Tasmota/sonoff/xdrv_05_irremote.ino

1074 lines
33 KiB
C++

/*
xdrv_05_irremote.ino - infra red support for Sonoff-Tasmota
Copyright (C) 2019 Heiko Krupp, Lazar Obradovic and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_IR_REMOTE
/*********************************************************************************************\
* IR Remote send and receive using IRremoteESP8266 library
\*********************************************************************************************/
#define XDRV_05 5
#include <IRremoteESP8266.h>
enum IrErrors { IE_NO_ERROR, IE_INVALID_RAWDATA, IE_INVALID_JSON, IE_SYNTAX_IRSEND, IE_SYNTAX_IRHVAC };
const char kIrRemoteCommands[] PROGMEM = "|" // No prefix
#ifdef USE_IR_HVAC
D_CMND_IRHVAC "|"
#endif
D_CMND_IRSEND ;
void (* const IrRemoteCommand[])(void) PROGMEM = {
#ifdef USE_IR_HVAC
&CmndIrHvac,
#endif
&CmndIrSend };
// Based on IRremoteESP8266.h enum decode_type_t
static const uint8_t MAX_STANDARD_IR = SHARP; // this is the last code mapped to decode_type_t
enum IrVendors { IR_BASE = MAX_STANDARD_IR,
#ifdef USE_IR_SEND_PIONEER
IR_PIONEER,
#endif // USE_IR_SEND_PIONEER
};
const char kIrRemoteProtocols[] PROGMEM =
"UNKNOWN|RC5|RC6|NEC|SONY|PANASONIC|JVC|SAMSUNG|WHYNTER|AIWA_RC_T501|LG|SANYO|MITSUBISHI|DISH|SHARP"
// now allow for other codes beyond the first series;
#ifdef USE_IR_SEND_PIONEER
"|PIONEER"
#endif // USE_IR_SEND_PIONEER
;
/*********************************************************************************************\
* IR Send
\*********************************************************************************************/
#include <IRsend.h>
IRsend *irsend = nullptr;
bool irsend_active = false;
void IrSendInit(void)
{
irsend = new IRsend(pin[GPIO_IRSEND]); // an IR led is at GPIO_IRSEND
irsend->begin();
}
char* IrUint64toHex(uint64_t value, char *str, uint16_t bits)
{
ulltoa(value, str, 16); // Get 64bit value
int fill = 8;
if ((bits > 3) && (bits < 65)) {
fill = bits / 4; // Max 16
if (bits % 4) { fill++; }
}
int len = strlen(str);
fill -= len;
if (fill > 0) {
memmove(str + fill, str, len +1);
memset(str, '0', fill);
}
memmove(str + 2, str, strlen(str) +1);
str[0] = '0';
str[1] = 'x';
return str;
}
#ifdef USE_IR_RECEIVE
/*********************************************************************************************\
* IR Receive
\*********************************************************************************************/
const bool IR_RCV_SAVE_BUFFER = false; // false = do not use buffer, true = use buffer for decoding
const uint32_t IR_TIME_AVOID_DUPLICATE = 500; // Milliseconds
#include <IRrecv.h>
IRrecv *irrecv = nullptr;
unsigned long ir_lasttime = 0;
void IrReceiveUpdateThreshold()
{
if (irrecv != nullptr) {
if (Settings.param[P_IR_UNKNOW_THRESHOLD] < 6) { Settings.param[P_IR_UNKNOW_THRESHOLD] = 6; }
irrecv->setUnknownThreshold(Settings.param[P_IR_UNKNOW_THRESHOLD]);
}
}
void IrReceiveInit(void)
{
// an IR led is at GPIO_IRRECV
irrecv = new IRrecv(pin[GPIO_IRRECV], IR_RCV_BUFFER_SIZE, IR_RCV_TIMEOUT, IR_RCV_SAVE_BUFFER);
irrecv->setUnknownThreshold(Settings.param[P_IR_UNKNOW_THRESHOLD]);
irrecv->enableIRIn(); // Start the receiver
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("IrReceive initialized"));
}
void IrReceiveCheck(void)
{
char sirtype[14]; // Max is AIWA_RC_T501
int8_t iridx = 0;
decode_results results;
if (irrecv->decode(&results)) {
char hvalue[64];
IrUint64toHex(results.value, hvalue, results.bits); // Get 64bit value as hex 0x00123456
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_IRR "Echo %d, RawLen %d, Overflow %d, Bits %d, Value %s, Decode %d"),
irsend_active, results.rawlen, results.overflow, results.bits, hvalue, results.decode_type);
unsigned long now = millis();
// if ((now - ir_lasttime > IR_TIME_AVOID_DUPLICATE) && (UNKNOWN != results.decode_type) && (results.bits > 0)) {
if (!irsend_active && (now - ir_lasttime > IR_TIME_AVOID_DUPLICATE)) {
ir_lasttime = now;
iridx = results.decode_type;
if ((iridx < 0) || (iridx > 14)) { iridx = 0; } // UNKNOWN
char svalue[64];
if (Settings.flag.ir_receive_decimal) {
ulltoa(results.value, svalue, 10);
} else {
snprintf_P(svalue, sizeof(svalue), PSTR("\"%s\""), hvalue);
}
Response_P(PSTR("{\"" D_JSON_IRRECEIVED "\":{\"" D_JSON_IR_PROTOCOL "\":\"%s\",\"" D_JSON_IR_BITS "\":%d,\"" D_JSON_IR_DATA "\":%s"),
GetTextIndexed(sirtype, sizeof(sirtype), iridx, kIrRemoteProtocols), results.bits, svalue);
if (Settings.flag3.receive_raw) {
ResponseAppend_P(PSTR(",\"" D_JSON_IR_RAWDATA "\":["));
uint16_t i;
for (i = 1; i < results.rawlen; i++) {
if (i > 1) { ResponseAppend_P(PSTR(",")); }
uint32_t usecs;
for (usecs = results.rawbuf[i] * kRawTick; usecs > UINT16_MAX; usecs -= UINT16_MAX) {
ResponseAppend_P(PSTR("%d,0,"), UINT16_MAX);
}
ResponseAppend_P(PSTR("%d"), usecs);
if (strlen(mqtt_data) > sizeof(mqtt_data) - 40) { break; } // Quit if char string becomes too long
}
uint16_t extended_length = results.rawlen - 1;
for (uint32_t j = 0; j < results.rawlen - 1; j++) {
uint32_t usecs = results.rawbuf[j] * kRawTick;
// Add two extra entries for multiple larger than UINT16_MAX it is.
