mirror of https://github.com/arendst/Tasmota.git
854 lines
26 KiB
C++
854 lines
26 KiB
C++
/*
|
|
Copyright (c) 2007, Jim Studt (original old version - many contributors since)
|
|
|
|
The latest version of this library may be found at:
|
|
http://www.pjrc.com/teensy/td_libs_OneWire.html
|
|
|
|
OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
|
|
January 2010.
|
|
|
|
DO NOT EMAIL for technical support, especially not for ESP chips!
|
|
All project support questions must be posted on public forums
|
|
relevant to the board or chips used. If using Arduino, post on
|
|
Arduino's forum. If using ESP, post on the ESP community forums.
|
|
There is ABSOLUTELY NO TECH SUPPORT BY PRIVATE EMAIL!
|
|
|
|
Github's issue tracker for OneWire should be used only to report
|
|
specific bugs. DO NOT request project support via Github. All
|
|
project and tech support questions must be posted on forums, not
|
|
github issues. If you experience a problem and you are not
|
|
absolutely sure it's an issue with the library, ask on a forum
|
|
first. Only use github to report issues after experts have
|
|
confirmed the issue is with OneWire rather than your project.
|
|
|
|
Back in 2010, OneWire was in need of many bug fixes, but had
|
|
been abandoned the original author (Jim Studt). None of the known
|
|
contributors were interested in maintaining OneWire. Paul typically
|
|
works on OneWire every 6 to 12 months. Patches usually wait that
|
|
long. If anyone is interested in more actively maintaining OneWire,
|
|
please contact Paul (this is pretty much the only reason to use
|
|
private email about OneWire).
|
|
|
|
OneWire is now very mature code. No changes other than adding
|
|
definitions for newer hardware support are anticipated.
|
|
|
|
=======
|
|
Version 2.3.3 Tasmota 26JAN2024
|
|
Add support for Shelly Add-On by Theo Arends
|
|
|
|
Version 2.3.3 Tasmota 15AUG2023
|
|
Add support for ESP32 Arduino core 3 by @Jason2866
|
|
|
|
Version 2.3.3 ESP32 Stickbreaker 06MAY2019
|
|
Add a #ifdef to isolate ESP32 mods
|
|
Version 2.3.1 ESP32 everslick 30APR2018
|
|
add IRAM_ATTR attribute to write_bit/read_bit to fix icache miss delay
|
|
https://github.com/espressif/arduino-esp32/issues/1335
|
|
|
|
Version 2.3 ESP32 stickbreaker 28DEC2017
|
|
adjust to use portENTER_CRITICAL(&mux) instead of noInterrupts();
|
|
adjust to use portEXIT_CRITICAL(&mux) instead of Interrupts();
|
|
|
|
Version 2.3:
|
|
Unknown chip fallback mode, Roger Clark
|
|
Teensy-LC compatibility, Paul Stoffregen
|
|
Search bug fix, Love Nystrom
|
|
|
|
Version 2.2:
|
|
Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
|
|
Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
|
|
Fix DS18B20 example negative temperature
|
|
Fix DS18B20 example's low res modes, Ken Butcher
|
|
Improve reset timing, Mark Tillotson
|
|
Add const qualifiers, Bertrik Sikken
|
|
Add initial value input to crc16, Bertrik Sikken
|
|
Add target_search() function, Scott Roberts
|
|
|
|
Version 2.1:
|
|
Arduino 1.0 compatibility, Paul Stoffregen
|
|
Improve temperature example, Paul Stoffregen
|
|
DS250x_PROM example, Guillermo Lovato
|
|
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
|
|
Improvements from Glenn Trewitt:
|
|
- crc16() now works
|
|
- check_crc16() does all of calculation/checking work.
|
|
- Added read_bytes() and write_bytes(), to reduce tedious loops.
|
|
- Added ds2408 example.
