mirror of https://github.com/arendst/Tasmota.git
2894 lines
87 KiB
C++
Executable File
2894 lines
87 KiB
C++
Executable File
/*
|
||
support.ino - support for Tasmota
|
||
|
||
Copyright (C) 2021 Theo Arends
|
||
|
||
This program is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
extern "C" {
|
||
extern struct rst_info resetInfo;
|
||
}
|
||
|
||
#ifdef USE_KNX
|
||
bool knx_started = false;
|
||
#endif // USE_KNX
|
||
|
||
/*********************************************************************************************\
|
||
* Watchdog extension (https://github.com/esp8266/Arduino/issues/1532)
|
||
\*********************************************************************************************/
|
||
|
||
#ifdef ESP8266
|
||
#include <Ticker.h>
|
||
|
||
Ticker tickerOSWatch;
|
||
|
||
const uint32_t OSWATCH_RESET_TIME = 120;
|
||
|
||
static unsigned long oswatch_last_loop_time;
|
||
uint8_t oswatch_blocked_loop = 0;
|
||
|
||
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception
|
||
//void OsWatchTicker() IRAM_ATTR;
|
||
#endif // USE_WS2812_DMA
|
||
|
||
void OsWatchTicker(void) {
|
||
uint32_t t = millis();
|
||
uint32_t last_run = t - oswatch_last_loop_time;
|
||
|
||
#ifdef DEBUG_THEO
|
||
int32_t rssi = WiFi.RSSI();
|
||
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_OSWATCH " FreeRam %d, rssi %d %% (%d dBm), last_run %d"), ESP_getFreeHeap(), WifiGetRssiAsQuality(rssi), rssi, last_run);
|
||
#endif // DEBUG_THEO
|
||
if (last_run >= (OSWATCH_RESET_TIME * 1000)) {
|
||
// AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_OSWATCH " " D_BLOCKED_LOOP ". " D_RESTARTING)); // Save iram space
|
||
RtcSettings.oswatch_blocked_loop = 1;
|
||
RtcSettingsSave();
|
||
|
||
// ESP.restart(); // normal reboot
|
||
// ESP.reset(); // hard reset
|
||
// Force an exception to get a stackdump
|
||
// ESP32: Guru Meditation Error: Core 0 panic'ed (LoadProhibited). Exception was unhandled.
|
||
volatile uint32_t dummy;
|
||
dummy = *((uint32_t*) 0x00000000);
|
||
(void)dummy; // avoid compiler warning
|
||
}
|
||
}
|
||
|
||
void OsWatchInit(void) {
|
||
oswatch_blocked_loop = RtcSettings.oswatch_blocked_loop;
|
||
RtcSettings.oswatch_blocked_loop = 0;
|
||
oswatch_last_loop_time = millis();
|
||
tickerOSWatch.attach_ms(((OSWATCH_RESET_TIME / 3) * 1000), OsWatchTicker);
|
||
}
|
||
|
||
void OsWatchLoop(void) {
|
||
oswatch_last_loop_time = millis();
|
||
// while(1) delay(1000); // this will trigger the os watch
|
||
}
|
||
|
||
bool OsWatchBlockedLoop(void) {
|
||
return oswatch_blocked_loop;
|
||
}
|
||
|
||
#else // Anything except ESP8266
|
||
|
||
void OsWatchInit(void) {}
|
||
void OsWatchLoop(void) {}
|
||
bool OsWatchBlockedLoop(void) {
|
||
return false;
|
||
}
|
||
|
||
#endif // ESP8266
|
||
|
||
uint32_t ResetReason(void) {
|
||
/*
|
||
user_interface.h
|
||
REASON_DEFAULT_RST = 0, // "Power on" normal startup by power on
|
||
REASON_WDT_RST = 1, // "Hardware Watchdog" hardware watch dog reset
|
||
REASON_EXCEPTION_RST = 2, // "Exception" exception reset, GPIO status won’t change
|
||
REASON_SOFT_WDT_RST = 3, // "Software Watchdog" software watch dog reset, GPIO status won’t change
|
||
REASON_SOFT_RESTART = 4, // "Software/System restart" software restart ,system_restart , GPIO status won’t change
|
||
REASON_DEEP_SLEEP_AWAKE = 5, // "Deep-Sleep Wake" wake up from deep-sleep
|
||
REASON_EXT_SYS_RST = 6 // "External System" external system reset
|
||
*/
|
||
return ESP_ResetInfoReason();
|
||
}
|
||
|
||
bool ResetReasonPowerOn(void) {
|
||
uint32_t reset_reason = ESP_ResetInfoReason();
|
||
return ((reset_reason == REASON_DEFAULT_RST) || (reset_reason == REASON_EXT_SYS_RST));
|
||
}
|
||
|
||
String GetResetReason(void) {
|
||
if (OsWatchBlockedLoop()) {
|
||
char buff[32];
|
||
strncpy_P(buff, PSTR(D_JSON_BLOCKED_LOOP), sizeof(buff));
|
||
return String(buff);
|
||
} else {
|
||
return ESP_getResetReason();
|
||
}
|
||
}
|
||
|
||
#ifdef ESP32
|
||
/*********************************************************************************************\
|
||
* ESP32 AutoMutex
|
||
\*********************************************************************************************/
|
||
|
||
//////////////////////////////////////////
|
||
// automutex.
|
||
// create a mute in your driver with:
|
||
// void *mutex = nullptr;
|
||
//
|
||
// then protect any function with
|
||
// TasAutoMutex m(&mutex, "somename");
|
||
// - mutex is automatically initialised if not already intialised.
|
||
// - it will be automagically released when the function is over.
|
||
// - the same thread can take multiple times (recursive).
|
||
// - advanced options m.give() and m.take() allow you fine control within a function.
|
||
// - if take=false at creat, it will not be initially taken.
|
||
// - name is used in serial log of mutex deadlock.
|
||
// - maxWait in ticks is how long it will wait before failing in a deadlock scenario (and then emitting on serial)
|
||
class TasAutoMutex {
|
||
SemaphoreHandle_t mutex;
|
||
bool taken;
|
||
int maxWait;
|
||
const char *name;
|
||
public:
|
||
TasAutoMutex(SemaphoreHandle_t* mutex, const char *name = "", int maxWait = 40, bool take=true);
|
||
~TasAutoMutex();
|
||
void give();
|
||
void take();
|
||
static void init(SemaphoreHandle_t* ptr);
|
||
};
|
||
//////////////////////////////////////////
|
||
|
||
TasAutoMutex::TasAutoMutex(SemaphoreHandle_t*mutex, const char *name, int maxWait, bool take) {
|
||
if (mutex) {
|
||
if (!(*mutex)){
|
||
TasAutoMutex::init(mutex);
|
||
}
|
||
this->mutex = *mutex;
|
||
this->maxWait = maxWait;
|
||
this->name = name;
|
||
if (take) {
|
||
this->taken = xSemaphoreTakeRecursive(this->mutex, this->maxWait);
|
||
// if (!this->taken){
|
||
// Serial.printf("\r\nMutexfail %s\r\n", this->name);
|
||
// }
|
||
}
|
||
} else {
|
||
this->mutex = (SemaphoreHandle_t)nullptr;
|
||
}
|
||
}
|
||
|
||
TasAutoMutex::~TasAutoMutex() {
|
||
if (this->mutex) {
|
||
if (this->taken) {
|
||
xSemaphoreGiveRecursive(this->mutex);
|
||
this->taken = false;
|
||
}
|
||
}
|
||
}
|
||
|
||
void TasAutoMutex::init(SemaphoreHandle_t* ptr) {
|
||
SemaphoreHandle_t mutex = xSemaphoreCreateRecursiveMutex();
|
||
(*ptr) = mutex;
|
||
// needed, else for ESP8266 as we will initialis more than once in logging
|
||
// (*ptr) = (void *) 1;
|
||
}
|
||
|
||
void TasAutoMutex::give() {
|
||
if (this->mutex) {
|
||
if (this->taken) {
|
||
xSemaphoreGiveRecursive(this->mutex);
|
||
this->taken= false;
|
||
}
|
||
}
|
||
}
|
||
|
||
void TasAutoMutex::take() {
|
||
if (this->mutex) {
|
||
if (!this->taken) {
|
||
this->taken = xSemaphoreTakeRecursive(this->mutex, this->maxWait);
|
||
// if (!this->taken){
|
||
// Serial.printf("\r\nMutexfail %s\r\n", this->name);
|
||
// }
|
||
}
|
||
}
|
||
}
|
||
|
||
#endif // ESP32
|
||
|
||
|
||
/*********************************************************************************************\
|
||
* Miscellaneous
|
||
\*********************************************************************************************/
|
||
/*
|
||
String GetBinary(const void* ptr, size_t count) {
|
||
uint32_t value = *(uint32_t*)ptr;
|
||
value <<= (32 - count);
|
||
String result;
|
||
result.reserve(count + 1);
|
||
for (uint32_t i = 0; i < count; i++) {
|
||
result += (value &0x80000000) ? '1' : '0';
|
||
value <<= 1;
|
||
}
|
||
return result;
|
||
}
|
||
*/
|
||
String GetBinary8(uint8_t value, size_t count) {
|
||
if (count > 8) { count = 8; }
|
||
value <<= (8 - count);
|
||
String result;
|
||
result.reserve(count + 1);
|
||
for (uint32_t i = 0; i < count; i++) {
|
||
result += (value &0x80) ? '1' : '0';
|
||
value <<= 1;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
// Get span until single character in string
|
||
size_t strchrspn(const char *str1, int character)
|
||
{
|
||
size_t ret = 0;
|
||
char *start = (char*)str1;
|
||
char *end = strchr(str1, character);
|
||
if (end) ret = end - start;
|
||
return ret;
|
||
}
|
||
|
||
uint32_t ChrCount(const char *str, const char *delim) {
|
||
uint32_t count = 0;
|
||
char* read = (char*)str;
|
||
char ch = '.';
|
||
|
||
while (ch != '\0') {
|
||
ch = *read++;
|
||
if (ch == *delim) { count++; }
|
||
}
|
||
return count;
|
||
}
|
||
|
||
uint32_t ArgC(void) {
|
||
return (XdrvMailbox.data_len > 0) ? ChrCount(XdrvMailbox.data, ",") +1 : 0;
|
||
}
|
||
|
||
// Function to return a substring defined by a delimiter at an index
|
||
char* subStr(char* dest, char* str, const char *delim, int index) {
|
||
char* write = dest;
|
||
char* read = str;
|
||
char ch = '.';
|
||
|
||
while (index && (ch != '\0')) {
|
||
ch = *read++;
|
||
if (strchr(delim, ch)) {
|
||
index--;
|
||
if (index) { write = dest; }
|
||
} else {
|
||
*write++ = ch;
|
||
}
|
||
}
|
||
*write = '\0';
|
||
dest = Trim(dest);
|
||
return dest;
|
||
}
|
||
|
||
char* ArgV(char* dest, int index) {
|
||
return subStr(dest, XdrvMailbox.data, ",", index);
|
||
}
|
||
|
||
uint32_t ArgVul(uint32_t *args, uint32_t count) {
|
||
uint32_t argc = ArgC();
|
||
if (argc > count) { argc = count; }
|
||
count = argc;
|
||
if (argc) {
|
||
char argument[XdrvMailbox.data_len];
|
||
for (uint32_t i = 0; i < argc; i++) {
|
||
if (strlen(ArgV(argument, i +1))) {
|
||
args[i] = strtoul(argument, nullptr, 0);
|
||