extended_length += (usecs / (UINT16_MAX + 1)) * 2;
}
ResponseAppend_P(PSTR("],\"" D_JSON_IR_RAWDATA "Info\":[%d,%d,%d]"), extended_length, i -1, results.overflow);
}
ResponseAppend_P(PSTR("}}"));
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_IRRECEIVED));
if (iridx) {
XdrvRulesProcess();
#ifdef USE_DOMOTICZ
unsigned long value = results.value | (iridx << 28); // [Protocol:4, Data:28]
DomoticzSensor(DZ_COUNT, value); // Send data as Domoticz Counter value
#endif // USE_DOMOTICZ
}
}
irrecv->resume();
}
}
#endif // USE_IR_RECEIVE
#ifdef USE_IR_HVAC
/*********************************************************************************************\
* IR Heating, Ventilation and Air Conditioning
\*********************************************************************************************/
enum IrHvacVendors { VNDR_TOSHIBA, VNDR_MITSUBISHI, VNDR_LG, VNDR_FUJITSU, VNDR_MIDEA };
const char kIrHvacVendors[] PROGMEM = "Toshiba|Mitsubishi|LG|Fujitsu|Midea" ;
const char kFanSpeedOptions[] = "A12345S";
const char kHvacModeOptions[] = "HDCA";
#ifdef USE_IR_HVAC_TOSHIBA
/*-------------------------------------------------------------------------------------------*\
* Toshiba
\*-------------------------------------------------------------------------------------------*/
const uint16_t HVAC_TOSHIBA_HDR_MARK = 4400;
const uint16_t HVAC_TOSHIBA_HDR_SPACE = 4300;
const uint16_t HVAC_TOSHIBA_BIT_MARK = 543;
const uint16_t HVAC_TOSHIBA_ONE_SPACE = 1623;
const uint16_t HVAC_MISTUBISHI_ZERO_SPACE = 472;
const uint16_t HVAC_TOSHIBA_RPT_MARK = 440;
const uint16_t HVAC_TOSHIBA_RPT_SPACE = 7048; // Above original iremote limit
const uint8_t HVAC_TOSHIBA_DATALEN = 9;
uint8_t IrHvacToshiba(const char *HVAC_Mode, const char *HVAC_FanMode, bool HVAC_Power, int HVAC_Temp)
{
uint16_t rawdata[2 + 2 * 8 * HVAC_TOSHIBA_DATALEN + 2];
uint8_t data[HVAC_TOSHIBA_DATALEN] = {0xF2, 0x0D, 0x03, 0xFC, 0x01, 0x00, 0x00, 0x00, 0x00};
char *p;
uint8_t mode;
if (HVAC_Mode == nullptr) {
p = (char *)kHvacModeOptions; // default HVAC_HOT
}
else {
p = strchr(kHvacModeOptions, toupper(HVAC_Mode[0]));
}
if (!p) {
return IE_SYNTAX_IRHVAC;
}
data[6] = (p - kHvacModeOptions) ^ 0x03; // HOT = 0x03, DRY = 0x02, COOL = 0x01, AUTO = 0x00
if (!HVAC_Power) {
data[6] = (uint8_t)0x07; // Turn OFF HVAC
}
if (HVAC_FanMode == nullptr) {
p = (char *)kFanSpeedOptions; // default FAN_SPEED_AUTO
}
else {
p = strchr(kFanSpeedOptions, toupper(HVAC_FanMode[0]));
}
if (!p) {
return IE_SYNTAX_IRHVAC;
}
mode = p - kFanSpeedOptions + 1;
if ((1 == mode) || (7 == mode)) {
mode = 0;
}
mode = mode << 5; // AUTO = 0x00, SPEED = 0x40, 0x60, 0x80, 0xA0, 0xC0, SILENT = 0x00
data[6] = data[6] | mode;
uint8_t Temp;
if (HVAC_Temp > 30) {
Temp = 30;
}
else if (HVAC_Temp < 17) {