|
|
Delete very old, out-of-date readme file (info is here)
|
|
|
|
Version 2.0: Modifications by Paul Stoffregen, January 2010:
|
|
http://www.pjrc.com/teensy/td_libs_OneWire.html
|
|
Search fix from Robin James
|
|
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
|
|
Use direct optimized I/O in all cases
|
|
Disable interrupts during timing critical sections
|
|
(this solves many random communication errors)
|
|
Disable interrupts during read-modify-write I/O
|
|
Reduce RAM consumption by eliminating unnecessary
|
|
variables and trimming many to 8 bits
|
|
Optimize both crc8 - table version moved to flash
|
|
|
|
Modified to work with larger numbers of devices - avoids loop.
|
|
Tested in Arduino 11 alpha with 12 sensors.
|
|
26 Sept 2008 -- Robin James
|
|
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
|
|
|
|
Updated to work with arduino-0008 and to include skip() as of
|
|
2007/07/06. --RJL20
|
|
|
|
Modified to calculate the 8-bit CRC directly, avoiding the need for
|
|
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
|
|
-- Tom Pollard, Jan 23, 2008
|
|
|
|
Jim Studt's original library was modified by Josh Larios.
|
|
|
|
Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
a copy of this software and associated documentation files (the
|
|
"Software"), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be
|
|
included in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
Much of the code was inspired by Derek Yerger's code, though I don't
|
|
think much of that remains. In any event that was..
|
|
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
|
|
|
|
The CRC code was excerpted and inspired by the Dallas Semiconductor
|
|
sample code bearing this copyright.
|
|
//---------------------------------------------------------------------------
|
|
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a
|
|
// copy of this software and associated documentation files (the "Software"),
|
|
// to deal in the Software without restriction, including without limitation
|
|
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
// and/or sell copies of the Software, and to permit persons to whom the
|
|
// Software is furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included
|
|
// in all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
|
|
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
// OTHER DEALINGS IN THE SOFTWARE.
|
|
//
|
|
// Except as contained in this notice, the name of Dallas Semiconductor
|
|
// shall not be used except as stated in the Dallas Semiconductor
|
|
// Branding Policy.
|
|
//--------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "OneWire.h"
|
|
|
|
// Platform specific I/O definitions
|
|
|
|
#if defined(ARDUINO_ARCH_ESP8266)
|
|
// Special note: I depend on the ESP community to maintain these definitions and
|
|
// submit good pull requests. I can not answer any ESP questions or help you
|
|
// resolve any problems related to ESP chips. Please do not contact me and please
|
|
// DO NOT CREATE GITHUB ISSUES for ESP support. All ESP questions must be asked
|
|
// on ESP community forums.
|
|
#define PIN_TO_BASEREG(pin) ((volatile uint32_t*) GPO)
|
|
