|
// Command was `ZbZNPSend`
|
|
ZigbeeZNPSend(buf.getBuffer(), buf.len());
|
|
} else {
|
|
// Command was `ZbZNPReceive`
|
|
ZigbeeProcessInput(buf);
|
|
}
|
|
}
|
|
ResponseCmndDone();
|
|
}
|
|
|
|
// For debug purposes only, simulates a message received
|
|
void CmndZbZNPReceive(void)
|
|
{
|
|
CmndZbZNPSendOrReceive(false);
|
|
}
|
|
|
|
void CmndZbZNPSend(void)
|
|
{
|
|
CmndZbZNPSendOrReceive(true);
|
|
}
|
|
|
|
#endif // USE_ZIGBEE_ZNP
|
|
|
|
#ifdef USE_ZIGBEE_EZSP
|
|
|
|
// internal function to output a byte, and escape it (stuffing) if needed
|
|
void ZigbeeEZSPSend_Out(uint8_t out_byte) {
|
|
switch (out_byte) {
|
|
case 0x7E: // Flag byte
|
|
case 0x11: // XON
|
|
case 0x13: // XOFF
|
|
case 0x18: // Substitute byte
|
|
case 0x1A: // Cancel byte
|
|
case 0x7D: // Escape byte
|
|
// case 0xFF: // special wake-up
|
|
ZigbeeSerial->write(ZIGBEE_EZSP_ESCAPE); // send Escape byte 0x7D
|
|
ZigbeeSerial->write(out_byte ^ 0x20); // send with bit 5 inverted
|
|
break;
|
|
default:
|
|
ZigbeeSerial->write(out_byte); // send unchanged
|
|
break;
|
|
}
|
|
}
|
|
// Send low-level EZSP frames
|
|
//
|
|
// The frame should contain the Control Byte and Data Field
|
|
// The frame shouldn't be escaped, nor randomized
|
|
//
|
|
// Before sending:
|
|
// - send Cancel byte (0x1A) if requested
|
|
// - randomize Data Field if DATA Frame
|
|
// - compute CRC16
|
|
// - escape (stuff) reserved bytes
|
|
// - add EOF (0x7E)
|
|
// - send frame
|
|
// send_cancel: should we first send a EZSP_CANCEL (0x1A) before the message to clear any leftover
|
|
void ZigbeeEZSPSendRaw(const uint8_t *msg, size_t len, bool send_cancel) {
|
|
if ((len < 1) || (len > 252)) {
|
|
// abort, message cannot be less than 2 bytes for CMD1 and CMD2
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR(D_JSON_ZIGBEE_EZSP_SENT ": bad message len %d"), len);
|
|
return;
|
|
}
|
|
// turn send led on
|
|
Z_LedStatusSet(true);
|
|
|
|
if (ZigbeeSerial) {
|
|
if (send_cancel) {
|
|
ZigbeeSerial->write(ZIGBEE_EZSP_CANCEL); // 0x1A
|
|
}
|
|
|
|
bool data_frame = (0 == (msg[0] & 0x80));
|
|
uint8_t rand = 0x42; // pseudo-randomizer initial value
|
|
uint16_t crc = 0xFFFF; // CRC16 CCITT initialization
|
|
|
|
for (uint32_t i=0; i<len; i++) {
|
|
uint8_t out_byte = msg[i];
|
|
|
|
// apply randomization if DATA field
|
|
if (data_frame && (i > 0)) {
|
|
out_byte ^= rand;
|
|
if (rand & 1) { rand = (rand >> 1) ^ 0xB8; }
|
|
else { rand = (rand >> 1); }
|
|
}
|
|
|
|
// compute CRC
|
|
crc = crc ^ ((uint16_t)out_byte << 8);
|
|
for (uint32_t i=0; i<8; i++) {
|
|
if (crc & 0x8000) {
|
|
crc = (crc << 1) ^ 0x1021; // polynom is x^16 + x^12 + x^5 + 1, CCITT standard
|
|
} else {
|
|
crc <<= 1;
|
|
}
|
|
}
|
|
|
|
// output byte
|
|
ZigbeeEZSPSend_Out(out_byte);
|
|
}