Temp = 17;
}
else {
Temp = HVAC_Temp;
}
data[5] = (uint8_t)(Temp - 17) << 4;
data[HVAC_TOSHIBA_DATALEN - 1] = 0;
for (uint32_t x = 0; x < HVAC_TOSHIBA_DATALEN - 1; x++) {
data[HVAC_TOSHIBA_DATALEN - 1] = (uint8_t)data[x] ^ data[HVAC_TOSHIBA_DATALEN - 1]; // CRC is a simple bits addition
}
int i = 0;
uint8_t mask = 1;
//header
rawdata[i++] = HVAC_TOSHIBA_HDR_MARK;
rawdata[i++] = HVAC_TOSHIBA_HDR_SPACE;
//data
for (uint32_t b = 0; b < HVAC_TOSHIBA_DATALEN; b++) {
for (mask = B10000000; mask > 0; mask >>= 1) { //iterate through bit mask
if (data[b] & mask) { // Bit ONE
rawdata[i++] = HVAC_TOSHIBA_BIT_MARK;
rawdata[i++] = HVAC_TOSHIBA_ONE_SPACE;
}
else { // Bit ZERO
rawdata[i++] = HVAC_TOSHIBA_BIT_MARK;
rawdata[i++] = HVAC_MISTUBISHI_ZERO_SPACE;
}
}
}
//trailer
rawdata[i++] = HVAC_TOSHIBA_RPT_MARK;
rawdata[i++] = HVAC_TOSHIBA_RPT_SPACE;
// noInterrupts();
irsend->sendRaw(rawdata, i, 38);
irsend->sendRaw(rawdata, i, 38);
// interrupts();
return IE_NO_ERROR;
}
#endif // USE_IR_HVAC_TOSHIBA
#ifdef USE_IR_HVAC_MIDEA
/*-------------------------------------------------------------------------------------------*\
* Midea / Komeco
\*-------------------------------------------------------------------------------------------*/
// http://veillard.com/embedded/midea.html
// https://github.com/sheinz/esp-midea-ir/blob/master/midea-ir.c
const uint16_t HVAC_MIDEA_HDR_MARK = 4420; // 8T high
const uint16_t HVAC_MIDEA_HDR_SPACE = 4420; // 8T low
const uint16_t HVAC_MIDEA_BIT_MARK = 553; // 1T
const uint16_t HVAC_MIDEA_ONE_SPACE = 1660; // 3T low
const uint16_t HVAC_MIDEA_ZERO_SPACE = 553; // 1T high
const uint16_t HVAC_MIDEA_RPT_MARK = 553; // 1T
const uint16_t HVAC_MIDEA_RPT_SPACE = 5530; // 10T
const uint8_t HVAC_MIDEA_DATALEN = 3;
uint8_t IrHvacMidea(const char *HVAC_Mode, const char *HVAC_FanMode, bool HVAC_Power, int HVAC_Temp)
{
uint16_t rawdata[2 + 2 * 2 * 8 * HVAC_MIDEA_DATALEN + 2]; // START + 2* (2 * 3 BYTES) + STOP
uint8_t data[HVAC_MIDEA_DATALEN] = {0xB2, 0x00, 0x00};
char *p;
uint8_t mode;
if (!HVAC_Power) { // Turn OFF HVAC
data[1] = 0x7B;
data[2] = 0xE0;
} else {
// FAN
if (HVAC_FanMode == nullptr) {
p = (char*)kFanSpeedOptions; // default auto
}
else {
p = (char*)HVAC_FanMode;
}
switch(p[0]) {
case '1': data[1] = 0xBF; break; // off
case '2': data[1] = 0x9F; break; // low
case '3': data[1] = 0x5F; break; // med
case '4': data[1] = 0x3F; break; // high
case '5': data[1] = 0x1F; break; // auto
case 'A': data[1] = 0x1F; break; // auto
default: return IE_SYNTAX_IRHVAC;
}
// TEMPERATURE
uint8_t Temp;
if (HVAC_Temp > 30) {
Temp = 30;
}
else if (HVAC_Temp < 17) {
Temp = 17;
}
else {
Temp = HVAC_Temp-17;
}
if (10 == Temp) { // Temp is encoded as gray code; except 27 and 28. Go figure...