} else {
|
||
count--;
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
|
||
uint32_t ParseParameters(uint32_t count, uint32_t *params) {
|
||
// Destroys XdrvMailbox.data
|
||
char *p;
|
||
uint32_t i = 0;
|
||
for (char *str = strtok_r(XdrvMailbox.data, ", ", &p); str && i < count; str = strtok_r(nullptr, ", ", &p), i++) {
|
||
params[i] = strtoul(str, nullptr, 0);
|
||
}
|
||
return i;
|
||
}
|
||
|
||
float CharToFloat(const char *str)
|
||
{
|
||
// simple ascii to double, because atof or strtod are too large
|
||
char strbuf[24];
|
||
|
||
strlcpy(strbuf, str, sizeof(strbuf));
|
||
char *pt = strbuf;
|
||
if (*pt == '\0') { return 0.0f; }
|
||
|
||
while ((*pt != '\0') && isspace(*pt)) { pt++; } // Trim leading spaces
|
||
|
||
signed char sign = 1;
|
||
if (*pt == '-') { sign = -1; }
|
||
if (*pt == '-' || *pt == '+') { pt++; } // Skip any sign
|
||
|
||
float left = 0;
|
||
if (*pt != '.') {
|
||
left = atoi(pt); // Get left part
|
||
while (isdigit(*pt)) { pt++; } // Skip number
|
||
}
|
||
|
||
float right = 0;
|
||
if (*pt == '.') {
|
||
pt++;
|
||
uint32_t max_decimals = 0;
|
||
while ((max_decimals < 8) && isdigit(pt[max_decimals])) { max_decimals++; }
|
||
pt[max_decimals] = '\0'; // Limit decimals to float max of 8
|
||
right = atoi(pt); // Decimal part
|
||
while (isdigit(*pt)) {
|
||
pt++;
|
||
right /= 10.0f;
|
||
}
|
||
}
|
||
|
||
float result = left + right;
|
||
if (sign < 0) {
|
||
return -result; // Add negative sign
|
||
}
|
||
return result;
|
||
}
|
||
|
||
int TextToInt(char *str)
|
||
{
|
||
char *p;
|
||
uint8_t radix = 10;
|
||
if ('#' == str[0]) {
|
||
radix = 16;
|
||
str++;
|
||
}
|
||
return strtol(str, &p, radix);
|
||
}
|
||
|
||
char* dtostrfd(double number, unsigned char prec, char *s)
|
||
{
|
||
if ((isnan(number)) || (isinf(number))) { // Fix for JSON output (https://stackoverflow.com/questions/1423081/json-left-out-infinity-and-nan-json-status-in-ecmascript)
|
||
strcpy_P(s, PSTR("null"));
|
||
return s;
|
||
} else {
|
||
return dtostrf(number, 1, prec, s);
|
||
}
|
||
}
|
||
|
||
char* Unescape(char* buffer, uint32_t* size)
|
||
{
|
||
uint8_t* read = (uint8_t*)buffer;
|
||
uint8_t* write = (uint8_t*)buffer;
|
||
int32_t start_size = *size;
|
||
int32_t end_size = *size;
|
||
uint8_t che = 0;
|
||
|
||
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size);
|
||
|
||
while (start_size > 0) {
|
||
uint8_t ch = *read++;
|
||
start_size--;
|
||
if (ch != '\\') {
|
||
*write++ = ch;
|
||
} else {
|
||
if (start_size > 0) {
|
||
uint8_t chi = *read++;
|
||
start_size--;
|
||
end_size--;
|
||
switch (chi) {
|
||
case '\\': che = '\\'; break; // 5C Backslash
|
||
case 'a': che = '\a'; break; // 07 Bell (Alert)
|
||
case 'b': che = '\b'; break; // 08 Backspace
|
||
case 'e': che = '\e'; break; // 1B Escape
|
||
case 'f': che = '\f'; break; // 0C Formfeed
|
||
case 'n': che = '\n'; break; // 0A Linefeed (Newline)
|
||
case 'r': che = '\r'; break; // 0D Carriage return
|
||
case 's': che = ' '; break; // 20 Space
|
||
case 't': che = '\t'; break; // 09 Horizontal tab
|
||
case 'v': che = '\v'; break; // 0B Vertical tab
|
||
case 'x': {
|
||
uint8_t* start = read;
|
||
che = (uint8_t)strtol((const char*)read, (char**)&read, 16);
|
||
start_size -= (uint16_t)(read - start);
|
||
end_size -= (uint16_t)(read - start);
|
||
break;
|
||
}
|
||
case '"': che = '\"'; break; // 22 Quotation mark
|
||
// case '?': che = '\?'; break; // 3F Question mark
|
||
default : {
|
||
che = chi;
|
||
*write++ = ch;
|
||
end_size++;
|
||
}
|
||
}
|
||
*write++ = che;
|
||
}
|
||
}
|
||
}
|
||
*size = end_size;
|
||
*write++ = 0; // add the end string pointer reference
|
||
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size);
|
||
|
||
return buffer;
|
||
}
|
||
|
||
char* RemoveSpace(char* p) {
|
||
// Remove white-space character (' ','\t','\n','\v','\f','\r')
|
||
char* write = p;
|
||
char* read = p;
|
||
char ch = '.';
|
||
|
||
while (ch != '\0') {
|
||
ch = *read++;
|
||
if (!isspace(ch)) {
|
||
*write++ = ch;
|
||
}
|
||
}
|
||
return p;
|
||
}
|
||
|
||
// remove spaces at the beginning and end of the string (but not in the middle)
|
||
char* TrimSpace(char *p) {
|
||
// Remove white-space character (' ','\t','\n','\v','\f','\r')
|
||
char* write = p;
|
||
char* read = p;
|
||
char ch = '.';
|
||
|
||
// skip all leading spaces
|
||
while (isspace(*read)) {
|
||
read++;
|
||
}
|
||
// copy the rest
|
||
do {
|
||
ch = *read++;
|
||
*write++ = ch;
|
||
} while (ch != '\0');
|
||
// move to end
|
||
read = p + strlen(p);
|
||
// move backwards
|
||
while (p != read) {
|
||
read--;
|
||
if (isspace(*read)) {
|
||
*read = '\0';
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
return p;
|
||
}
|
||
|
||
char* RemoveControlCharacter(char* p) {
|
||
// Remove control character (0x00 .. 0x1F and 0x7F)
|
||
char* write = p;
|
||
char* read = p;
|
||
char ch = '.';
|
||
|
||
while (ch != '\0') {
|
||
ch = *read++;
|
||
if (!iscntrl(ch)) {
|
||
*write++ = ch;
|
||
}
|
||
}
|
||
*write++ = '\0';
|
||
return p;
|
||
}
|
||
|
||
char* ReplaceChar(char* p, char find, char replace) {
|
||
char* write = (char*)p;
|
||
char* read = (char*)p;
|
||
char ch = '.';
|
||
|
||
while (ch != '\0') {
|
||
ch = *read++;
|
||
if (ch == find) {
|
||
ch = replace;
|
||
}
|
||
*write++ = ch;
|
||
}
|
||
return p;
|
||
}
|
||
|
||
char* ReplaceCommaWithDot(char* p) {
|
||
return ReplaceChar(p, ',', '.');
|
||
}
|
||
|
||
char* LowerCase(char* dest, const char* source)
|
||
{
|
||
char* write = dest;
|
||
const char* read = source;
|
||
char ch = '.';
|
||
|
||
while (ch != '\0') {
|
||
ch = *read++;
|
||
*write++ = tolower(ch);
|
||
}
|
||
return dest;
|
||
}
|
||
|
||
char* UpperCase(char* dest, const char* source)
|
||
{
|
||
char* write = dest;
|
||
const char* read = source;
|
||
char ch = '.';
|
||
|
||
while (ch != '\0') {
|
||
ch = *read++;
|
||
*write++ = toupper(ch);
|
||
}
|
||
return dest;
|
||
}
|
||
|
||
char* UpperCase_P(char* dest, const char* source)
|
||
{
|
||
char* write = dest;
|
||
const char* read = source;
|
||
char ch = '.';
|
||
|
||
while (ch != '\0') {
|
||
ch = pgm_read_byte(read++);
|
||
*write++ = toupper(ch);
|
||
}
|
||
return dest;
|
||
}
|
||
|
||
char* SetStr(const char* str) {
|
||
if (nullptr == str) { str = PSTR(""); } // nullptr is considered empty string
|
||
size_t str_len = strlen(str);
|
||
if (0 == str_len) { return EmptyStr; } // return empty string
|
||
|
||
char* new_str = (char*) malloc(str_len + 1);
|
||
if (nullptr == new_str) { return EmptyStr; } // return empty string
|
||
strlcpy(new_str, str, str_len + 1);
|
||
return new_str;
|
||
}
|
||
|
||
bool StrCaseStr_P(const char* source, const char* search) {
|
||
char case_source[strlen_P(source) +1];
|
||
UpperCase_P(case_source, source);
|
||
char case_search[strlen_P(search) +1];
|
||
UpperCase_P(case_search, search);
|
||
return (strstr(case_source, case_search) != nullptr);
|
||
}
|
||
|
||
bool IsNumeric(const char* value) {
|
||
// Test for characters '-.0123456789'
|
||
char *digit = (char*)value;
|
||
while (isdigit(*digit) || *digit == '.' || *digit == '-') { digit++; }
|
||
return (*digit == '\0');
|
||
}
|
||
|
||
char* Trim(char* p) {
|
||
// Remove leading and trailing tab, \n, \v, \f, \r and space
|
||
if (*p != '\0') {
|
||
while ((*p != '\0') && isspace(*p)) { p++; } // Trim leading spaces
|
||
char* q = p + strlen(p) -1;
|
||
while ((q >= p) && isspace(*q)) { q--; } // Trim trailing spaces
|
||
q++;
|
||
*q = '\0';
|
||
}
|
||
return p;
|
||
}
|
||
|
||
String HexToString(uint8_t* data, uint32_t length) {
|
||
if (!data || !length) { return ""; }
|
||
|
||
uint32_t len = (length < 16) ? length : 16;
|
||
char hex_data[32];
|
||
ToHex_P((const unsigned char*)data, len, hex_data, sizeof(hex_data));
|
||
String result = hex_data;
|
||
result += F(" [");
|
||
for (uint32_t i = 0; i < len; i++) {
|
||
result += (isprint(data[i])) ? (char)data[i] : ' ';
|
||
}
|
||
result += F("]");
|
||
if (length > len) {
|
||
result += F(" ...");
|
||
}
|
||
return result;
|
||
}
|
||
|
||
String UrlEncode(const String& text) {
|
||
const char hex[] = "0123456789ABCDEF";
|
||
|
||
String encoded = "";
|
||
int len = text.length();
|
||
int i = 0;
|
||
while (i < len) {
|
||
char decodedChar = text.charAt(i++);
|
||
/*
|
||
if (('a' <= decodedChar && decodedChar <= 'z') ||
|
||
('A' <= decodedChar && decodedChar <= 'Z') ||
|
||
('0' <= decodedChar && decodedChar <= '9') ||
|
||
('=' == decodedChar)) {
|
||
encoded += decodedChar;
|
||
} else {
|
||
encoded += '%';
|
||
encoded += hex[decodedChar >> 4];
|
||
encoded += hex[decodedChar & 0xF];
|
||
}
|
||
*/
|
||
if ((' ' == decodedChar) || ('+' == decodedChar)) {
|
||
encoded += '%';
|
||
encoded += hex[decodedChar >> 4];
|
||
encoded += hex[decodedChar & 0xF];
|
||
} else {
|
||
encoded += decodedChar;
|
||
}
|
||
|
||
}
|
||
return encoded;
|
||
}
|
||
|
||
char* NoAlNumToUnderscore(char* dest, const char* source)
|
||
{
|
||
char* write = dest;
|
||
const char* read = source;
|
||
char ch = '.';
|
||
|
||
while (ch != '\0') {
|
||
ch = *read++;
|
||
*write++ = (isalnum(ch) || ('\0' == ch)) ? ch : '_';
|
||
}
|
||
return dest;
|
||
}
|
||
|
||
char IndexSeparator(void)
|
||
{
|
||
/*
|
||
// 20 bytes more costly !?!