|
|
// send CRC16 in big-endian
|
|
ZigbeeEZSPSend_Out(crc >> 8);
|
|
ZigbeeEZSPSend_Out(crc & 0xFF);
|
|
|
|
// finally send End of Frame
|
|
ZigbeeSerial->write(ZIGBEE_EZSP_EOF); // 0x1A
|
|
}
|
|
|
|
// Now send a MQTT message to report the sent message
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE D_JSON_ZIGBEE_EZSP_SENT_RAW " %*_H"), len, msg);
|
|
}
|
|
|
|
// Send an EZSP command and data
|
|
// Ex: Version with min v8 = 000008
|
|
void ZigbeeEZSPSendCmd(const uint8_t *msg, size_t len) {
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "ZbEZSPSend %*_H"), len, msg);
|
|
|
|
SBuffer cmd(len+3); // prefix with seq number (1 byte) and frame control bytes (2 bytes)
|
|
|
|
cmd.add8(EZSP_Serial.ezsp_seq++);
|
|
cmd.add8(0x00); // Low byte of Frame Control
|
|
cmd.add8(0x01); // High byte of Frame Control, frameFormatVersion = 1
|
|
cmd.addBuffer(msg, len);
|
|
|
|
// send
|
|
ZigbeeEZSPSendDATA(cmd.getBuffer(), cmd.len());
|
|
}
|
|
|
|
// Send an EZSP DATA frame, automatically calculating the correct frame numbers
|
|
void ZigbeeEZSPSendDATA_frm(bool send_cancel, uint8_t to_frm, uint8_t from_ack) {
|
|
SBuffer *buf = EZSP_Serial.to_packets[to_frm];
|
|
if (!buf) {
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: Buffer for packet %d is not allocated"), EZSP_Serial.to_send);
|
|
return;
|
|
}
|
|
|
|
uint8_t control_byte = ((to_frm & 0x07) << 4) + (from_ack & 0x07);
|
|
buf->set8(0, control_byte); // change control_byte
|
|
// send
|
|
ZigbeeEZSPSendRaw(buf->getBuffer(), buf->len(), send_cancel);
|
|
}
|
|
|
|
// Send an EZSP DATA frame, automatically calculating the correct frame numbers
|
|
void ZigbeeEZSPSendDATA(const uint8_t *msg, size_t len) {
|
|
// prepare buffer by adding 1 byte prefix
|
|
SBuffer *buf = new SBuffer(len+1); // prepare for control_byte prefix
|
|
buf->add8(0x00); // placeholder for control_byte
|
|
buf->addBuffer(msg, len);
|
|
//
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: adding packet to_send, to_ack:%d, to_send:%d, to_end:%d"),
|
|
EZSP_Serial.to_ack, EZSP_Serial.to_send, EZSP_Serial.to_end);
|
|
uint8_t to_frm = EZSP_Serial.to_end;
|
|
if (EZSP_Serial.to_packets[to_frm]) {
|
|
delete EZSP_Serial.to_packets[to_frm];
|
|
EZSP_Serial.to_packets[to_frm] = nullptr;
|
|
}
|
|
EZSP_Serial.to_packets[to_frm] = buf;
|
|
EZSP_Serial.to_end = (to_frm + 1) & 0x07; // move cursor
|
|
|
|
// ZigbeeEZSPSendDATA_frm(send_cancel, to_frm, EZSP_Serial.from_ack);
|
|
|
|
// increment to_frame
|
|
//EZSP_Serial.to_ack = (EZSP_Serial.to_ack + 1) & 0x07;
|
|
//EZSP_Serial.to_frm = (EZSP_Serial.to_frm + 1) & 0x07;
|
|
}
|
|
|
|
// Receive a high-level EZSP command/response, starting with 16-bits frame ID
|
|
void ZigbeeProcessInputEZSP(SBuffer &buf) {
|
|
// verify errors in first 2 bytes.