data[2] = 0x90;
} else if (11 == Temp) {
data[2] = 0x80;
} else {
Temp = (Temp >> 1) ^Temp;
data[2] = (Temp << 4);
}
// MODE
if (HVAC_Mode == nullptr) {
p = (char*)kHvacModeOptions + 3; // default to auto
}
else {
p = (char*)HVAC_Mode;
}
switch(toupper(p[0])) {
case 'D': data[2] = 0xE4; break; // for fan Temp must be 0XE
case 'C': data[2] = 0x0 | data[2]; break;
case 'A': data[2] = 0x8 | data[2]; data[1] = 0x1F; break; // for auto Fan must be 0x1
case 'H': data[2] = 0xC | data[2]; break;
default: return IE_SYNTAX_IRHVAC;
}
}
int i = 0;
uint8_t mask = 1;
//header
rawdata[i++] = HVAC_MIDEA_HDR_MARK;
rawdata[i++] = HVAC_MIDEA_HDR_SPACE;
//data
for (int b = 0; b < HVAC_MIDEA_DATALEN; b++) { // Send value
for (mask = B10000000; mask > 0; mask >>= 1) {
if (data[b] & mask) { // Bit ONE
rawdata[i++] = HVAC_MIDEA_BIT_MARK;
rawdata[i++] = HVAC_MIDEA_ONE_SPACE;
}
else { // Bit ZERO
rawdata[i++] = HVAC_MIDEA_BIT_MARK;
rawdata[i++] = HVAC_MIDEA_ZERO_SPACE;
}
}
for (mask = B10000000; mask > 0; mask >>= 1) { // Send complement
if (data[b] & mask) { // Bit ONE
rawdata[i++] = HVAC_MIDEA_BIT_MARK;
rawdata[i++] = HVAC_MIDEA_ZERO_SPACE;
}
else { // Bit ZERO
rawdata[i++] = HVAC_MIDEA_BIT_MARK;
rawdata[i++] = HVAC_MIDEA_ONE_SPACE;
}
}
}
//trailer
rawdata[i++] = HVAC_MIDEA_RPT_MARK;
rawdata[i++] = HVAC_MIDEA_RPT_SPACE;
// this takes ~180 ms :
irsend->sendRaw(rawdata, i, 38);
irsend->sendRaw(rawdata, i, 38);
return IE_NO_ERROR;
}
#endif // USE_IR_HVAC_MIDEA
#ifdef USE_IR_HVAC_MITSUBISHI
/*-------------------------------------------------------------------------------------------*\
* Mitsubishi
\*-------------------------------------------------------------------------------------------*/
#include <ir_Mitsubishi.h>
uint8_t IrHvacMitsubishi(const char *HVAC_Mode, const char *HVAC_FanMode, bool HVAC_Power, int HVAC_Temp)
{
char *p;
uint8_t mode;
IRMitsubishiAC mitsubir(pin[GPIO_IRSEND]);
mitsubir.stateReset();
if (HVAC_Mode == nullptr) {
p = (char *)kHvacModeOptions; // default HVAC_HOT
}
else {
p = strchr(kHvacModeOptions, toupper(HVAC_Mode[0]));
}
if (!p) {
return IE_SYNTAX_IRHVAC;
}
mode = (p - kHvacModeOptions + 1) << 3; // HOT = 0x08, DRY = 0x10, COOL = 0x18, AUTO = 0x20
mitsubir.setMode(mode);
mitsubir.setPower(HVAC_Power);
if (HVAC_FanMode == nullptr) {
p = (char *)kFanSpeedOptions; // default FAN_SPEED_AUTO
}
else {
p = strchr(kFanSpeedOptions, toupper(HVAC_FanMode[0]));
}
if (!p) {
return IE_SYNTAX_IRHVAC;
}
mode = p - kFanSpeedOptions; // AUTO = 0, SPEED = 1 .. 5, SILENT = 6
mitsubir.setFan(mode);
mitsubir.setTemp(HVAC_Temp);
mitsubir.setVane(MITSUBISHI_AC_VANE_AUTO);
mitsubir.send();
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRHVAC: Mitsubishi Power %d, Mode %d, FanSpeed %d, Temp %d, VaneMode %d"),
// mitsubir->getPower(), mitsubir->getMode(), mitsubir->getFan(), mitsubir->getTemp(), mitsubir->getVane());
return IE_NO_ERROR;
}
#endif // USE_IR_HVAC_MITSUBISHI
#ifdef USE_IR_HVAC_LG
/*-------------------------------------------------------------------------------------------*\
* LG
\*-------------------------------------------------------------------------------------------*/
const uint8_t HVAC_LG_DATALEN = 7;
uint8_t IrHvacLG(const char *HVAC_Mode, const char *HVAC_FanMode, bool HVAC_Power, int HVAC_Temp)
{
uint32_t LG_Code;
uint8_t data[HVAC_LG_DATALEN];
static bool hvacOn = false;
char *p;
uint8_t mode;
uint8_t Temp;
// Constant data
data[0] = 0x08;
data[1] = 0x08;
data[2] = 0x00;
if (!HVAC_Power) {
data[2] = (uint8_t)0x0C; // Turn OFF HVAC, code 0x88C0051
data[3] = (uint8_t)0x00;
data[4] = (uint8_t)0x00;
data[5] = (uint8_t)0x05;
data[6] = (uint8_t)0x01;
hvacOn = false;
}
else {
// Set code for HVAC Mode - data[3]
if (HVAC_Mode == nullptr) {
p = (char *)kHvacModeOptions; // default HVAC_HOT