|
||
const char separators[] = { "-_" };
|
||
|
||
return separators[Settings->flag3.use_underscore];
|
||
*/
|
||
if (Settings->flag3.use_underscore) { // SetOption64 - Enable "_" instead of "-" as sensor index separator
|
||
return '_';
|
||
} else {
|
||
return '-';
|
||
}
|
||
}
|
||
|
||
void SetShortcutDefault(void)
|
||
{
|
||
if ('\0' != XdrvMailbox.data[0]) { // There must be at least one character in the buffer
|
||
XdrvMailbox.data[0] = '0' + SC_DEFAULT; // SC_CLEAR, SC_DEFAULT, SC_USER
|
||
XdrvMailbox.data[1] = '\0';
|
||
}
|
||
}
|
||
|
||
uint8_t Shortcut(void)
|
||
{
|
||
uint8_t result = 10;
|
||
|
||
if ('\0' == XdrvMailbox.data[1]) { // Only allow single character input for shortcut
|
||
if (('"' == XdrvMailbox.data[0]) || ('0' == XdrvMailbox.data[0])) {
|
||
result = SC_CLEAR;
|
||
} else {
|
||
result = atoi(XdrvMailbox.data); // 1 = SC_DEFAULT, 2 = SC_USER
|
||
if (0 == result) {
|
||
result = 10;
|
||
}
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
bool ValidIpAddress(const char* str)
|
||
{
|
||
IPAddress ip_address;
|
||
return ip_address.fromString(str);
|
||
}
|
||
|
||
bool ParseIPv4(uint32_t* addr, const char* str_p)
|
||
{
|
||
uint8_t *part = (uint8_t*)addr;
|
||
uint8_t i;
|
||
char str_r[strlen_P(str_p)+1];
|
||
char * str = &str_r[0];
|
||
strcpy_P(str, str_p);
|
||
|
||
*addr = 0;
|
||
for (i = 0; i < 4; i++) {
|
||
part[i] = strtoul(str, nullptr, 10); // Convert byte
|
||
str = strchr(str, '.');
|
||
if (str == nullptr || *str == '\0') {
|
||
break; // No more separators, exit
|
||
}
|
||
str++; // Point to next character after separator
|
||
}
|
||
return (3 == i);
|
||
}
|
||
|
||
bool NewerVersion(char* version_str) {
|
||
// Function to parse & check if version_str is newer than our currently installed version.
|
||
uint32_t version = 0;
|
||
uint32_t i = 0;
|
||
char *str_ptr;
|
||
|
||
char version_dup[strlen(version_str) +1];
|
||
strncpy(version_dup, version_str, sizeof(version_dup)); // Duplicate the version_str as strtok_r will modify it.
|
||
// Loop through the version string, splitting on '.' seperators.
|
||
for (char *str = strtok_r(version_dup, ".", &str_ptr); str && i < sizeof(VERSION); str = strtok_r(nullptr, ".", &str_ptr), i++) {
|
||
int field = atoi(str);
|
||
// The fields in a version string can only range from 0-255.
|
||
if ((field < 0) || (field > 255)) {
|
||
return false;
|
||
}
|
||
// Shuffle the accumulated bytes across, and add the new byte.
|
||
version = (version << 8) + field;
|
||
// Check alpha delimiter after 1.2.3 only
|
||
if ((2 == i) && isalpha(str[strlen(str)-1])) {
|
||
field = str[strlen(str)-1] & 0x1f;
|
||
version = (version << 8) + field;
|
||
i++;
|
||
}
|
||
}
|
||
// A version string should have 2-4 fields. e.g. 1.2, 1.2.3, or 1.2.3a (= 1.2.3.1).
|
||
// If not, then don't consider it a valid version string.
|
||
if ((i < 2) || (i > sizeof(VERSION))) {
|
||
return false;
|
||
}
|
||
// Keep shifting the parsed version until we hit the maximum number of tokens.
|
||
// VERSION stores the major number of the version in the most significant byte of the uint32_t.
|
||
while (i < sizeof(VERSION)) {
|
||
version <<= 8;
|
||
i++;
|
||
}
|
||
// Now we should have a fully constructed version number in uint32_t form.
|
||
return (version > VERSION);
|
||
}
|
||
|
||
char* GetPowerDevice(char* dest, uint32_t idx, size_t size, uint32_t option)
|
||
{
|
||
strncpy_P(dest, S_RSLT_POWER, size); // POWER
|
||
if ((TasmotaGlobal.devices_present + option) > 1) {
|
||
char sidx[8];
|
||
snprintf_P(sidx, sizeof(sidx), PSTR("%d"), idx); // x
|
||
strncat(dest, sidx, size - strlen(dest) -1); // POWERx
|
||
}
|
||
return dest;
|
||
}
|
||
|
||
char* GetPowerDevice(char* dest, uint32_t idx, size_t size)
|
||
{
|
||
return GetPowerDevice(dest, idx, size, 0);
|
||
}
|
||
|
||
float ConvertTempToFahrenheit(float c) {
|
||
float result = c;
|
||
|
||
if (!isnan(c) && Settings->flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
|
||
result = c * 1.8f + 32; // Fahrenheit
|
||
}
|
||
result = result + (0.1f * Settings->temp_comp);
|
||
return result;
|
||
}
|
||
|
||
float ConvertTempToCelsius(float c) {
|
||
float result = c;
|
||
if (!isnan(c) && Settings->flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
|
||
result = (c - 32) / 1.8f; // Celsius
|
||
}
|
||
return result;
|
||
}
|
||
|
||
void UpdateGlobalTemperature(float c) {
|
||
if (!Settings->global_sensor_index[0] && !TasmotaGlobal.user_globals[0]) {
|
||
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
|
||
TasmotaGlobal.temperature_celsius = c;
|
||
}
|
||
}
|
||
|
||
float ConvertTemp(float c) {
|
||
UpdateGlobalTemperature(c);
|
||
|
||
return ConvertTempToFahrenheit(c);
|
||
}
|
||
|
||
char TempUnit(void) {
|
||
// SetOption8 - Switch between Celsius or Fahrenheit
|
||
return (Settings->flag.temperature_conversion) ? D_UNIT_FAHRENHEIT[0] : D_UNIT_CELSIUS[0];
|
||
}
|
||
|
||
float ConvertHumidity(float h) {
|
||
float result = h;
|
||
|
||
if (!Settings->global_sensor_index[1] && !TasmotaGlobal.user_globals[1]) {
|
||
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
|
||
TasmotaGlobal.humidity = h;
|
||
}
|
||
|
||
result = result + (0.1f * Settings->hum_comp);
|
||
|
||
return result;
|
||
}
|
||
|
||
float CalcTempHumToDew(float t, float h) {
|
||
if (isnan(h) || isnan(t)) { return NAN; }
|
||
|
||
if (Settings->flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
|
||
t = (t - 32) / 1.8f; // Celsius
|
||
}
|
||
|
||
float gamma = TaylorLog(h / 100) + 17.62f * t / (243.5f + t);
|
||
float result = (243.5f * gamma / (17.62f - gamma));
|
||
|
||
if (Settings->flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
|
||
result = result * 1.8f + 32; // Fahrenheit
|
||
}
|
||
return result;
|
||
}
|
||
|
||
float ConvertHgToHpa(float p) {
|
||
// Convert mmHg (or inHg) to hPa
|
||
float result = p;
|
||
if (!isnan(p) && Settings->flag.pressure_conversion) { // SetOption24 - Switch between hPa or mmHg pressure unit
|
||
if (Settings->flag5.mm_vs_inch) { // SetOption139 - Switch between mmHg or inHg pressure unit
|
||
result = p * 33.86389f; // inHg (double to float saves 16 bytes!)
|
||
} else {
|
||
result = p * 1.3332239f; // mmHg (double to float saves 16 bytes!)
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
float ConvertPressure(float p) {
|
||
// Convert hPa to mmHg (or inHg)
|
||
float result = p;
|
||
|
||
if (!Settings->global_sensor_index[2] && !TasmotaGlobal.user_globals[2]) {
|
||
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
|
||
TasmotaGlobal.pressure_hpa = p;
|
||
}
|
||
|
||
if (!isnan(p) && Settings->flag.pressure_conversion) { // SetOption24 - Switch between hPa or mmHg pressure unit
|
||
if (Settings->flag5.mm_vs_inch) { // SetOption139 - Switch between mmHg or inHg pressure unit
|
||
// result = p * 0.02952998016471; // inHg
|
||
result = p * 0.0295299f; // inHg (double to float saves 16 bytes!)
|
||
} else {
|
||
// result = p * 0.75006375541921; // mmHg
|
||
result = p * 0.7500637f; // mmHg (double to float saves 16 bytes!)