|
|
// TODO
|
|
// uint8_t sequence_num = buf.get8(0);
|
|
uint16_t frame_control = buf.get16(1);
|
|
bool truncated = frame_control & 0x02;
|
|
bool overflow = frame_control & 0x01;
|
|
// bool callbackPending = frame_control & 0x04;
|
|
bool security_enabled = frame_control & 0x8000;
|
|
if (truncated || overflow || security_enabled) {
|
|
AddLog(LOG_LEVEL_INFO, PSTR("ZIG: specific frame_control 0x%04X"), frame_control);
|
|
}
|
|
|
|
// remove first 2 bytes, be
|
|
for (uint32_t i=0; i<buf.len()-3; i++) {
|
|
buf.set8(i, buf.get8(i+3));
|
|
}
|
|
buf.setLen(buf.len() - 3);
|
|
|
|
// log message
|
|
Response_P(PSTR("{\"" D_JSON_ZIGBEE_EZSP_RECEIVED "\":\"%_B\"}"), &buf);
|
|
if (Settings->flag3.tuya_serial_mqtt_publish) {
|
|
MqttPublishPrefixTopicRulesProcess_P(TELE, PSTR(D_RSLT_SENSOR));
|
|
} else {
|
|
// demote less interesting messages to LOG_LEVEL_DEBUG
|
|
uint32_t log_level = LOG_LEVEL_INFO;
|
|
switch (buf.get16(0)) {
|
|
case EZSP_version: // 0000
|
|
case EZSP_addEndpoint: // 0200
|
|
case EZSP_setConcentrator: // 1000
|
|
case EZSP_networkInit: // 1700
|
|
case EZSP_stackStatusHandler: // 1900
|
|
case EZSP_startScan: // 1A00
|
|
case EZSP_scanCompleteHandler: // 1C00
|
|
case EZSP_formNetwork: // 1E00
|
|
case EZSP_permitJoining: // 2200
|
|
case EZSP_getEui64: // 2600
|
|
case EZSP_getNodeId: // 2700
|
|
case EZSP_getNetworkParameters: // 2800
|
|
case EZSP_sendUnicast: // 3400
|
|
case EZSP_sendBroadcast: // 3600
|
|
case EZSP_sendMulticast: // 3800
|
|
case EZSP_messageSentHandler: // 3F00
|
|
case EZSP_incomingMessageHandler: // 4500
|
|
case EZSP_energyScanResultHandler: // 4800
|
|
case EZSP_setConfigurationValue: // 5300
|
|
case EZSP_setPolicy: // 5500
|
|
case 0x0059: // 5900 - supposedly removed by still happening
|
|
case EZSP_setMulticastTableEntry: // 6400
|
|
case EZSP_setInitialSecurityState: // 6800
|
|
case EZSP_getCurrentSecurityState: // 6900
|
|
case EZSP_getKey: // 6A00
|
|
log_level = LOG_LEVEL_DEBUG;
|
|
break;
|
|
}
|
|
#ifdef MQTT_DATA_STRING
|
|
AddLog(log_level, PSTR(D_LOG_ZIGBEE "%s"), TasmotaGlobal.mqtt_data.c_str()); // TODO move to LOG_LEVEL_DEBUG when stable
|
|
#else
|
|
AddLog(log_level, PSTR(D_LOG_ZIGBEE "%s"), TasmotaGlobal.mqtt_data); // TODO move to LOG_LEVEL_DEBUG when stable
|
|
#endif
|
|
}
|
|
|
|
// Pass message to state machine
|
|
ZigbeeProcessInput(buf);
|
|
}
|
|
|
|
// Check if we advanced in the ACKed frames, and free from memory packets acknowledged
|
|
void EZSP_HandleAck(uint8_t new_ack) {
|
|
if (EZSP_Serial.to_ack != new_ack) { // new ack receveid
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: new ack/data received, was %d now %d"), EZSP_Serial.to_ack, new_ack);
|
|
uint32_t i = EZSP_Serial.to_ack;
|
|
do {
|
|
if (EZSP_Serial.to_packets[i]) {
|
|
delete EZSP_Serial.to_packets[i];
|
|
EZSP_Serial.to_packets[i] = nullptr;
|
|
}
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: freeing packet %d from memory"), i);
|
|
i = (i + 1) & 0x07;
|
|
} while (i != new_ack);
|
|
EZSP_Serial.to_ack = new_ack;
|
|
}
|
|
}
|
|
|
|
// Receive raw ASH frame (CRC was removed, data unstuffed) but still contains frame numbers
|
|
void ZigbeeProcessInputRaw(SBuffer &buf) {
|
|
uint8_t control_byte = buf.get8(0);
|
|
uint8_t ack_num = control_byte & 0x07; // keep 3 LSB
|
|
if (control_byte & 0x80) { // non DATA frame
|
|
|
|
uint8_t frame_type = control_byte & 0xE0; // keep 3 MSB
|
|
if (frame_type == 0x80) {
|
|
|
|
// ACK
|
|
EZSP_HandleAck(ack_num);
|
|
} else if (frame_type == 0xA0) {
|
|
|
|
// NAK
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: Received NAK %d, to_ack:%d, to_send:%d, to_end:%d"),
|
|
ack_num, EZSP_Serial.to_ack, EZSP_Serial.to_send, EZSP_Serial.to_end);