#define PIN_TO_BITMASK(pin) (1UL << pin)
|
|
#define IO_REG_TYPE uint32_t
|
|
#define IO_REG_BASE_ATTR
|
|
#define IO_REG_MASK_ATTR
|
|
|
|
static inline __attribute__((always_inline))
|
|
void directModeInput(IO_REG_TYPE mask)
|
|
{
|
|
if(mask > 0x8000)
|
|
{
|
|
GP16FFS(GPFFS_GPIO(16));
|
|
GPC16 = 0;
|
|
GP16E &= ~1;
|
|
}
|
|
else
|
|
{
|
|
GPE &= ~(mask);
|
|
}
|
|
}
|
|
|
|
static inline __attribute__((always_inline))
|
|
void directModeOutput(IO_REG_TYPE mask)
|
|
{
|
|
if(mask > 0x8000)
|
|
{
|
|
GP16FFS(GPFFS_GPIO(16));
|
|
GPC16 = 0;
|
|
GP16E |= 1;
|
|
}
|
|
else
|
|
{
|
|
GPE |= (mask);
|
|
}
|
|
}
|
|
|
|
static inline __attribute__((always_inline))
|
|
bool directRead(IO_REG_TYPE mask)
|
|
{
|
|
if(mask > 0x8000)
|
|
return GP16I & 0x01;
|
|
else
|
|
return ((GPI & (mask)) ? true : false);
|
|
}
|
|
|
|
#define DIRECT_READ(base, mask) directRead(mask)
|
|
#define DIRECT_MODE_INPUT(base, mask) directModeInput(mask)
|
|
#define DIRECT_MODE_OUTPUT(base, mask) directModeOutput(mask)
|
|
#define DIRECT_WRITE_LOW(base, mask) (mask > 0x8000) ? GP16O &= ~1 : (GPOC = (mask))
|
|
#define DIRECT_WRITE_HIGH(base, mask) (mask > 0x8000) ? GP16O |= 1 : (GPOS = (mask))
|
|
|
|
#define CRIT_TIMING
|
|
#define t_noInterrupts noInterrupts
|
|
#define t_interrupts interrupts
|
|
|
|
#elif defined(ARDUINO_ARCH_ESP32)
|
|
#include <driver/rtc_io.h>
|
|
#if ESP_IDF_VERSION_MAJOR >= 5
|
|
#include "soc/gpio_periph.h"
|
|
#endif // ESP_IDF_VERSION_MAJOR >= 5
|
|
#define PIN_TO_BASEREG(pin) (0)
|
|
#define PIN_TO_BITMASK(pin) (pin)
|
|
#define IO_REG_TYPE uint32_t
|
|
#define IO_REG_BASE_ATTR
|
|
#define IO_REG_MASK_ATTR
|
|
|
|
static inline __attribute__((always_inline))
|
|
IO_REG_TYPE directRead(IO_REG_TYPE pin)
|
|
{
|
|
#if SOC_GPIO_PIN_COUNT <= 32
|
|
return (GPIO.in.val >> pin) & 0x1;
|
|
#else // ESP32 with over 32 gpios
|
|
if ( pin < 32 )
|
|
return (GPIO.in >> pin) & 0x1;
|
|
else
|
|
return (GPIO.in1.val >> (pin - 32)) & 0x1;
|
|
#endif
|
|
return 0;
|
|
|
|
}
|
|
|
|
static inline __attribute__((always_inline))
|
|
void directWriteLow(IO_REG_TYPE pin)
|
|
{
|
|
#if SOC_GPIO_PIN_COUNT <= 32
|
|
GPIO.out_w1tc.val = ((uint32_t)1 << pin);
|
|
#else // ESP32 with over 32 gpios
|
|
if ( pin < 32 )
|
|
GPIO.out_w1tc = ((uint32_t)1 << pin);
|
|
else
|
|
GPIO.out1_w1tc.val = ((uint32_t)1 << (pin - 32));
|
|
#endif
|
|
}
|
|
|
|
static inline __attribute__((always_inline))
|
|
void directWriteHigh(IO_REG_TYPE pin)
|
|
{
|
|
#if SOC_GPIO_PIN_COUNT <= 32
|
|
GPIO.out_w1ts.val = ((uint32_t)1 << pin);
|
|
#else // ESP32 with over 32 gpios
|
|
if ( pin < 32 )
|
|
GPIO.out_w1ts = ((uint32_t)1 << pin);
|
|
else
|
|
GPIO.out1_w1ts.val = ((uint32_t)1 << (pin - 32));
|
|
#endif
|
|
|
|
}
|
|
|
|
static inline __attribute__((always_inline))
|
|
void directModeInput(IO_REG_TYPE pin)
|
|
{
|
|
if ( digitalPinIsValid(pin) )
|
|
{
|
|
// Input
|
|
#if SOC_GPIO_PIN_COUNT <= 32
|
|
GPIO.enable_w1tc.val = ((uint32_t)1 << (pin));
|
|
#else // ESP32 with over 32 gpios
|
|
if ( pin < 32 )
|
|
GPIO.enable_w1tc = ((uint32_t)1 << pin);
|
|
else
|
|
GPIO.enable1_w1tc.val = ((uint32_t)1 << (pin - 32));
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