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
float ConvertPressureForSeaLevel(float pressure) {
|
||
if (pressure == 0.0f) {
|
||
return pressure;
|
||
}
|
||
return ConvertPressure((pressure / FastPrecisePowf(1.0f - ((float)Settings->altitude / 44330.0f), 5.255f)) - 21.6f);
|
||
}
|
||
|
||
const char kPressureUnit[] PROGMEM = D_UNIT_PRESSURE "|" D_UNIT_MILLIMETER_MERCURY "|" D_UNIT_INCH_MERCURY;
|
||
|
||
String PressureUnit(void) {
|
||
uint32_t index = (Settings->flag.pressure_conversion) ? Settings->flag5.mm_vs_inch +1 : 0;
|
||
char text[8];
|
||
return String(GetTextIndexed(text, sizeof(text), index, kPressureUnit));
|
||
}
|
||
|
||
float ConvertSpeed(float s)
|
||
{
|
||
// Entry in m/s
|
||
return s * kSpeedConversionFactor[Settings->flag2.speed_conversion];
|
||
}
|
||
|
||
String SpeedUnit(void) {
|
||
char text[8];
|
||
return String(GetTextIndexed(text, sizeof(text), Settings->flag2.speed_conversion, kSpeedUnit));
|
||
}
|
||
|
||
void ResetGlobalValues(void)
|
||
{
|
||
if ((TasmotaGlobal.uptime - TasmotaGlobal.global_update) > GLOBAL_VALUES_VALID) { // Reset after 5 minutes
|
||
TasmotaGlobal.global_update = 0;
|
||
TasmotaGlobal.temperature_celsius = NAN;
|
||
TasmotaGlobal.humidity = 0.0f;
|
||
TasmotaGlobal.pressure_hpa = 0.0f;
|
||
}
|
||
}
|
||
|
||
uint32_t SqrtInt(uint32_t num)
|
||
{
|
||
if (num <= 1) {
|
||
return num;
|
||
}
|
||
|
||
uint32_t x = num / 2;
|
||
uint32_t y;
|
||
do {
|
||
y = (x + num / x) / 2;
|
||
if (y >= x) {
|
||
return x;
|
||
}
|
||
x = y;
|
||
} while (true);
|
||
}
|
||
|
||
uint32_t RoundSqrtInt(uint32_t num)
|
||
{
|
||
uint32_t s = SqrtInt(4 * num);
|
||
if (s & 1) {
|
||
s++;
|
||
}
|
||
return s / 2;
|
||
}
|
||
|
||
char* GetTextIndexed(char* destination, size_t destination_size, uint32_t index, const char* haystack)
|
||
{
|
||
// Returns empty string if not found
|
||
// Returns text of found
|
||
char* write = destination;
|
||
const char* read = haystack;
|
||
|
||
index++;
|
||
while (index--) {
|
||
size_t size = destination_size -1;
|
||
write = destination;
|
||
char ch = '.';
|
||
while ((ch != '\0') && (ch != '|')) {
|
||
ch = pgm_read_byte(read++);
|
||
if (size && (ch != '|')) {
|
||
*write++ = ch;
|
||
size--;
|
||
}
|
||
}
|
||
if (0 == ch) {
|
||
if (index) {
|
||
write = destination;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
*write = '\0';
|
||
return destination;
|
||
}
|
||
|
||
int GetCommandCode(char* destination, size_t destination_size, const char* needle, const char* haystack)
|
||
{
|
||
// Returns -1 of not found
|
||
// Returns index and command if found
|
||
int result = -1;
|
||
const char* read = haystack;
|
||
char* write = destination;
|
||
|
||
while (true) {
|
||
result++;
|
||
size_t size = destination_size -1;
|
||
write = destination;
|
||
char ch = '.';
|
||
while ((ch != '\0') && (ch != '|')) {
|
||
ch = pgm_read_byte(read++);
|
||
if (size && (ch != '|')) {
|
||
*write++ = ch;
|
||
size--;
|
||
}
|
||
}
|
||
*write = '\0';
|
||
if (!strcasecmp(needle, destination)) {
|
||
break;
|
||
}
|
||
if (0 == ch) {
|
||
result = -1;
|
||
break;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
bool DecodeCommand(const char* haystack, void (* const MyCommand[])(void), const uint8_t *synonyms = nullptr);
|
||
bool DecodeCommand(const char* haystack, void (* const MyCommand[])(void), const uint8_t *synonyms) {
|
||
GetTextIndexed(XdrvMailbox.command, CMDSZ, 0, haystack); // Get prefix if available
|
||
int prefix_length = strlen(XdrvMailbox.command);
|
||
if (prefix_length) {
|
||
char prefix[prefix_length +1];
|
||
snprintf_P(prefix, sizeof(prefix), XdrvMailbox.topic); // Copy prefix part only
|
||
if (strcasecmp(prefix, XdrvMailbox.command)) {
|
||
return false; // Prefix not in command
|
||
}
|
||
}
|
||
size_t syn_count = synonyms ? pgm_read_byte(synonyms) : 0;
|
||
int command_code = GetCommandCode(XdrvMailbox.command + prefix_length, CMDSZ, XdrvMailbox.topic + prefix_length, haystack);
|
||
if (command_code > 0) { // Skip prefix
|
||
if (command_code > syn_count) {
|
||
// We passed the synonyms zone, it's a regular command
|
||
XdrvMailbox.command_code = command_code - 1 - syn_count;
|
||
MyCommand[XdrvMailbox.command_code]();
|
||
} else {
|
||
// We have a SetOption synonym
|
||
XdrvMailbox.index = pgm_read_byte(synonyms + command_code);
|
||
CmndSetoptionBase(0);
|
||
}
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
const char kOptions[] PROGMEM = "OFF|" D_OFF "|FALSE|" D_FALSE "|STOP|" D_STOP "|" D_CELSIUS "|" // 0
|
||
"ON|" D_ON "|TRUE|" D_TRUE "|START|" D_START "|" D_FAHRENHEIT "|" D_USER "|" // 1
|
||
"TOGGLE|" D_TOGGLE "|" D_ADMIN "|" // 2
|
||
"BLINK|" D_BLINK "|" // 3
|
||
"BLINKOFF|" D_BLINKOFF "|" // 4
|
||
"ALL" ; // 255
|
||
|
||
const uint8_t sNumbers[] PROGMEM = { 0,0,0,0,0,0,0,
|
||
1,1,1,1,1,1,1,1,
|
||
2,2,2,
|
||
3,3,
|
||
4,4,
|
||
255 };
|
||
|
||
int GetStateNumber(const char *state_text)
|
||
{
|
||
char command[CMDSZ];
|
||
int state_number = GetCommandCode(command, sizeof(command), state_text, kOptions);
|
||
if (state_number >= 0) {
|
||
state_number = pgm_read_byte(sNumbers + state_number);
|
||
}
|
||
return state_number;
|
||
}
|
||
|
||
uint32_t GetHash(const char *buffer, size_t size)
|
||
{
|
||
uint32_t hash = 0;
|
||
for (uint32_t i = 0; i <= size; i++) {
|
||
hash += (uint8_t)*buffer++ * (i +1);
|
||
}
|
||
return hash;
|
||
}
|
||
|
||
void ShowSource(uint32_t source)
|
||
{
|
||
if ((source > 0) && (source < SRC_MAX)) {
|
||
char stemp1[20];
|
||
AddLog(LOG_LEVEL_DEBUG, PSTR("SRC: %s"), GetTextIndexed(stemp1, sizeof(stemp1), source, kCommandSource));
|
||
}
|
||
}
|
||
|
||
void WebHexCode(uint32_t i, const char* code)
|
||
{
|
||
char scolor[10];
|
||
|
||
strlcpy(scolor, code, sizeof(scolor));
|
||
char* p = scolor;
|
||
if ('#' == p[0]) { p++; } // Skip
|
||
|
||
if (3 == strlen(p)) { // Convert 3 character to 6 character color code
|
||
p[6] = p[3]; // \0
|
||
p[5] = p[2]; // 3
|
||
p[4] = p[2]; // 3
|
||
p[3] = p[1]; // 2
|
||
p[2] = p[1]; // 2
|
||
p[1] = p[0]; // 1
|
||
}
|
||
|
||
uint32_t color = strtol(p, nullptr, 16);
|
||
/*
|
||
if (3 == strlen(p)) { // Convert 3 character to 6 character color code
|
||
uint32_t w = ((color & 0xF00) << 8) | ((color & 0x0F0) << 4) | (color & 0x00F); // 00010203
|
||
color = w | (w << 4); // 00112233
|
||
}
|
||
*/
|
||
uint32_t j = sizeof(Settings->web_color) / 3; // First area contains j = 18 colors
|
||
/*
|
||
if (i < j) {
|
||
Settings->web_color[i][0] = (color >> 16) & 0xFF; // Red
|
||
Settings->web_color[i][1] = (color >> 8) & 0xFF; // Green
|
||
Settings->web_color[i][2] = color & 0xFF; // Blue
|
||
} else {
|
||
Settings->web_color2[i-j][0] = (color >> 16) & 0xFF; // Red
|
||
Settings->web_color2[i-j][1] = (color >> 8) & 0xFF; // Green
|
||
Settings->web_color2[i-j][2] = color & 0xFF; // Blue
|
||
}
|
||
*/
|
||
if (i >= j) {
|
||
// Calculate i to index in Settings->web_color2 - Dirty(!) but saves 128 bytes code
|
||
i += ((((uint8_t*)&Settings->web_color2 - (uint8_t*)&Settings->web_color) / 3) - j);
|
||
}
|
||
Settings->web_color[i][0] = (color >> 16) & 0xFF; // Red
|
||
Settings->web_color[i][1] = (color >> 8) & 0xFF; // Green
|
||
Settings->web_color[i][2] = color & 0xFF; // Blue
|
||
}
|
||
|
||
uint32_t WebColor(uint32_t i)
|
||
{
|
||
uint32_t j = sizeof(Settings->web_color) / 3; // First area contains j = 18 colors
|
||
/*
|
||
uint32_t tcolor = (i<j)? (Settings->web_color[i][0] << 16) | (Settings->web_color[i][1] << 8) | Settings->web_color[i][2] :
|
||
(Settings->web_color2[i-j][0] << 16) | (Settings->web_color2[i-j][1] << 8) | Settings->web_color2[i-j][2];
|
||
*/
|
||
if (i >= j) {
|
||
// Calculate i to index in Settings->web_color2 - Dirty(!) but saves 128 bytes code
|
||
i += ((((uint8_t*)&Settings->web_color2 - (uint8_t*)&Settings->web_color) / 3) - j);
|
||
}
|
||
uint32_t tcolor = (Settings->web_color[i][0] << 16) | (Settings->web_color[i][1] << 8) | Settings->web_color[i][2];
|
||
|
||
return tcolor;
|
||
}
|
||
|
||
/*********************************************************************************************\
|
||
* Response data handling
|
||