|
|
EZSP_Serial.to_send = ack_num;
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR("ZIG: NAK, resending packet %d"), ack_num);
|
|
} else if (control_byte == 0xC1) {
|
|
|
|
// RSTACK
|
|
// received just after boot, either because of Power up, hardware reset or RST
|
|
EZ_RSTACK(buf.get8(2));
|
|
EZSP_Serial.from_ack = 0;
|
|
EZSP_Serial.to_ack = 0;
|
|
EZSP_Serial.to_end = 0;
|
|
EZSP_Serial.to_send = 0;
|
|
|
|
// pass it to state machine with a special 0xFFFE frame code (EZSP_RSTACK_ID)
|
|
buf.set8(0, Z_B0(EZSP_rstAck));
|
|
buf.set8(1, Z_B1(EZSP_rstAck));
|
|
// keep byte #2 with code
|
|
buf.setLen(3);
|
|
ZigbeeProcessInput(buf);
|
|
} else if (control_byte == 0xC2) {
|
|
|
|
// ERROR
|
|
EZ_ERROR(buf.get8(2));
|
|
zigbee.active = false; // stop all zigbee activities
|
|
TasmotaGlobal.restart_flag = 2; // there is nothing more we can do except restart
|
|
} else {
|
|
|
|
// Unknown
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR("ZIG: Received unknown control byte 0x%02X"), control_byte);
|
|
}
|
|
} else { // DATA Frame
|
|
|
|
// adjust to latest acked packet
|
|
uint8_t new_ack = control_byte & 0x07;
|
|
EZSP_HandleAck(new_ack);
|
|
|
|
// MCU acknowledged the correct frame
|
|
// we acknowledge the frame too
|
|
EZSP_Serial.from_ack = ((control_byte >> 4) + 1) & 0x07;
|
|
uint8_t ack_byte = 0x80 | EZSP_Serial.from_ack;
|
|
ZigbeeEZSPSendRaw(&ack_byte, 1, false); // send a 1-byte ACK
|
|
|
|
// build the EZSP frame
|
|
// remove first byte
|
|
for (uint8_t i=0; i<buf.len()-1; i++) {
|
|
buf.set8(i, buf.get8(i+1));
|
|
}
|
|
buf.setLen(buf.len()-1);
|
|
// pass to next level
|
|
ZigbeeProcessInputEZSP(buf);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Same code for `ZbEZSPSend` and `ZbEZSPReceive`
|
|
// building the complete message (intro, length)
|
|
//
|
|
// ZbEZSPSend1 = high level EZSP command
|
|
// ZbEZSPSend2 = low level EZSP DATA frame (with sequence numbers)
|
|
// ZbEZSPSend3 = low level ASH frame
|
|
//
|
|
void CmndZbEZSPSendOrReceive(bool send)
|
|
{
|
|
if (ZigbeeSerial && (XdrvMailbox.data_len > 0)) {
|
|
uint8_t code;
|
|
|
|
char *codes = RemoveSpace(XdrvMailbox.data);
|
|
int32_t size = strlen(XdrvMailbox.data);
|
|
|
|
SBuffer buf((size+1)/2);
|
|
|
|
while (size > 1) {
|
|
char stemp[3];
|
|
strlcpy(stemp, codes, sizeof(stemp));
|
|
code = strtol(stemp, nullptr, 16);
|
|
buf.add8(code);
|
|
size -= 2;
|
|
codes += 2;
|
|
}
|
|
if (send) {
|
|
// Command was `ZbEZSPSend`
|
|
if (2 == XdrvMailbox.index) { ZigbeeEZSPSendDATA(buf.getBuffer(), buf.len()); }
|
|
else if (3 == XdrvMailbox.index) { ZigbeeEZSPSendRaw(buf.getBuffer(), buf.len(), true); }
|
|
else { ZigbeeEZSPSendCmd(buf.getBuffer(), buf.len()); }
|
|
|
|
} else {
|
|
// Command was `ZbEZSPReceive`
|
|
if (2 == XdrvMailbox.index) { ZigbeeProcessInput(buf); }
|
|
else if (3 == XdrvMailbox.index) { ZigbeeProcessInputRaw(buf); }
|
|
else { ZigbeeProcessInputEZSP(buf); } // TODO
|
|
}
|
|
}
|
|
ResponseCmndDone();
|
|
}
|
|
// Variants with managed ASH frame numbers
|
|
// For debug purposes only, simulates a message received
|
|
void CmndZbEZSPReceive(void)
|
|
{
|
|
CmndZbEZSPSendOrReceive(false);
|
|
}
|
|
|
|
void CmndZbEZSPSend(void)
|
|
{
|
|
CmndZbEZSPSendOrReceive(true);
|
|
}
|
|
#endif // USE_ZIGBEE_EZSP
|
|
|
|
//
|
|
// Internal function, send the low-level frame
|
|
// Input:
|
|
// - shortaddr: 16-bits short address, or 0x0000 if group address
|
|
// - groupaddr: 16-bits group address, or 0x0000 if unicast using shortaddr
|
|
// - clusterIf: 16-bits cluster number
|
|
// - endpoint: 8-bits target endpoint (source is always 0x01), unused for group addresses. Should not be 0x00 except when sending to group address.