}
else {
p = strchr(kHvacModeOptions, toupper(HVAC_Mode[0]));
}
if (!p) {
return IE_SYNTAX_IRHVAC;
}
mode = (p - kHvacModeOptions) ^ 0x03; // HOT = 0x03, DRY = 0x02, COOL = 0x01, AUTO = 0x00
switch (mode) {
case 0: // AUTO
data[3] = 11;
break;
case 1: // COOL
data[3] = 8;
break;
case 2: // DRY
data[3] = 9;
break;
case 3: // HOT
data[3] = 12;
break;
}
if (!hvacOn) {
data[3] = data[3] & 7; // reset bit3
hvacOn = true;
}
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRHVAC: HvacMode %s, ModeVal %d, Code %d"), p, mode, data[3]);
// Set code for HVAC temperature - data[4]
if (HVAC_Temp > 30) {
Temp = 30;
}
else if (HVAC_Temp < 18) {
Temp = 18;
}
else {
Temp = HVAC_Temp;
}
data[4] = (uint8_t)(Temp - 15);
// Set code for HVAC fan mode - data[5]
if (HVAC_FanMode == nullptr) {
p = (char *)kFanSpeedOptions; // default FAN_SPEED_AUTO
}
else {
p = strchr(kFanSpeedOptions, toupper(HVAC_FanMode[0]));
}
if (!p) {
return IE_SYNTAX_IRHVAC;
}
mode = p - kFanSpeedOptions;
if ((mode == 0) || (mode > 3)) {
data[5] = 5; // Auto = 0x05
}
else {
data[5] = (mode * 2) - 2; // Low = 0x00, Mid = 0x02, High = 0x04
}
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRHVAC: FanMode %s, ModeVal %d, Code %d"), p, mode, data[5]);
// Set CRC code - data[6]
data[6] = (data[3] + data[4] + data[5]) & 0x0f; // CRC
}
// Build LG IR code
LG_Code = data[0] << 4;
for (uint32_t i = 1; i < 6; i++) {
LG_Code = (LG_Code + data[i]) << 4;
}
LG_Code = LG_Code + data[6];
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRHVAC: LG_Code %d"), LG_Code);
// Send LG IR Code
irsend->sendLG(LG_Code, 28);
return IE_NO_ERROR;
}
#endif // USE_IR_HVAC_LG
#ifdef USE_IR_HVAC_FUJITSU
/*-------------------------------------------------------------------------------------------*\
* Fujitsu
\*-------------------------------------------------------------------------------------------*/
#include <ir_Fujitsu.h>
uint8_t IrHvacFujitsu(const char *HVAC_Mode, const char *HVAC_FanMode, bool HVAC_Power, int HVAC_Temp)
{
const char kFujitsuHvacModeOptions[] = "HDCAF";
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("FUJITSU: mode:%s, fan:%s, power:%u, temp:%u"), HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp);
IRFujitsuAC ac(pin[GPIO_IRSEND]);
if (0 == HVAC_Power) {
ac.off();
ac.send();
return IE_NO_ERROR;
}
uint8_t modes[5] = {FUJITSU_AC_MODE_HEAT, FUJITSU_AC_MODE_DRY, FUJITSU_AC_MODE_COOL, FUJITSU_AC_MODE_AUTO, FUJITSU_AC_MODE_FAN};
uint8_t fanModes[7] = {FUJITSU_AC_FAN_AUTO, FUJITSU_AC_FAN_LOW, FUJITSU_AC_FAN_MED, FUJITSU_AC_FAN_HIGH, FUJITSU_AC_FAN_HIGH, FUJITSU_AC_FAN_HIGH, FUJITSU_AC_FAN_QUIET};
ac.setCmd(FUJITSU_AC_CMD_TURN_ON);
ac.setSwing(FUJITSU_AC_SWING_VERT);
char *p;
if (nullptr == HVAC_Mode) {
p = (char *)kFujitsuHvacModeOptions;
}
else {
p = strchr(kFujitsuHvacModeOptions, toupper(HVAC_Mode[0]));
}
if (!p) {
return IE_SYNTAX_IRHVAC;
}
ac.setMode(modes[p - kFujitsuHvacModeOptions]);
if (HVAC_FanMode == nullptr) {
p = (char *)kFanSpeedOptions; // default FAN_SPEED_AUTO
}
else {
p = strchr(kFanSpeedOptions, toupper(HVAC_FanMode[0]));
}
if (!p) {
return IE_SYNTAX_IRHVAC;
}
ac.setFanSpeed(fanModes[p - kFanSpeedOptions]);
ac.setTemp(HVAC_Temp);
ac.send();
return IE_NO_ERROR;
}
#endif // USE_IR_HVAC_FUJITSU
/*-------------------------------------------------------------------------------------------*/
uint32_t IrRemoteCmndIrHvacJson(void)
{
// IrHvac { "Vendor": "<Toshiba|Mitsubishi>", "Power": <0|1>, "Mode": "<Hot|Cold|Dry|Auto>", "FanSpeed": "<1|2|3|4|5|Auto|Silence>", "Temp": <17..30> }
const char *HVAC_Mode;
const char *HVAC_FanMode;
const char *HVAC_Vendor;
int HVAC_Temp = 21;
bool HVAC_Power = true;
char dataBufUc[XdrvMailbox.data_len];
UpperCase(dataBufUc, XdrvMailbox.data);
RemoveSpace(dataBufUc);