\*********************************************************************************************/
|
||
|
||
const uint16_t TIMESZ = 100; // Max number of characters in time string
|
||
|
||
char* ResponseGetTime(uint32_t format, char* time_str)
|
||
{
|
||
switch (format) {
|
||
case 1:
|
||
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\",\"Epoch\":%u"), GetDateAndTime(DT_LOCAL).c_str(), UtcTime());
|
||
break;
|
||
case 2:
|
||
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":%u"), UtcTime());
|
||
break;
|
||
case 3:
|
||
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\""), GetDateAndTime(DT_LOCAL_MILLIS).c_str());
|
||
break;
|
||
default:
|
||
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\""), GetDateAndTime(DT_LOCAL).c_str());
|
||
}
|
||
return time_str;
|
||
}
|
||
|
||
char* ResponseData(void) {
|
||
#ifdef MQTT_DATA_STRING
|
||
return (char*)TasmotaGlobal.mqtt_data.c_str();
|
||
#else
|
||
return TasmotaGlobal.mqtt_data;
|
||
#endif
|
||
}
|
||
|
||
uint32_t ResponseSize(void) {
|
||
#ifdef MQTT_DATA_STRING
|
||
return MAX_LOGSZ; // Arbitratry max length satisfying full log entry
|
||
#else
|
||
return sizeof(TasmotaGlobal.mqtt_data);
|
||
#endif
|
||
}
|
||
|
||
uint32_t ResponseLength(void) {
|
||
#ifdef MQTT_DATA_STRING
|
||
return TasmotaGlobal.mqtt_data.length();
|
||
#else
|
||
return strlen(TasmotaGlobal.mqtt_data);
|
||
#endif
|
||
}
|
||
|
||
void ResponseClear(void) {
|
||
// Reset string length to zero
|
||
#ifdef MQTT_DATA_STRING
|
||
TasmotaGlobal.mqtt_data = "";
|
||
// TasmotaGlobal.mqtt_data = (const char*) nullptr; // Doesn't work on ESP32 as strlen() (in MqttPublishPayload) will fail (for obvious reasons)
|
||
#else
|
||
TasmotaGlobal.mqtt_data[0] = '\0';
|
||
#endif
|
||
}
|
||
|
||
void ResponseJsonStart(void) {
|
||
// Insert a JSON start bracket {
|
||
#ifdef MQTT_DATA_STRING
|
||
TasmotaGlobal.mqtt_data.setCharAt(0,'{');
|
||
#else
|
||
TasmotaGlobal.mqtt_data[0] = '{';
|
||
#endif
|
||
}
|
||
|
||
int Response_P(const char* format, ...) // Content send snprintf_P char data
|
||
{
|
||
// This uses char strings. Be aware of sending %% if % is needed
|
||
#ifdef MQTT_DATA_STRING
|
||
va_list arg;
|
||
va_start(arg, format);
|
||
char* mqtt_data = ext_vsnprintf_malloc_P(format, arg);
|
||
va_end(arg);
|
||
if (mqtt_data != nullptr) {
|
||
TasmotaGlobal.mqtt_data = mqtt_data;
|
||
free(mqtt_data);
|
||
} else {
|
||
TasmotaGlobal.mqtt_data = "";
|
||
}
|
||
return TasmotaGlobal.mqtt_data.length();
|
||
#else
|
||
va_list args;
|
||
va_start(args, format);
|
||
int len = ext_vsnprintf_P(TasmotaGlobal.mqtt_data, ResponseSize(), format, args);
|
||
va_end(args);
|
||
return len;
|
||
#endif
|
||
}
|
||
|
||
int ResponseTime_P(const char* format, ...) // Content send snprintf_P char data
|
||
{
|
||
// This uses char strings. Be aware of sending %% if % is needed
|
||
#ifdef MQTT_DATA_STRING
|
||
char timestr[100];
|
||
TasmotaGlobal.mqtt_data = ResponseGetTime(Settings->flag2.time_format, timestr);
|
||
|
||
va_list arg;
|
||
va_start(arg, format);
|
||
char* mqtt_data = ext_vsnprintf_malloc_P(format, arg);
|
||
va_end(arg);
|
||
if (mqtt_data != nullptr) {
|
||
TasmotaGlobal.mqtt_data += mqtt_data;
|
||
free(mqtt_data);
|
||
}
|
||
return TasmotaGlobal.mqtt_data.length();
|
||
#else
|
||
va_list args;
|
||
va_start(args, format);
|
||
|
||
ResponseGetTime(Settings->flag2.time_format, TasmotaGlobal.mqtt_data);
|
||
|
||
int mlen = ResponseLength();
|
||
int len = ext_vsnprintf_P(TasmotaGlobal.mqtt_data + mlen, ResponseSize() - mlen, format, args);
|
||
va_end(args);
|
||
return len + mlen;
|
||
#endif
|
||
}
|
||
|
||
int ResponseAppend_P(const char* format, ...) // Content send snprintf_P char data
|
||
{
|
||
// This uses char strings. Be aware of sending %% if % is needed
|
||
#ifdef MQTT_DATA_STRING
|
||
va_list arg;
|
||
va_start(arg, format);
|
||
char* mqtt_data = ext_vsnprintf_malloc_P(format, arg);
|
||
va_end(arg);
|
||
if (mqtt_data != nullptr) {
|
||
TasmotaGlobal.mqtt_data += mqtt_data;
|
||
free(mqtt_data);
|
||
}
|
||
return TasmotaGlobal.mqtt_data.length();
|
||
#else
|
||
va_list args;
|
||
va_start(args, format);
|
||
int mlen = ResponseLength();
|
||
int len = ext_vsnprintf_P(TasmotaGlobal.mqtt_data + mlen, ResponseSize() - mlen, format, args);
|
||
va_end(args);
|
||
return len + mlen;
|
||
#endif
|
||
}
|
||
|
||
int ResponseAppendTimeFormat(uint32_t format)
|
||
{
|
||
char time_str[TIMESZ];
|
||
return ResponseAppend_P(ResponseGetTime(format, time_str));
|
||
}
|
||
|
||
int ResponseAppendTime(void)
|
||
{
|
||
return ResponseAppendTimeFormat(Settings->flag2.time_format);
|
||
}
|
||
|
||
int ResponseAppendTHD(float f_temperature, float f_humidity)
|
||
{
|
||
float dewpoint = CalcTempHumToDew(f_temperature, f_humidity);
|
||
return ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%*_f,\"" D_JSON_HUMIDITY "\":%*_f,\"" D_JSON_DEWPOINT "\":%*_f"),
|
||
Settings->flag2.temperature_resolution, &f_temperature,
|
||
Settings->flag2.humidity_resolution, &f_humidity,
|
||
Settings->flag2.temperature_resolution, &dewpoint);
|
||
}
|
||
|
||
int ResponseJsonEnd(void)
|
||
{
|
||
return ResponseAppend_P(PSTR("}"));
|
||
}
|
||
|
||
int ResponseJsonEndEnd(void)
|
||
{
|
||
return ResponseAppend_P(PSTR("}}"));
|
||
}
|
||
|
||
bool ResponseContains_P(const char* needle) {
|
||
/*
|
||
#ifdef MQTT_DATA_STRING
|
||
return (strstr_P(TasmotaGlobal.mqtt_data.c_str(), needle) != nullptr);
|
||
#else
|
||
return (strstr_P(TasmotaGlobal.mqtt_data, needle) != nullptr);
|
||
#endif
|
||
*/
|
||
return (strstr_P(ResponseData(), needle) != nullptr);
|
||
}
|
||
|
||
/*********************************************************************************************\
|
||
* GPIO Module and Template management
|
||
\*********************************************************************************************/
|
||
|
||
#ifdef ESP8266
|
||
uint16_t GpioConvert(uint8_t gpio) {
|
||
if (gpio >= nitems(kGpioConvert)) {
|
||
return AGPIO(GPIO_USER);
|
||
}
|
||
return pgm_read_word(kGpioConvert + gpio);
|
||
}
|
||
|
||
uint16_t Adc0Convert(uint8_t adc0) {
|
||
if (adc0 > 7) {
|
||
return AGPIO(GPIO_USER);
|
||
}
|
||
else if (0 == adc0) {
|
||
return GPIO_NONE;
|
||
}
|
||
return AGPIO(GPIO_ADC_INPUT + adc0 -1);
|
||
}
|
||
|
||
void TemplateConvert(uint8_t template8[], uint16_t template16[]) {
|
||
for (uint32_t i = 0; i < (sizeof(mytmplt) / 2) -2; i++) {
|
||
template16[i] = GpioConvert(template8[i]);
|
||
}
|
||
template16[(sizeof(mytmplt) / 2) -2] = Adc0Convert(template8[sizeof(mytmplt8285) -1]);
|
||
}
|
||
|
||
void ConvertGpios(void) {
|
||
if (Settings->gpio16_converted != 0xF5A0) {
|
||
// Convert 8-bit user template
|
||
TemplateConvert((uint8_t*)&Settings->ex_user_template8, (uint16_t*)&Settings->user_template);
|
||
|
||
for (uint32_t i = 0; i < sizeof(Settings->ex_my_gp8.io); i++) {
|
||
Settings->my_gp.io[i] = GpioConvert(Settings->ex_my_gp8.io[i]);
|
||
}
|
||
Settings->my_gp.io[(sizeof(myio) / 2) -1] = Adc0Convert(Settings->ex_my_adc0);
|
||
Settings->gpio16_converted = 0xF5A0;
|
||
}
|
||
}
|
||
#endif // ESP8266
|
||
|
||
int IRAM_ATTR Pin(uint32_t gpio, uint32_t index = 0);
|
||
int IRAM_ATTR Pin(uint32_t gpio, uint32_t index) {
|
||
uint16_t real_gpio = gpio << 5;
|
||
uint16_t mask = 0xFFE0;
|
||
if (index < GPIO_ANY) {
|
||
real_gpio += index;
|
||
mask = 0xFFFF;
|
||
}
|
||
for (uint32_t i = 0; i < nitems(TasmotaGlobal.gpio_pin); i++) {
|
||
if ((TasmotaGlobal.gpio_pin[i] & mask) == real_gpio) {
|
||
return i; // Pin number configured for gpio
|
||
}
|
||
}
|
||
return -1; // No pin used for gpio
|
||
}
|
||
|
||
bool PinUsed(uint32_t gpio, uint32_t index = 0);
|
||
bool PinUsed(uint32_t gpio, uint32_t index) {
|
||
return (Pin(gpio, index) >= 0);
|
||
}
|
||
|
||
uint32_t GetPin(uint32_t lpin) {
|
||
if (lpin < nitems(TasmotaGlobal.gpio_pin)) {
|
||
return TasmotaGlobal.gpio_pin[lpin];
|
||
} else {
|
||
return GPIO_NONE;
|
||
}
|
||
}
|
||
|
||
void SetPin(uint32_t lpin, uint32_t gpio) {
|
||
TasmotaGlobal.gpio_pin[lpin] = gpio;
|
||
}
|
||
|
||
void DigitalWrite(uint32_t gpio_pin, uint32_t index, uint32_t state) {
|
||
static uint32_t pinmode_init[2] = { 0 }; // Pins 0 to 63 !!!