static inline __attribute__((always_inline))
|
|
void directModeOutput(IO_REG_TYPE pin)
|
|
{
|
|
if ( digitalPinCanOutput(pin) )
|
|
{
|
|
// Output
|
|
#if SOC_GPIO_PIN_COUNT <= 32
|
|
GPIO.enable_w1ts.val = ((uint32_t)1 << (pin));
|
|
#else // ESP32 with over 32 gpios
|
|
if ( pin < 32 )
|
|
GPIO.enable_w1ts = ((uint32_t)1 << pin);
|
|
else
|
|
GPIO.enable1_w1ts.val = ((uint32_t)1 << (pin - 32));
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
#define DIRECT_READ(base, pin) directRead(pin)
|
|
#define DIRECT_WRITE_LOW(base, pin) directWriteLow(pin)
|
|
#define DIRECT_WRITE_HIGH(base, pin) directWriteHigh(pin)
|
|
#define DIRECT_MODE_INPUT(base, pin) directModeInput(pin)
|
|
#define DIRECT_MODE_OUTPUT(base, pin) directModeOutput(pin)
|
|
|
|
#define CRIT_TIMING IRAM_ATTR
|
|
#define t_noInterrupts() {portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;portENTER_CRITICAL(&mux)
|
|
#define t_interrupts() portEXIT_CRITICAL(&mux);}
|
|
|
|
#endif
|
|
|
|
OneWire::OneWire(uint8_t pin, int8_t pin_out) {
|
|
pinMode(pin, INPUT);
|
|
bitmask = PIN_TO_BITMASK(pin);
|
|
baseReg = PIN_TO_BASEREG(pin);
|
|
dual_mode = (pin_out > -1);
|
|
if (dual_mode) {
|
|
pinMode(pin_out, OUTPUT);
|
|
bitmask_out = PIN_TO_BITMASK(pin_out);
|
|
baseReg_out = PIN_TO_BASEREG(pin_out);
|
|
}
|
|
#if ONEWIRE_SEARCH
|
|
reset_search();
|
|
#endif
|
|
}
|
|
|
|
|
|
// Perform the onewire reset function. We will wait up to 250uS for
|
|
// the bus to come high, if it doesn't then it is broken or shorted
|
|
// and we return a 0;
|
|
//
|
|
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
|
|
//
|
|
uint8_t CRIT_TIMING OneWire::reset(void)
|
|
{
|
|
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
|
|
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
|
|
|
|
uint8_t r;
|
|
uint8_t retries = 125;
|
|
|
|
if (!dual_mode) {
|
|
t_noInterrupts();
|
|
DIRECT_MODE_INPUT(reg, mask);
|
|
t_interrupts();
|
|
|
|
// wait until the wire is high... just in case
|
|
do {
|
|
if (--retries == 0) return 0;
|
|
delayMicroseconds(2);
|
|
} while ( !DIRECT_READ(reg, mask));
|
|
|
|
t_noInterrupts();
|
|
DIRECT_WRITE_LOW(reg, mask);
|
|
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
|
|
delayMicroseconds(480);
|
|
DIRECT_MODE_INPUT(reg, mask); // allow it to float
|
|
delayMicroseconds(70);
|
|
r = !DIRECT_READ(reg, mask);
|
|
t_interrupts();
|
|
|
|
delayMicroseconds(410);
|
|
} else {
|
|
IO_REG_TYPE mask_out IO_REG_MASK_ATTR = bitmask_out;
|
|
volatile IO_REG_TYPE *reg_out IO_REG_BASE_ATTR = baseReg_out;
|
|
|
|
t_noInterrupts();
|
|
DIRECT_WRITE_HIGH(reg_out, mask_out);
|
|
t_interrupts();
|
|
|
|
// wait until the wire is high... just in case
|
|
do {
|
|
if (--retries == 0) return 0;
|
|
delayMicroseconds(2);
|
|
} while ( !DIRECT_READ(reg, mask));
|
|
|
|
t_noInterrupts();
|
|
DIRECT_WRITE_LOW(reg_out, mask_out);
|
|
delayMicroseconds(480);
|
|
DIRECT_WRITE_HIGH(reg_out, mask_out);
|
|
delayMicroseconds(70);
|
|
r = !DIRECT_READ(reg, mask);
|
|
t_interrupts();
|
|
|
|
delayMicroseconds(410);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
//
|
|
// Write a bit. Port and bit is used to cut lookup time and provide
|
|
// more certain timing.