if (strlen(dataBufUc) < 8) {
return IE_INVALID_JSON;
}
StaticJsonBuffer<164> jsonBufer;
JsonObject &root = jsonBufer.parseObject(dataBufUc);
if (!root.success()) {
return IE_INVALID_JSON;
}
HVAC_Vendor = root[D_JSON_IRHVAC_VENDOR];
HVAC_Power = root[D_JSON_IRHVAC_POWER];
HVAC_Mode = root[D_JSON_IRHVAC_MODE];
HVAC_FanMode = root[D_JSON_IRHVAC_FANSPEED];
HVAC_Temp = root[D_JSON_IRHVAC_TEMP];
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRHVAC: Received Vendor %s, Power %d, Mode %s, FanSpeed %s, Temp %d"), HVAC_Vendor, HVAC_Power, HVAC_Mode, HVAC_FanMode, HVAC_Temp);
char vendor[20];
int vendor_code = GetCommandCode(vendor, sizeof(vendor), HVAC_Vendor, kIrHvacVendors);
irsend_active = true;
switch (vendor_code) {
#ifdef USE_IR_HVAC_TOSHIBA
case VNDR_TOSHIBA:
return IrHvacToshiba(HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp);
#endif
#ifdef USE_IR_HVAC_MITSUBISHI
case VNDR_MITSUBISHI:
return IrHvacMitsubishi(HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp);
#endif
#ifdef USE_IR_HVAC_LG
case VNDR_LG:
return IrHvacLG(HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp);
#endif
#ifdef USE_IR_HVAC_FUJITSU
case VNDR_FUJITSU:
return IrHvacFujitsu(HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp);
#endif
#ifdef USE_IR_HVAC_MIDEA
case VNDR_MIDEA:
return IrHvacMidea(HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp);
#endif
default:
irsend_active = false;
}
return IE_SYNTAX_IRHVAC;
}
void CmndIrHvac(void)
{
uint8_t error = IE_SYNTAX_IRHVAC;
if (XdrvMailbox.data_len) {
error = IrRemoteCmndIrHvacJson();
}
IrRemoteCmndResponse(error);
}
#endif // USE_IR_HVAC
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
uint32_t IrRemoteCmndIrSendRaw(void)
{
// IRsend <freq>,<rawdata>,<rawdata> ...
// or
// IRsend raw,<freq>,<zero space>,<bit stream> (one space = zero space *2)
// IRsend raw,<freq>,<zero space>,<zero space multiplier becoming one space>,<bit stream>
// IRsend raw,<freq>,<zero space>,<one space>,<bit stream>
// IRsend raw,<freq>,<header mark>,<header space>,<bit mark>,<zero space>,<one space>,<bit stream>
char *p;
char *str = strtok_r(XdrvMailbox.data, ", ", &p);
if (p == nullptr) {
return IE_INVALID_RAWDATA;
}
// repeat
uint16_t repeat = XdrvMailbox.index > 0 ? XdrvMailbox.index - 1 : 0;
uint16_t freq = atoi(str);
if (!freq && (*str != '0')) { // First parameter is any string
uint16_t count = 0;
char *q = p;
for (; *q; count += (*q++ == ','));
if (count < 2) {
return IE_INVALID_RAWDATA;
} // Parameters must be at least 3
uint16_t parm[count];
for (uint32_t i = 0; i < count; i++) {
parm[i] = strtol(strtok_r(nullptr, ", ", &p), nullptr, 0);
if (!parm[i]) {
if (!i) {
parm[0] = 38000; // Frequency default to 38kHz
} else {
return IE_INVALID_RAWDATA; // Other parameters may not be 0
}
}
}
uint16_t i = 0;
if (count < 4) {
// IRsend raw,0,889,000000100110000001001
uint16_t mark = parm[1] *2; // Protocol where 0 = t, 1 = 2t (RC5)
if (3 == count) {
if (parm[2] < parm[1]) {
// IRsend raw,0,889,2,000000100110000001001
mark = parm[1] * parm[2]; // Protocol where 0 = t1, 1 = t1*t2 (Could be RC5)
} else {
// IRsend raw,0,889,1778,000000100110000001001
mark = parm[2]; // Protocol where 0 = t1, 1 = t2 (Could be RC5)
}
}
uint16_t raw_array[strlen(p)]; // Bits
for (; *p; *p++) {
if (*p == '0') {
raw_array[i++] = parm[1]; // Space
}
else if (*p == '1') {
raw_array[i++] = mark; // Mark
}
}
irsend_active = true;
for (uint32_t r = 0; r <= repeat; r++) {
irsend->sendRaw(raw_array, i, parm[0]);
if (r < repeat) { // if it's not the last message
irsend->space(40000); // since we don't know the inter-message gap, place an arbitrary 40ms gap
}
}
}
else if (6 == count) { // NEC Protocol
// IRsend raw,0,8620,4260,544,411,1496,010101101000111011001110000000001100110000000001100000000000000010001100