|
||
|
||
if (PinUsed(gpio_pin, index)) {
|
||
uint32_t pin = Pin(gpio_pin, index) & 0x3F; // Fix possible overflow over 63 gpios
|
||
if (!bitRead(pinmode_init[pin / 32], pin % 32)) {
|
||
bitSet(pinmode_init[pin / 32], pin % 32);
|
||
pinMode(pin, OUTPUT);
|
||
}
|
||
digitalWrite(pin, state &1);
|
||
}
|
||
}
|
||
|
||
uint8_t ModuleNr(void)
|
||
{
|
||
// 0 = User module (255)
|
||
// 1 up = Template module 0 up
|
||
return (USER_MODULE == Settings->module) ? 0 : Settings->module +1;
|
||
}
|
||
|
||
uint32_t ModuleTemplate(uint32_t module) {
|
||
uint32_t i = 0;
|
||
for (i = 0; i < sizeof(kModuleNiceList); i++) {
|
||
if (module == pgm_read_byte(kModuleNiceList + i)) {
|
||
break;
|
||
}
|
||
}
|
||
if (i == sizeof(kModuleNiceList)) { i = 0; }
|
||
return i;
|
||
}
|
||
|
||
bool ValidTemplateModule(uint32_t index)
|
||
{
|
||
for (uint32_t i = 0; i < sizeof(kModuleNiceList); i++) {
|
||
if (index == pgm_read_byte(kModuleNiceList + i)) {
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool ValidModule(uint32_t index)
|
||
{
|
||
if (index == USER_MODULE) { return true; }
|
||
return ValidTemplateModule(index);
|
||
}
|
||
|
||
bool ValidTemplate(const char *search) {
|
||
/*
|
||
char template_name[strlen(SettingsText(SET_TEMPLATE_NAME)) +1];
|
||
char search_name[strlen(search) +1];
|
||
|
||
LowerCase(template_name, SettingsText(SET_TEMPLATE_NAME));
|
||
LowerCase(search_name, search);
|
||
|
||
return (strstr(template_name, search_name) != nullptr);
|
||
*/
|
||
return StrCaseStr_P(SettingsText(SET_TEMPLATE_NAME), search);
|
||
}
|
||
|
||
String AnyModuleName(uint32_t index)
|
||
{
|
||
if (USER_MODULE == index) {
|
||
return String(SettingsText(SET_TEMPLATE_NAME));
|
||
} else {
|
||
#ifdef ESP32
|
||
index = ModuleTemplate(index);
|
||
#endif
|
||
char name[TOPSZ];
|
||
return String(GetTextIndexed(name, sizeof(name), index, kModuleNames));
|
||
}
|
||
}
|
||
|
||
String ModuleName(void)
|
||
{
|
||
return AnyModuleName(Settings->module);
|
||
}
|
||
|
||
#ifdef ESP8266
|
||
void GetInternalTemplate(void* ptr, uint32_t module, uint32_t option) {
|
||
uint8_t module_template = pgm_read_byte(kModuleTemplateList + module);
|
||
|
||
// AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Template %d, Option %d"), module_template, option);
|
||
|
||
// template8 = GPIO 0,1,2,3,4,5,9,10,12,13,14,15,16,Adc
|
||
uint8_t template8[sizeof(mytmplt8285)] = { GPIO_NONE };
|
||
if (module_template < TMP_WEMOS) {
|
||
memcpy_P(&template8, &kModules8266[module_template], 6);
|
||
memcpy_P(&template8[8], &kModules8266[module_template].gp.io[6], 6);
|
||
} else {
|
||
memcpy_P(&template8, &kModules8285[module_template - TMP_WEMOS], sizeof(template8));
|
||
}
|
||
|
||
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&template8, sizeof(mytmplt8285));
|
||
|
||
// template16 = GPIO 0,1,2,3,4,5,9,10,12,13,14,15,16,Adc,Flg
|
||
uint16_t template16[(sizeof(mytmplt) / 2)] = { GPIO_NONE };
|
||
TemplateConvert(template8, template16);
|
||
|
||
uint32_t index = 0;
|
||
uint32_t size = sizeof(mycfgio); // template16[module_template].gp
|
||
switch (option) {
|
||
case 2: {
|
||
index = (sizeof(mytmplt) / 2) -1; // template16[module_template].flag
|
||
size = 2;
|
||
break;
|
||
}
|
||
case 3: {
|
||
size = sizeof(mytmplt); // template16[module_template]
|
||
break;
|
||
}
|
||
}
|
||
memcpy(ptr, &template16[index], size);
|
||
|
||
// AddLog(LOG_LEVEL_DEBUG, PSTR("FNC: GetInternalTemplate option %d"), option);
|
||
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t *)ptr, size / 2, 2);
|
||
}
|
||
#endif // ESP8266
|
||
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
// Conversion table from gpio template to physical gpio
|
||
const uint8_t Esp32TemplateToPhy[MAX_USER_PINS] = { ESP32_TEMPLATE_TO_PHY };
|
||
#endif // CONFIG_IDF_TARGET_ESP32
|
||
|
||
void TemplateGpios(myio *gp)
|
||
{
|
||
uint16_t *dest = (uint16_t *)gp;
|
||
uint16_t src[nitems(Settings->user_template.gp.io)];
|
||
|
||
memset(dest, GPIO_NONE, sizeof(myio));
|
||
if (USER_MODULE == Settings->module) {
|
||
memcpy(&src, &Settings->user_template.gp, sizeof(mycfgio));
|
||
} else {
|
||
#ifdef ESP8266
|
||
GetInternalTemplate(&src, Settings->module, 1);
|
||
#endif // ESP8266
|
||
#ifdef ESP32
|
||
memcpy_P(&src, &kModules[ModuleTemplate(Settings->module)].gp, sizeof(mycfgio));
|
||
#endif // ESP32
|
||
}
|
||
// 11 85 00 85 85 00 00 00 15 38 85 00 00 81
|
||
|
||
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&src, sizeof(mycfgio));
|
||
|
||
// Expand template to physical GPIO array, j=phy_GPIO, i=template_GPIO
|
||
uint32_t j = 0;
|
||
for (uint32_t i = 0; i < nitems(Settings->user_template.gp.io); i++) {
|
||
#if defined(ESP32) && CONFIG_IDF_TARGET_ESP32C3
|
||
dest[i] = src[i];
|
||
#elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
|
||
if (22 == i) { j = 33; } // skip 22-32
|
||
dest[j] = src[i];
|
||
j++;
|
||
#elif defined(CONFIG_IDF_TARGET_ESP32)
|
||
dest[Esp32TemplateToPhy[i]] = src[i];
|
||
#else // ESP8266
|
||
if (6 == i) { j = 9; }
|
||
if (8 == i) { j = 12; }
|
||
dest[j] = src[i];
|
||
j++;
|
||
#endif
|
||
}
|
||
// 11 85 00 85 85 00 00 00 00 00 00 00 15 38 85 00 00 81
|
||
|
||
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)gp, sizeof(myio));
|
||
}
|
||
|
||
gpio_flag ModuleFlag(void)
|
||
{
|
||
gpio_flag flag;
|
||
|
||
if (USER_MODULE == Settings->module) {
|
||
flag = Settings->user_template.flag;
|
||
} else {
|
||
#ifdef ESP8266
|
||
GetInternalTemplate(&flag, Settings->module, 2);
|
||
#endif // ESP8266
|
||
#ifdef ESP32
|
||
memcpy_P(&flag, &kModules[ModuleTemplate(Settings->module)].flag, sizeof(gpio_flag));
|
||
#endif // ESP32
|
||
}
|
||
|
||
return flag;
|
||
}
|
||
|
||
void ModuleDefault(uint32_t module)
|
||
{
|
||
if (USER_MODULE == module) { module = WEMOS; } // Generic
|
||
Settings->user_template_base = module;
|
||
|
||
#ifdef ESP32
|
||
module = ModuleTemplate(module);
|
||
#endif
|
||
|
||
char name[TOPSZ];
|
||
SettingsUpdateText(SET_TEMPLATE_NAME, GetTextIndexed(name, sizeof(name), module, kModuleNames));
|
||
#ifdef ESP8266
|
||
GetInternalTemplate(&Settings->user_template, module, 3);
|
||
#endif // ESP8266
|
||
#ifdef ESP32
|
||
memcpy_P(&Settings->user_template, &kModules[module], sizeof(mytmplt));
|
||
#endif // ESP32
|
||
}
|
||
|
||
void SetModuleType(void)
|
||
{
|
||
TasmotaGlobal.module_type = (USER_MODULE == Settings->module) ? Settings->user_template_base : Settings->module;
|
||
#ifdef ESP32
|
||
if (TasmotaGlobal.emulated_module_type) {
|
||
TasmotaGlobal.module_type = TasmotaGlobal.emulated_module_type;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
bool FlashPin(uint32_t pin)
|
||
{
|
||
#if defined(ESP32) && CONFIG_IDF_TARGET_ESP32C3
|
||
return (((pin > 10) && (pin < 12)) || ((pin > 13) && (pin < 18))); // ESP32C3 has GPIOs 11-17 reserved for Flash, with some boards GPIOs 12 13 are useable
|
||
#elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
|
||
return (pin > 21) && (pin < 33); // ESP32S2 skip 22-32
|
||
#elif defined(CONFIG_IDF_TARGET_ESP32)
|
||
return (pin >= 28) && (pin <= 31); // ESP21 skip 28-31
|
||
#else // ESP8266
|
||
return (((pin > 5) && (pin < 9)) || (11 == pin));
|
||
#endif
|
||
}
|
||
|
||
bool RedPin(uint32_t pin) // pin may be dangerous to change, display in RED in template console
|
||
{
|
||
#if defined(ESP32) && CONFIG_IDF_TARGET_ESP32C3
|
||
return (12==pin)||(13==pin); // ESP32C3: GPIOs 12 13 are usually used for Flash (mode QIO/QOUT)
|
||
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
|
||
return false; // no red pin on ESP32S3
|
||
#elif defined(CONFIG_IDF_TARGET_ESP32S3)
|
||
return (33<=pin) && (37>=pin); // ESP32S3: GPIOs 33..37 are usually used for PSRAM
|
||
#elif defined(CONFIG_IDF_TARGET_ESP32) // red pins are 6-11 for original ESP32, other models like PICO are not impacted if flash pins are condfigured