|
|
//
|
|
void CRIT_TIMING OneWire::write_bit(uint8_t v)
|
|
{
|
|
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
|
|
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
|
|
|
|
if (!dual_mode) {
|
|
if (v & 1) {
|
|
t_noInterrupts();
|
|
DIRECT_WRITE_LOW(reg, mask);
|
|
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
|
|
delayMicroseconds(10);
|
|
DIRECT_WRITE_HIGH(reg, mask); // drive output high
|
|
t_interrupts();
|
|
delayMicroseconds(55);
|
|
} else {
|
|
t_noInterrupts();
|
|
DIRECT_WRITE_LOW(reg, mask);
|
|
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
|
|
delayMicroseconds(65);
|
|
DIRECT_WRITE_HIGH(reg, mask); // drive output high
|
|
t_interrupts();
|
|
delayMicroseconds(5);
|
|
}
|
|
} else {
|
|
IO_REG_TYPE mask_out IO_REG_MASK_ATTR = bitmask_out;
|
|
volatile IO_REG_TYPE *reg_out IO_REG_BASE_ATTR = baseReg_out;
|
|
|
|
if (v & 1) {
|
|
t_noInterrupts();
|
|
DIRECT_WRITE_LOW(reg_out, mask_out);
|
|
delayMicroseconds(10);
|
|
DIRECT_WRITE_HIGH(reg_out, mask_out); // drive output high
|
|
t_interrupts();
|
|
delayMicroseconds(55);
|
|
} else {
|
|
t_noInterrupts();
|
|
DIRECT_WRITE_LOW(reg_out, mask_out);
|
|
delayMicroseconds(65);
|
|
DIRECT_WRITE_HIGH(reg_out, mask_out); // drive output high
|
|
t_interrupts();
|
|
delayMicroseconds(5);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Read a bit. Port and bit is used to cut lookup time and provide
|
|
// more certain timing.
|
|
//
|
|
uint8_t CRIT_TIMING OneWire::read_bit(void)
|
|
{
|
|
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
|
|
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
|
|
uint8_t r;
|
|
|
|
if (!dual_mode) {
|
|
t_noInterrupts();
|
|
DIRECT_MODE_OUTPUT(reg, mask);
|
|
DIRECT_WRITE_LOW(reg, mask);
|
|
delayMicroseconds(3);
|
|
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
|
|
delayMicroseconds(10);
|
|
r = DIRECT_READ(reg, mask);
|
|
t_interrupts();
|
|
delayMicroseconds(53);
|
|
} else {
|
|
IO_REG_TYPE mask_out IO_REG_MASK_ATTR = bitmask_out;
|
|
volatile IO_REG_TYPE *reg_out IO_REG_BASE_ATTR = baseReg_out;
|
|
|
|
t_noInterrupts();
|
|
DIRECT_WRITE_LOW(reg_out, mask_out);
|
|
delayMicroseconds(3);
|
|
DIRECT_WRITE_HIGH(reg_out, mask_out);
|
|
delayMicroseconds(10);
|
|
r = DIRECT_READ(reg, mask);
|
|
t_interrupts();
|
|
delayMicroseconds(53);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
//
|
|
// Write a byte. The writing code uses the active drivers to raise the
|
|
// pin high, if you need power after the write (e.g. DS18S20 in
|
|
// parasite power mode) then set 'power' to 1, otherwise the pin will
|
|
// go tri-state at the end of the write to avoid heating in a short or
|
|
// other mishap.