uint16_t raw_array[strlen(p)*2+3]; // Header + bits + end
raw_array[i++] = parm[1]; // Header mark
raw_array[i++] = parm[2]; // Header space
uint32_t inter_message_32 = (parm[1] + parm[2]) * 3; // compute an inter-message gap (32 bits)
uint16_t inter_message = (inter_message_32 > 65000) ? 65000 : inter_message_32; // avoid 16 bits overflow
for (; *p; *p++) {
if (*p == '0') {
raw_array[i++] = parm[3]; // Bit mark
raw_array[i++] = parm[4]; // Zero space
}
else if (*p == '1') {
raw_array[i++] = parm[3]; // Bit mark
raw_array[i++] = parm[5]; // One space
}
}
raw_array[i++] = parm[3]; // Trailing mark
irsend_active = true;
for (uint32_t r = 0; r <= repeat; r++) {
irsend->sendRaw(raw_array, i, parm[0]);
if (r < repeat) { // if it's not the last message
irsend->space(inter_message); // since we don't know the inter-message gap, place an arbitrary 40ms gap
}
}
}
else {
return IE_INVALID_RAWDATA; // Invalid number of parameters
}
} else {
if (!freq) { freq = 38000; } // Default to 38kHz
uint16_t count = 0;
char *q = p;
for (; *q; count += (*q++ == ','));
if (0 == count) {
return IE_INVALID_RAWDATA;
}
// IRsend 0,896,876,900,888,894,876,1790,874,872,1810,1736,948,872,880,872,936,872,1792,900,888,1734
count++;
if (count < 200) {
uint16_t raw_array[count]; // It's safe to use stack for up to 200 packets (limited by mqtt_data length)
for (uint32_t i = 0; i < count; i++) {
raw_array[i] = strtol(strtok_r(nullptr, ", ", &p), nullptr, 0); // Allow decimal (20496) and hexadecimal (0x5010) input
}
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("DBG: stack count %d"), count);
irsend_active = true;
for (uint32_t r = 0; r <= repeat; r++) {
irsend->sendRaw(raw_array, count, freq);
}
} else {
uint16_t *raw_array = reinterpret_cast<uint16_t*>(malloc(count * sizeof(uint16_t)));
if (raw_array == nullptr) {
return IE_INVALID_RAWDATA;
}
for (uint32_t i = 0; i < count; i++) {
raw_array[i] = strtol(strtok_r(nullptr, ", ", &p), nullptr, 0); // Allow decimal (20496) and hexadecimal (0x5010) input
}
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("DBG: heap count %d"), count);
irsend_active = true;
for (uint32_t r = 0; r <= repeat; r++) {
irsend->sendRaw(raw_array, count, freq);
}
free(raw_array);
}
}
return IE_NO_ERROR;
}
uint32_t IrRemoteCmndIrSendJson(void)
{
// ArduinoJSON entry used to calculate jsonBuf: JSON_OBJECT_SIZE(3) + 40 = 96
// IRsend { "protocol": "RC5", "bits": 12, "data":"0xC86" }
// IRsend { "protocol": "SAMSUNG", "bits": 32, "data": 551502015 }
char dataBufUc[XdrvMailbox.data_len];
UpperCase(dataBufUc, XdrvMailbox.data);
RemoveSpace(dataBufUc);
if (strlen(dataBufUc) < 8) {
return IE_INVALID_JSON;
}
StaticJsonBuffer<140> jsonBuf;
JsonObject &root = jsonBuf.parseObject(dataBufUc);
if (!root.success()) {
return IE_INVALID_JSON;
}
// IRsend { "protocol": "SAMSUNG", "bits": 32, "data": 551502015 }
// IRsend { "protocol": "NEC", "bits": 32, "data":"0x02FDFE80", "repeat": 2 }
char parm_uc[10];
const char *protocol = root[UpperCase_P(parm_uc, PSTR(D_JSON_IR_PROTOCOL))];
uint16_t bits = root[UpperCase_P(parm_uc, PSTR(D_JSON_IR_BITS))];
uint64_t data = strtoull(root[UpperCase_P(parm_uc, PSTR(D_JSON_IR_DATA))], nullptr, 0);
uint16_t repeat = root[UpperCase_P(parm_uc, PSTR(D_JSON_IR_REPEAT))];
// check if the IRSend<x> is great than repeat
if (XdrvMailbox.index > repeat + 1) {
repeat = XdrvMailbox.index - 1;
}
if (!(protocol && bits)) {
return IE_SYNTAX_IRSEND;
}
char protocol_text[20];
int protocol_code = GetCommandCode(protocol_text, sizeof(protocol_text), protocol, kIrRemoteProtocols);
char dvalue[64];
char hvalue[64];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRS: protocol_text %s, protocol %s, bits %d, data %s (%s), repeat %d, protocol_code %d"),