|
||
// PICO can also have 16/17/18/23 not available
|
||
return ((6<=pin) && (11>=pin)) || (16==pin) || (17==pin); // TODO adapt depending on the exact type of ESP32
|
||
#else // ESP8266
|
||
return (9==pin)||(10==pin);
|
||
#endif
|
||
}
|
||
|
||
uint32_t ValidPin(uint32_t pin, uint32_t gpio) {
|
||
if (FlashPin(pin)) {
|
||
return GPIO_NONE; // Disable flash pins GPIO6, GPIO7, GPIO8 and GPIO11
|
||
}
|
||
|
||
#if defined(CONFIG_IDF_TARGET_ESP32C3)
|
||
// ignore
|
||
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
|
||
// ignore
|
||
#elif defined(CONFIG_IDF_TARGET_ESP32)
|
||
// ignore
|
||
#else // not ESP32C3 and not ESP32S2
|
||
if ((WEMOS == Settings->module) && !Settings->flag3.user_esp8285_enable) { // SetOption51 - Enable ESP8285 user GPIO's
|
||
if ((9 == pin) || (10 == pin)) {
|
||
return GPIO_NONE; // Disable possible flash GPIO9 and GPIO10
|
||
}
|
||
}
|
||
#endif
|
||
|
||
return gpio;
|
||
}
|
||
|
||
bool ValidGPIO(uint32_t pin, uint32_t gpio) {
|
||
#ifdef ESP8266
|
||
#ifdef USE_ADC_VCC
|
||
if (ADC0_PIN == pin) { return false; } // ADC0 = GPIO17
|
||
#endif
|
||
#endif
|
||
return (GPIO_USER == ValidPin(pin, BGPIO(gpio))); // Only allow GPIO_USER pins
|
||
}
|
||
|
||
bool ValidSpiPinUsed(uint32_t gpio) {
|
||
// ESP8266: If SPI pin selected chk if it's not one of the three Hardware SPI pins (12..14)
|
||
bool result = false;
|
||
if (PinUsed(gpio)) {
|
||
int pin = Pin(gpio);
|
||
result = ((pin < 12) || (pin > 14));
|
||
}
|
||
return result;
|
||
}
|
||
|
||
bool JsonTemplate(char* dataBuf)
|
||
{
|
||
// Old: {"NAME":"Shelly 2.5","GPIO":[56,0,17,0,21,83,0,0,6,82,5,22,156],"FLAG":2,"BASE":18}
|
||
// New: {"NAME":"Shelly 2.5","GPIO":[320,0,32,0,224,193,0,0,640,192,608,225,3456,4736],"FLAG":0,"BASE":18}
|
||
|
||
// AddLog(LOG_LEVEL_DEBUG, PSTR("TPL: |%s|"), dataBuf);
|
||
|
||
if (strlen(dataBuf) < 9) { return false; } // Workaround exception if empty JSON like {} - Needs checks
|
||
|
||
JsonParser parser((char*) dataBuf);
|
||
JsonParserObject root = parser.getRootObject();
|
||
if (!root) { return false; }
|
||
|
||
// All parameters are optional allowing for partial changes
|
||
JsonParserToken val = root[PSTR(D_JSON_NAME)];
|
||
if (val) {
|
||
SettingsUpdateText(SET_TEMPLATE_NAME, val.getStr());
|
||
}
|
||
JsonParserArray arr = root[PSTR(D_JSON_GPIO)];
|
||
if (arr) {
|
||
#ifdef ESP8266
|
||
bool old_template = false;
|
||
uint8_t template8[sizeof(mytmplt8285)] = { GPIO_NONE };
|
||
if (13 == arr.size()) { // Possible old template
|
||
uint32_t gpio = 0;
|
||
for (uint32_t i = 0; i < nitems(template8) -1; i++) {
|
||
gpio = arr[i].getUInt();
|
||
if (gpio > 255) { // New templates might have values above 255
|
||
break;
|
||
}
|
||
template8[i] = gpio;
|
||
}
|
||
old_template = (gpio < 256);
|
||
}
|
||
if (old_template) {
|
||
|
||
AddLog(LOG_LEVEL_DEBUG, PSTR("TPL: Converting template ..."));
|
||
|
||
val = root[PSTR(D_JSON_FLAG)];
|
||
if (val) {
|
||
template8[nitems(template8) -1] = val.getUInt() & 0x0F;
|
||
}
|
||
TemplateConvert(template8, Settings->user_template.gp.io);
|
||
Settings->user_template.flag.data = 0;
|
||
} else {
|
||
#endif
|
||
for (uint32_t i = 0; i < nitems(Settings->user_template.gp.io); i++) {
|
||
JsonParserToken val = arr[i];
|
||
if (!val) { break; }
|
||
uint16_t gpio = val.getUInt();
|
||
if (gpio == (AGPIO(GPIO_NONE) +1)) {
|
||
gpio = AGPIO(GPIO_USER);
|
||
}
|
||
Settings->user_template.gp.io[i] = gpio;
|
||
}
|
||
val = root[PSTR(D_JSON_FLAG)];
|
||
if (val) {
|
||
Settings->user_template.flag.data = val.getUInt();
|
||
}
|
||
}
|
||
#ifdef ESP8266
|
||
}
|
||
#endif
|
||
val = root[PSTR(D_JSON_BASE)];
|
||
if (val) {
|
||
uint32_t base = val.getUInt();
|
||
if ((0 == base) || !ValidTemplateModule(base -1)) { base = 18; }
|
||
Settings->user_template_base = base -1; // Default WEMOS
|
||
}
|
||
|
||
val = root[PSTR(D_JSON_CMND)];
|
||
if (val) {
|
||
if ((USER_MODULE == Settings->module) || StrCaseStr_P(val.getStr(), PSTR(D_CMND_MODULE " 0"))) { // Only execute if current module = USER_MODULE = this template
|
||
char* backup_data = XdrvMailbox.data;
|
||
XdrvMailbox.data = (char*)val.getStr(); // Backlog commands
|
||
ReplaceChar(XdrvMailbox.data, '|', ';'); // Support '|' as command separator for JSON backwards compatibility
|
||
uint32_t backup_data_len = XdrvMailbox.data_len;
|
||
XdrvMailbox.data_len = 1; // Any data
|
||
uint32_t backup_index = XdrvMailbox.index;
|
||
XdrvMailbox.index = 0; // Backlog0 - no delay
|
||
CmndBacklog();
|
||
XdrvMailbox.index = backup_index;
|
||
XdrvMailbox.data_len = backup_data_len;
|
||
XdrvMailbox.data = backup_data;
|
||
}
|
||
}
|
||
|
||
// AddLog(LOG_LEVEL_DEBUG, PSTR("TPL: Converted"));
|
||
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)&Settings->user_template, sizeof(Settings->user_template) / 2, 2);
|
||
|
||
return true;
|
||
}
|
||
|
||
void TemplateJson(void)
|
||
{
|
||
// AddLog(LOG_LEVEL_DEBUG, PSTR("TPL: Show"));
|
||
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)&Settings->user_template, sizeof(Settings->user_template) / 2, 2);
|
||
|
||
Response_P(PSTR("{\"" D_JSON_NAME "\":\"%s\",\"" D_JSON_GPIO "\":["), SettingsText(SET_TEMPLATE_NAME));
|
||
for (uint32_t i = 0; i < nitems(Settings->user_template.gp.io); i++) {
|
||
uint16_t gpio = Settings->user_template.gp.io[i];
|
||
if (gpio == AGPIO(GPIO_USER)) {
|
||
gpio = AGPIO(GPIO_NONE) +1;
|
||
}
|
||
ResponseAppend_P(PSTR("%s%d"), (i>0)?",":"", gpio);
|
||
}
|
||
ResponseAppend_P(PSTR("],\"" D_JSON_FLAG "\":%d,\"" D_JSON_BASE "\":%d}"), Settings->user_template.flag, Settings->user_template_base +1);
|
||
}
|
||
|
||
#if ( defined(USE_SCRIPT) && defined(SUPPORT_MQTT_EVENT) ) || defined (USE_DT_VARS)
|
||
|
||
/*********************************************************************************************\
|
||
* Parse json paylod with path
|
||
\*********************************************************************************************/
|
||
// parser object, source keys, delimiter, float result or NULL, string result or NULL, string size
|
||
// return 1 if numeric 2 if string, else 0 = not found
|
||
uint32_t JsonParsePath(JsonParserObject *jobj, const char *spath, char delim, float *nres, char *sres, uint32_t slen) {
|
||
uint32_t res = 0;
|
||
const char *cp = spath;
|
||
#ifdef DEBUG_JSON_PARSE_PATH
|
||
AddLog(LOG_LEVEL_INFO, PSTR("JSON: parsing json key: %s from json: %s"), cp, jpath);
|
||
#endif
|
||
JsonParserObject obj = *jobj;
|
||
JsonParserObject lastobj = obj;
|
||
char selem[64];
|
||
uint8_t aindex = 0;
|
||
String value = "";
|
||
while (1) {
|
||
// read next element
|
||
for (uint32_t sp=0; sp<sizeof(selem)-1; sp++) {
|
||
if (!*cp || *cp==delim) {
|
||
selem[sp] = 0;
|
||
cp++;
|
||
break;
|
||
}
|
||
selem[sp] = *cp++;
|
||
}
|
||
#ifdef DEBUG_JSON_PARSE_PATH
|
||
AddLog(LOG_LEVEL_INFO, PSTR("JSON: cmp current key: %s"), selem);
|
||
#endif
|
||
// check for array
|
||
char *sp = strchr(selem,'[');
|
||
if (sp) {
|
||
*sp = 0;
|
||
aindex = atoi(sp+1);
|
||
}
|
||
|
||
// now check element
|
||
obj = obj[selem];
|
||
if (!obj.isValid()) {
|
||
#ifdef DEBUG_JSON_PARSE_PATH
|
||
AddLog(LOG_LEVEL_INFO, PSTR("JSON: obj invalid: %s"), selem);
|
||
#endif
|
||
JsonParserToken tok = lastobj[selem];
|
||
if (tok.isValid()) {
|
||
if (tok.isArray()) {
|
||
JsonParserArray array = JsonParserArray(tok);
|
||
value = array[aindex].getStr();
|
||
if (array.isNum()) {
|
||
if (nres) *nres=tok.getFloat();
|
||
res = 1;
|
||
} else {
|
||
res = 2;
|
||
}
|
||
} else {
|
||
value = tok.getStr();
|
||
if (tok.isNum()) {
|
||
if (nres) *nres=tok.getFloat();
|
||
res = 1;
|
||
} else {
|
||
res = 2;
|
||
}
|
||
}
|
||
|
||
}
|
||
#ifdef DEBUG_JSON_PARSE_PATH
|
||
AddLog(LOG_LEVEL_INFO, PSTR("JSON: token invalid: %s"), selem);
|
||
#endif
|
||
break;
|
||
}
|
||
if (obj.isObject()) {
|
||