|
|
//
|
|
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
|
|
uint8_t bitMask;
|
|
|
|
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
|
|
OneWire::write_bit( (bitMask & v)?1:0);
|
|
}
|
|
if ( !power) {
|
|
if (!dual_mode) {
|
|
t_noInterrupts();
|
|
DIRECT_MODE_INPUT(baseReg, bitmask);
|
|
DIRECT_WRITE_LOW(baseReg, bitmask);
|
|
t_interrupts();
|
|
} else {
|
|
// t_noInterrupts();
|
|
// DIRECT_WRITE_LOW(baseReg_out, bitmask_out);
|
|
// t_interrupts();
|
|
}
|
|
}
|
|
}
|
|
|
|
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
|
|
for (uint16_t i = 0 ; i < count ; i++)
|
|
write(buf[i]);
|
|
if (!power) {
|
|
if (!dual_mode) {
|
|
t_noInterrupts();
|
|
DIRECT_MODE_INPUT(baseReg, bitmask);
|
|
DIRECT_WRITE_LOW(baseReg, bitmask);
|
|
t_interrupts();
|
|
} else {
|
|
// t_noInterrupts();
|
|
// DIRECT_WRITE_LOW(baseReg_out, bitmask_out);
|
|
// t_interrupts();
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Read a byte
|
|
//
|
|
uint8_t OneWire::read() {
|
|
uint8_t bitMask;
|
|
uint8_t r = 0;
|
|
|
|
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
|
|
if ( OneWire::read_bit()) r |= bitMask;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
|
|
for (uint16_t i = 0 ; i < count ; i++)
|
|
buf[i] = read();
|
|
}
|
|
|
|
//
|
|
// Do a ROM select
|
|
//
|
|
void OneWire::select(const uint8_t rom[8])
|
|
{
|
|
uint8_t i;
|
|
|
|
write(0x55); // Choose ROM
|
|
|
|
for (i = 0; i < 8; i++) write(rom[i]);
|
|
}
|
|
|
|
//
|
|
// Do a ROM skip
|
|
//
|
|
void OneWire::skip()
|
|
{
|
|
write(0xCC); // Skip ROM
|
|
}
|
|
|
|
void OneWire::depower()
|
|
{
|
|
// t_noInterrupts();
|
|
// DIRECT_MODE_INPUT(baseReg, bitmask);
|
|
// t_interrupts();
|
|
}
|
|
|
|
#if ONEWIRE_SEARCH
|
|
|
|
//
|
|
// You need to use this function to start a search again from the beginning.
|
|
// You do not need to do it for the first search, though you could.
|
|
//
|
|
void OneWire::reset_search()
|
|
{
|
|
// reset the search state
|
|
LastDiscrepancy = 0;
|
|
LastDeviceFlag = FALSE;
|
|
LastFamilyDiscrepancy = 0;
|
|
for(int i = 7; ; i--) {
|
|
ROM_NO[i] = 0;
|
|
if ( i == 0) break;
|
|
}
|
|
}
|
|
|
|
// Setup the search to find the device type 'family_code' on the next call
|
|
// to search(*newAddr) if it is present.