|
|
// - cmd: 8-bits ZCL command number
|
|
// - clusterSpecific: boolean, is the message general cluster or cluster specific, used to create the FC byte of ZCL
|
|
// - msg: pointer to byte array, payload of ZCL message (len is following), ignored if nullptr
|
|
// - len: length of the 'msg' payload
|
|
// - needResponse: boolean, true = we ask the target to respond, false = the target should not respond
|
|
// - transac: 8-bits, transation id of message (should be incremented at each message), used both for Zigbee message number and ZCL message number
|
|
// Returns: None
|
|
//
|
|
|
|
void ZigbeeZCLSend_Raw(const ZCLMessage &zcl) {
|
|
SBuffer buf(32+zcl.buf.len());
|
|
|
|
#ifdef USE_ZIGBEE_ZNP
|
|
buf.add8(Z_SREQ | Z_AF); // 24
|
|
buf.add8(AF_DATA_REQUEST_EXT); // 02
|
|
if (!zcl.validShortaddr()) { // if no shortaddr we assume group address
|
|
buf.add8(Z_Addr_Group); // 01
|
|
buf.add64(zcl.groupaddr); // group address, only 2 LSB, upper 6 MSB are discarded
|
|
buf.add8(0xFF); // dest endpoint is not used for group addresses
|
|
} else {
|
|
buf.add8(Z_Addr_ShortAddress); // 02
|
|
buf.add64(zcl.shortaddr); // dest address, only 2 LSB, upper 6 MSB are discarded
|
|
buf.add8(zcl.endpoint); // dest endpoint
|
|
}
|
|
buf.add16(0x0000); // dest Pan ID, 0x0000 = intra-pan
|
|
buf.add8(0x01); // source endpoint
|
|
buf.add16(zcl.cluster);
|
|
buf.add8(zcl.transac); // transac
|
|
buf.add8(0x30); // 30 options
|
|
buf.add8(0x1E); // 1E radius
|
|
|
|
buf.add16(3 + zcl.buf.len() + (zcl.manuf ? 2 : 0));
|
|
buf.add8((zcl.needResponse ? 0x00 : 0x10) | (zcl.clusterSpecific ? 0x01 : 0x00) | (zcl.manuf ? 0x04 : 0x00)); // Frame Control Field
|
|
if (zcl.manuf) {
|
|
buf.add16(zcl.manuf); // add Manuf Id if not null
|
|
}
|
|
buf.add8(zcl.transac); // Transaction Sequence Number
|
|
buf.add8(zcl.cmd);
|
|
buf.addBuffer(zcl.buf);
|
|
|
|
ZigbeeZNPSend(buf.getBuffer(), buf.len());
|
|
#endif // USE_ZIGBEE_ZNP
|
|
|
|
#ifdef USE_ZIGBEE_EZSP
|
|
if (zcl.validShortaddr()) {
|
|
// send unicast message to an address
|
|
buf.add16(EZSP_sendUnicast); // 3400
|
|
buf.add8(EMBER_OUTGOING_DIRECT); // 00
|
|
buf.add16(zcl.shortaddr); // dest addr
|
|
// ApsFrame
|
|
buf.add16(Z_PROF_HA); // Home Automation profile
|
|
buf.add16(zcl.cluster); // cluster
|
|
buf.add8(0x01); // srcEp
|
|
buf.add8(zcl.endpoint); // dstEp
|
|
if (zcl.direct) {
|
|
buf.add16(0x0000); // APS frame
|
|
} else {
|
|
buf.add16(EMBER_APS_OPTION_ENABLE_ROUTE_DISCOVERY | EMBER_APS_OPTION_RETRY); // APS frame
|
|
}
|
|