protocol_text, protocol, bits, ulltoa(data, dvalue, 10), IrUint64toHex(data, hvalue, bits), repeat, protocol_code);
irsend_active = true;
switch (protocol_code) { // Equals IRremoteESP8266.h enum decode_type_t
#ifdef USE_IR_SEND_RC5
case RC5:
irsend->sendRC5(data, bits, repeat); break;
#endif
#ifdef USE_IR_SEND_RC6
case RC6:
irsend->sendRC6(data, bits, repeat); break;
#endif
#ifdef USE_IR_SEND_NEC
case NEC:
irsend->sendNEC(data, (bits > NEC_BITS) ? NEC_BITS : bits, repeat); break;
#endif
#ifdef USE_IR_SEND_SONY
case SONY:
irsend->sendSony(data, (bits > SONY_20_BITS) ? SONY_20_BITS : bits, repeat > kSonyMinRepeat ? repeat : kSonyMinRepeat); break;
#endif
#ifdef USE_IR_SEND_PANASONIC
case PANASONIC:
irsend->sendPanasonic64(data, bits, repeat); break;
#endif
#ifdef USE_IR_SEND_JVC
case JVC:
irsend->sendJVC(data, (bits > JVC_BITS) ? JVC_BITS : bits, repeat > 1 ? repeat : 1); break;
#endif
#ifdef USE_IR_SEND_SAMSUNG
case SAMSUNG:
irsend->sendSAMSUNG(data, (bits > SAMSUNG_BITS) ? SAMSUNG_BITS : bits, repeat); break;
#endif
#ifdef USE_IR_SEND_WHYNTER
case WHYNTER:
irsend->sendWhynter(data, bits, repeat); break;
#endif
#ifdef USE_IR_SEND_AIWA
case AIWA_RC_T501:
irsend->sendAiwaRCT501(data, bits, repeat); break;
#endif
#ifdef USE_IR_SEND_LG
case LG:
irsend->sendLG(data, bits, repeat); break;
#endif
#ifdef USE_IR_SEND_SANYO
case SANYO:
irsend->sendSanyoLC7461(data, bits, repeat); break;
#endif
#ifdef USE_IR_SEND_MITSUBISHI
case MITSUBISHI:
irsend->sendMitsubishi(data, bits, repeat); break;
#endif
#ifdef USE_IR_SEND_DISH
case DISH:
irsend->sendDISH(data, (bits > DISH_BITS) ? DISH_BITS : bits, repeat > kDishMinRepeat ? repeat : kDishMinRepeat); break;
#endif
#ifdef USE_IR_SEND_SHARP
case SHARP:
irsend->sendSharpRaw(data, bits, repeat); break;
#endif
#ifdef USE_IR_SEND_PIONEER
case IR_PIONEER:
irsend->sendPioneer(data, bits, repeat); break;
#endif // USE_IR_SEND_PIONEER
default:
irsend_active = false;
ResponseCmndChar(D_JSON_PROTOCOL_NOT_SUPPORTED);
}
return IE_NO_ERROR;
}
void CmndIrSend(void)
{
uint8_t error = IE_SYNTAX_IRSEND;
if (XdrvMailbox.data_len) {
// error = (strstr(XdrvMailbox.data, "{") == nullptr) ? IrRemoteCmndIrSendRaw() : IrRemoteCmndIrSendJson();
if (strstr(XdrvMailbox.data, "{") == nullptr) {
error = IrRemoteCmndIrSendRaw();
} else {
error = IrRemoteCmndIrSendJson();
}
}
IrRemoteCmndResponse(error);
}
void IrRemoteCmndResponse(uint32_t error)
{
switch (error) {
case IE_INVALID_RAWDATA:
ResponseCmndChar(D_JSON_INVALID_RAWDATA);
break;
case IE_INVALID_JSON:
ResponseCmndChar(D_JSON_INVALID_JSON);
break;
case IE_SYNTAX_IRSEND:
Response_P(PSTR("{\"" D_CMND_IRSEND "\":\"" D_JSON_NO " " D_JSON_IR_PROTOCOL ", " D_JSON_IR_BITS " " D_JSON_OR " " D_JSON_IR_DATA "\"}"));
break;
#ifdef USE_IR_HVAC
case IE_SYNTAX_IRHVAC:
Response_P(PSTR("{\"" D_CMND_IRHVAC "\":\"" D_JSON_WRONG " " D_JSON_IRHVAC_VENDOR ", " D_JSON_IRHVAC_MODE " " D_JSON_OR " " D_JSON_IRHVAC_FANSPEED "\"}"));
break;
#endif // USE_IR_HVAC
default: // IE_NO_ERROR
ResponseCmndDone();
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv05(uint8_t function)
{
bool result = false;
if ((pin[GPIO_IRSEND] < 99) || (pin[GPIO_IRRECV] < 99)) {
switch (function) {
case FUNC_PRE_INIT:
if (pin[GPIO_IRSEND] < 99) {
IrSendInit();
}
#ifdef USE_IR_RECEIVE
if (pin[GPIO_IRRECV] < 99) {
IrReceiveInit();
}
#endif // USE_IR_RECEIVE
break;
case FUNC_EVERY_50_MSECOND:
#ifdef USE_IR_RECEIVE
if (pin[GPIO_IRRECV] < 99) {
IrReceiveCheck(); // check if there's anything on IR side
}
#endif // USE_IR_RECEIVE
irsend_active = false; // re-enable IR reception
break;
case FUNC_COMMAND:
if (pin[GPIO_IRSEND] < 99) {
result = DecodeCommand(kIrRemoteCommands, IrRemoteCommand);
}
break;
}
}
return result;
}
#endif // USE_IR_REMOTE