|
|
//
|
|
void OneWire::target_search(uint8_t family_code)
|
|
{
|
|
// set the search state to find SearchFamily type devices
|
|
ROM_NO[0] = family_code;
|
|
for (uint8_t i = 1; i < 8; i++)
|
|
ROM_NO[i] = 0;
|
|
LastDiscrepancy = 64;
|
|
LastFamilyDiscrepancy = 0;
|
|
LastDeviceFlag = FALSE;
|
|
}
|
|
|
|
//
|
|
// Perform a search. If this function returns a '1' then it has
|
|
// enumerated the next device and you may retrieve the ROM from the
|
|
// OneWire::address variable. If there are no devices, no further
|
|
// devices, or something horrible happens in the middle of the
|
|
// enumeration then a 0 is returned. If a new device is found then
|
|
// its address is copied to newAddr. Use OneWire::reset_search() to
|
|
// start over.
|
|
//
|
|
// --- Replaced by the one from the Dallas Semiconductor web site ---
|
|
//--------------------------------------------------------------------------
|
|
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
|
|
// search state.
|
|
// Return TRUE : device found, ROM number in ROM_NO buffer
|
|
// FALSE : device not found, end of search
|
|
//
|
|
uint8_t OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
|
|
{
|
|
uint8_t id_bit_number;
|
|
uint8_t last_zero, rom_byte_number, search_result;
|
|
uint8_t id_bit, cmp_id_bit;
|
|
|
|
unsigned char rom_byte_mask, search_direction;
|
|
|
|
// initialize for search
|
|
id_bit_number = 1;
|
|
last_zero = 0;
|
|
rom_byte_number = 0;
|
|
rom_byte_mask = 1;
|
|
search_result = 0;
|
|
|
|
// if the last call was not the last one
|
|
if (!LastDeviceFlag)
|
|
{
|
|
// 1-Wire reset
|
|
if (!reset())
|
|
{
|
|
// reset the search
|
|
LastDiscrepancy = 0;
|
|
LastDeviceFlag = FALSE;
|
|
LastFamilyDiscrepancy = 0;
|
|
return FALSE;
|
|
}
|
|
// issue the search command
|
|
if (search_mode == true) {
|
|
write(0xF0); // NORMAL SEARCH
|
|
} else {
|
|
write(0xEC); // CONDITIONAL SEARCH
|
|
}
|
|
|
|
// loop to do the search
|
|
do
|
|
{
|
|
// read a bit and its complement
|
|
id_bit = read_bit();
|
|
cmp_id_bit = read_bit();
|
|
|
|
// check for no devices on 1-wire
|
|
if ((id_bit == 1) && (cmp_id_bit == 1))
|
|
break;
|
|
else
|
|
{
|
|
// all devices coupled have 0 or 1
|
|
if (id_bit != cmp_id_bit)
|
|
search_direction = id_bit; // bit write value for search
|
|
else
|
|
{
|
|
// if this discrepancy if before the Last Discrepancy
|
|
// on a previous next then pick the same as last time
|
|
if (id_bit_number < LastDiscrepancy)
|
|
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
|
|
else
|
|
// if equal to last pick 1, if not then pick 0
|
|
search_direction = (id_bit_number == LastDiscrepancy);
|
|
|
|
// if 0 was picked then record its position in LastZero
|
|
if (search_direction == 0)
|
|
{
|
|
last_zero = id_bit_number;
|
|
|
|
// check for Last discrepancy in family
|
|
if (last_zero < 9)
|
|
LastFamilyDiscrepancy = last_zero;
|
|
}
|
|
}
|
|
|
|
// set or clear the bit in the ROM byte rom_byte_number
|
|
// with mask rom_byte_mask
|
|
if (search_direction == 1)
|
|
ROM_NO[rom_byte_number] |= rom_byte_mask;
|
|
else
|
|
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
|
|
|
|
// serial number search direction write bit
|
|
write_bit(search_direction);
|
|
|
|
// increment the byte counter id_bit_number
|
|
// and shift the mask rom_byte_mask
|
|
id_bit_number++;
|
|
rom_byte_mask <<= 1;
|
|
|
|
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
|
|
if (rom_byte_mask == 0)
|
|
{
|
|
rom_byte_number++;
|
|
rom_byte_mask = 1;
|
|
}
|
|
}
|
|
}
|
|
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
|
|
// if the search was successful then
|
|
if (!(id_bit_number < 65))
|
|
{
|
|
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
|
|
LastDiscrepancy = last_zero;
|
|
|
|
// check for last device
|
|
if (LastDiscrepancy == 0)