buf.add16(zcl.groupaddr); // groupId
|
|
buf.add8(zcl.transac);
|
|
// end of ApsFrame
|
|
buf.add8(0x01); // tag TODO
|
|
|
|
buf.add8(3 + zcl.buf.len() + (zcl.manuf ? 2 : 0));
|
|
buf.add8((zcl.needResponse ? 0x00 : 0x10) | (zcl.clusterSpecific ? 0x01 : 0x00) | (zcl.manuf ? 0x04 : 0x00)); // Frame Control Field
|
|
if (zcl.manuf) {
|
|
buf.add16(zcl.manuf); // add Manuf Id if not null
|
|
}
|
|
buf.add8(zcl.transac); // Transaction Sequance Number
|
|
buf.add8(zcl.cmd);
|
|
buf.addBuffer(zcl.buf);
|
|
} else {
|
|
// send broadcast group address, aka groupcast
|
|
buf.add16(EZSP_sendMulticast); // 3800
|
|
// ApsFrame
|
|
buf.add16(Z_PROF_HA); // Home Automation profile
|
|
buf.add16(zcl.cluster); // cluster
|
|
buf.add8(0x01); // srcEp
|
|
buf.add8(zcl.endpoint); // broadcast endpoint for groupcast
|
|
if (zcl.direct) {
|
|
buf.add16(0x0000); // APS frame
|
|
} else {
|
|
buf.add16(EMBER_APS_OPTION_ENABLE_ROUTE_DISCOVERY | EMBER_APS_OPTION_RETRY); // APS frame
|
|
}
|
|
buf.add16(zcl.groupaddr); // groupId
|
|
buf.add8(zcl.transac);
|
|
// end of ApsFrame
|
|
buf.add8(0); // hops, 0x00 = EMBER_MAX_HOPS
|
|
buf.add8(7); // nonMemberRadius, 7 = infinite
|
|
buf.add8(0x01); // tag TODO
|
|
|
|
buf.add8(3 + zcl.buf.len() + (zcl.manuf ? 2 : 0));
|
|
buf.add8((zcl.needResponse ? 0x00 : 0x10) | (zcl.clusterSpecific ? 0x01 : 0x00) | (zcl.manuf ? 0x04 : 0x00)); // Frame Control Field
|
|
if (zcl.manuf) {
|
|
buf.add16(zcl.manuf); // add Manuf Id if not null
|
|
}
|
|
buf.add8(zcl.transac); // Transaction Sequance Number
|
|
buf.add8(zcl.cmd);
|
|
buf.addBuffer(zcl.buf);
|
|
}
|
|
|
|
ZigbeeEZSPSendCmd(buf.buf(), buf.len());
|
|
#endif // USE_ZIGBEE_EZSP
|
|
}
|
|
|
|
//
|
|
// Send any buffered data to the NCP
|
|
//
|
|
// Used only with EZSP, as there is no replay of procotol control with ZNP
|
|
void ZigbeeOutputLoop(void) {
|
|
#ifdef USE_ZIGBEE_EZSP
|
|
// while (EZSP_Serial.to_send != EZSP_Serial.to_end) {
|
|
if (EZSP_Serial.to_send != EZSP_Serial.to_end) { // we send only one packet per tick to lower the chance of NAK
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("ZIG: Something to_send, to_ack:%d, to_send:%d, to_end:%d"),
|
|
EZSP_Serial.to_ack, EZSP_Serial.to_send, EZSP_Serial.to_end);
|
|
// we have a frame waiting to be sent
|
|
ZigbeeEZSPSendDATA_frm(true, EZSP_Serial.to_send, EZSP_Serial.from_ack);
|
|
// increment sent counter
|
|
EZSP_Serial.to_send = (EZSP_Serial.to_send + 1) & 0x07;
|
|
}
|
|
#endif // USE_ZIGBEE_EZSP
|
|
}
|
|
|
|
#endif // USE_ZIGBEE
|