|
|
LastDeviceFlag = TRUE;
|
|
|
|
search_result = TRUE;
|
|
}
|
|
}
|
|
|
|
// if no device found then reset counters so next 'search' will be like a first
|
|
if (!search_result || !ROM_NO[0])
|
|
{
|
|
LastDiscrepancy = 0;
|
|
LastDeviceFlag = FALSE;
|
|
LastFamilyDiscrepancy = 0;
|
|
search_result = FALSE;
|
|
} else {
|
|
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
|
|
}
|
|
return search_result;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ONEWIRE_CRC
|
|
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
|
|
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
|
|
//
|
|
|
|
#if ONEWIRE_CRC8_TABLE
|
|
// This table comes from Dallas sample code where it is freely reusable,
|
|
// though Copyright (C) 2000 Dallas Semiconductor Corporation
|
|
static const uint8_t PROGMEM dscrc_table[] = {
|
|
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
|
|
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
|
|
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
|
|
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
|
|
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
|
|
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
|
|
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
|
|
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
|
|
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
|
|
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
|
|
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
|
|
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
|
|
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
|
|
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
|
|
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
|
|
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
|
|
|
|
//
|
|
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
|
|
// and the registers. (note: this might better be done without to
|
|
// table, it would probably be smaller and certainly fast enough
|
|
// compared to all those delayMicrosecond() calls. But I got
|
|
// confused, so I use this table from the examples.)
|
|
//
|
|
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
|
|
{
|
|
uint8_t crc = 0;
|
|
|
|
while (len--) {
|
|
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
|
|
}
|
|
return crc;
|
|
}
|
|
#else
|
|
//
|
|
// Compute a Dallas Semiconductor 8 bit CRC directly.
|
|
// this is much slower, but much smaller, than the lookup table.
|
|
//
|
|
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
|
|
{
|
|
uint8_t crc = 0;
|
|
|
|
while (len--) {
|
|
#if defined(__AVR__)
|
|
crc = _crc_ibutton_update(crc, *addr++);
|
|
#else
|
|
uint8_t inbyte = *addr++;
|
|
for (uint8_t i = 8; i; i--) {
|
|
uint8_t mix = (crc ^ inbyte) & 0x01;
|
|
crc >>= 1;
|
|
if (mix) crc ^= 0x8C;
|
|
inbyte >>= 1;
|
|
}
|
|
#endif
|
|
}
|
|
return crc;
|
|
}
|
|
#endif
|
|
|
|
#if ONEWIRE_CRC16
|
|
bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
|
|
{
|
|
crc = ~crc16(input, len, crc);
|
|
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
|
|
}
|
|
|
|
uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
|
|
{
|
|
#if defined(__AVR__)
|
|
for (uint16_t i = 0 ; i < len ; i++) {
|
|
crc = _crc16_update(crc, input[i]);
|
|
}
|
|
#else
|
|
static const uint8_t oddparity[16] =
|
|
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
|
|
|
|
for (uint16_t i = 0 ; i < len ; i++) {
|
|
// Even though we're just copying a byte from the input,
|
|
// we'll be doing 16-bit computation with it.
|
|
uint16_t cdata = input[i];
|
|
cdata = (cdata ^ crc) & 0xff;
|
|
crc >>= 8;
|
|
|
|
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
|
|
crc ^= 0xC001;
|
|
|
|
cdata <<= 6;
|
|
crc ^= cdata;
|
|
cdata <<= 1;
|
|
crc ^= cdata;
|
|
}
|
|
#endif
|
|
return crc;
|
|
}
|
|
#endif
|
|
#endif
|