lastobj = obj;
|
||
continue;
|
||
}
|
||
if (!*cp) break;
|
||
}
|
||
if (sres) {
|
||
strlcpy(sres,value.c_str(), slen);
|
||
}
|
||
return res;
|
||
|
||
}
|
||
|
||
#endif // USE_SCRIPT
|
||
|
||
/*********************************************************************************************\
|
||
* Serial
|
||
\*********************************************************************************************/
|
||
|
||
String GetSerialConfig(uint8_t serial_config) {
|
||
// Settings->serial_config layout
|
||
// b000000xx - 5, 6, 7 or 8 data bits
|
||
// b00000x00 - 1 or 2 stop bits
|
||
// b000xx000 - None, Even or Odd parity
|
||
|
||
const static char kParity[] PROGMEM = "NEOI";
|
||
|
||
char config[4];
|
||
config[0] = '5' + (serial_config & 0x3);
|
||
config[1] = pgm_read_byte(&kParity[(serial_config >> 3) & 0x3]);
|
||
config[2] = '1' + ((serial_config >> 2) & 0x1);
|
||
config[3] = '\0';
|
||
return String(config);
|
||
}
|
||
|
||
String GetSerialConfig(void) {
|
||
return GetSerialConfig(Settings->serial_config);
|
||
}
|
||
|
||
int8_t ParseSerialConfig(const char *pstr)
|
||
{
|
||
if (strlen(pstr) < 3)
|
||
return -1;
|
||
|
||
int8_t serial_config = (uint8_t)atoi(pstr);
|
||
if (serial_config < 5 || serial_config > 8)
|
||
return -1;
|
||
serial_config -= 5;
|
||
|
||
char parity = (pstr[1] & 0xdf);
|
||
if ('E' == parity) {
|
||
serial_config += 0x08; // Even parity
|
||
}
|
||
else if ('O' == parity) {
|
||
serial_config += 0x10; // Odd parity
|
||
}
|
||
else if ('N' != parity) {
|
||
return -1;
|
||
}
|
||
|
||
if ('2' == pstr[2]) {
|
||
serial_config += 0x04; // Stop bits 2
|
||
}
|
||
else if ('1' != pstr[2]) {
|
||
return -1;
|
||
}
|
||
|
||
return serial_config;
|
||
}
|
||
|
||
uint32_t ConvertSerialConfig(uint8_t serial_config) {
|
||
#ifdef ESP8266
|
||
return (uint32_t)pgm_read_byte(kTasmotaSerialConfig + serial_config);
|
||
#elif defined(ESP32)
|
||
return (uint32_t)pgm_read_dword(kTasmotaSerialConfig + serial_config);
|
||
#else
|
||
#error "platform not supported"
|
||
#endif
|
||
}
|
||
|
||
// workaround disabled 05.11.2021 solved with https://github.com/espressif/arduino-esp32/pull/5549
|
||
//#if defined(ESP32) && CONFIG_IDF_TARGET_ESP32C3
|
||
// temporary workaround, see https://github.com/espressif/arduino-esp32/issues/5287
|
||
//#include <driver/uart.h>
|
||
//uint32_t GetSerialBaudrate(void) {
|
||
// uint32_t br;
|
||
// uart_get_baudrate(0, &br);
|
||
// return (br / 300) * 300; // Fix ESP32 strange results like 115201
|
||
//}
|
||
//#else
|
||
uint32_t GetSerialBaudrate(void) {
|
||
return (Serial.baudRate() / 300) * 300; // Fix ESP32 strange results like 115201
|
||
}
|
||
//#endif
|
||
|
||
#ifdef ESP8266
|
||
void SetSerialSwap(void) {
|
||
if ((15 == Pin(GPIO_TXD)) && (13 == Pin(GPIO_RXD))) {
|
||
Serial.flush();
|
||
Serial.swap();
|
||
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_SERIAL "Serial pins swapped to alternate"));
|
||
}
|
||
}
|
||
#endif
|
||
|
||
void SetSerialBegin(void) {
|
||
TasmotaGlobal.baudrate = Settings->baudrate * 300;
|
||
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_SERIAL "Set to %s %d bit/s"), GetSerialConfig().c_str(), TasmotaGlobal.baudrate);
|
||
Serial.flush();
|
||
#ifdef ESP8266
|
||
Serial.begin(TasmotaGlobal.baudrate, (SerialConfig)ConvertSerialConfig(Settings->serial_config));
|
||
SetSerialSwap();
|
||
#endif // ESP8266
|
||
#ifdef ESP32
|
||
#ifdef ARDUINO_USB_CDC_ON_BOOT
|
||
// Serial.end();
|
||
// Serial.begin();
|
||
// Above sequence ends in "Exception":5,"Reason":"Load access fault"
|
||
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_SERIAL "HWCDC supports 115200 bit/s only"));
|
||
#else
|
||
delay(10); // Allow time to cleanup queues - if not used hangs ESP32
|
||
Serial.end();
|
||
delay(10); // Allow time to cleanup queues - if not used hangs ESP32
|
||
Serial.begin(TasmotaGlobal.baudrate, ConvertSerialConfig(Settings->serial_config));
|
||
#endif // Not ARDUINO_USB_CDC_ON_BOOT
|
||
#endif // ESP32
|
||
}
|
||
|
||
void SetSerialInitBegin(void) {
|
||
TasmotaGlobal.baudrate = Settings->baudrate * 300;
|
||
if ((GetSerialBaudrate() != TasmotaGlobal.baudrate) || (TS_SERIAL_8N1 != Settings->serial_config)) {
|
||
SetSerialBegin();
|
||
}
|
||
}
|
||
|
||
void SetSerialConfig(uint32_t serial_config) {
|
||
if (serial_config > TS_SERIAL_8O2) {
|
||
serial_config = TS_SERIAL_8N1;
|
||
}
|
||
if (serial_config != Settings->serial_config) {
|
||
Settings->serial_config = serial_config;
|
||
SetSerialBegin();
|
||
}
|
||
}
|
||
|
||
void SetSerialBaudrate(uint32_t baudrate) {
|
||
TasmotaGlobal.baudrate = baudrate;
|
||
Settings->baudrate = TasmotaGlobal.baudrate / 300;
|
||
if (GetSerialBaudrate() != TasmotaGlobal.baudrate) {
|
||
SetSerialBegin();
|
||
}
|
||
}
|
||
|
||
void SetSerial(uint32_t baudrate, uint32_t serial_config) {
|
||
Settings->flag.mqtt_serial = 0; // CMND_SERIALSEND and CMND_SERIALLOG
|
||
Settings->serial_config = serial_config;
|
||
TasmotaGlobal.baudrate = baudrate;
|
||
Settings->baudrate = TasmotaGlobal.baudrate / 300;
|
||
SetSeriallog(LOG_LEVEL_NONE);
|
||
SetSerialBegin();
|
||
}
|
||
|
||
void ClaimSerial(void) {
|
||
#ifdef ESP32
|
||
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
||
#ifdef USE_USB_CDC_CONSOLE
|
||
return; // USB console does not use serial
|
||
#endif // USE_USB_CDC_CONSOLE
|
||
#endif // ESP32C3, S2 or S3
|
||
#endif // ESP32
|
||
TasmotaGlobal.serial_local = true;
|
||
AddLog(LOG_LEVEL_INFO, PSTR("SNS: Hardware Serial"));
|
||
SetSeriallog(LOG_LEVEL_NONE);
|
||
TasmotaGlobal.baudrate = GetSerialBaudrate();
|
||
Settings->baudrate = TasmotaGlobal.baudrate / 300;
|
||
|
||
}
|
||
|
||
void SerialSendRaw(char *codes)
|
||
{
|
||
char *p;
|
||
char stemp[3];
|
||
uint8_t code;
|
||
|
||
int size = strlen(codes);
|
||
|
||
while (size > 1) {
|
||
strlcpy(stemp, codes, sizeof(stemp));
|
||
code = strtol(stemp, &p, 16);
|
||
Serial.write(code);
|
||
size -= 2;
|
||
codes += 2;
|
||
}
|
||
}
|
||
|
||
// values is a comma-delimited string: e.g. "72,101,108,108,111,32,87,111,114,108,100,33,10"
|
||
void SerialSendDecimal(char *values)
|
||
{
|
||
char *p;
|
||
uint8_t code;
|
||
for (char* str = strtok_r(values, ",", &p); str; str = strtok_r(nullptr, ",", &p)) {
|
||
code = (uint8_t)atoi(str);
|
||
Serial.write(code);
|
||
}
|
||
}
|
||
|
||
/*********************************************************************************************/
|
||
|
||
uint8_t Bcd2Dec(uint8_t n) {
|
||
return n - 6 * (n >> 4);
|
||
}
|
||
|
||
uint8_t Dec2Bcd(uint8_t n) {
|
||
return n + 6 * (n / 10);
|
||
}
|
||
|
||
/*********************************************************************************************/
|
||
|
||
uint8_t TasShiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder) {
|
||
uint8_t value = 0;
|
||
|
||
for (uint32_t i = 0; i < 8; ++i) {
|
||
digitalWrite(clockPin, HIGH);
|
||
#ifdef ESP32
|
||
delayMicroseconds(1);
|
||
#endif
|
||
if(bitOrder == LSBFIRST) {
|
||
value |= digitalRead(dataPin) << i;
|
||
} else {
|
||
value |= digitalRead(dataPin) << (7 - i);
|
||
}
|
||
digitalWrite(clockPin, LOW);
|
||
#ifdef ESP32
|
||
delayMicroseconds(1);
|
||
#endif
|
||
}
|
||
return value;
|
||
}
|
||
|
||
void TasShiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t val) {
|
||
for (uint32_t i = 0; i < 8; i++) {
|
||
if(bitOrder == LSBFIRST) {
|
||
digitalWrite(dataPin, !!(val & (1 << i)));
|
||
} else {
|
||
digitalWrite(dataPin, !!(val & (1 << (7 - i))));
|
||
}
|
||
digitalWrite(clockPin, HIGH);
|
||
#ifdef ESP32
|
||
delayMicroseconds(1);
|
||
#endif
|
||
digitalWrite(clockPin, LOW);
|
||
#ifdef ESP32
|
||
delayMicroseconds(1);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/*********************************************************************************************\
|
||
* Sleep aware time scheduler functions borrowed from ESPEasy
|
||
\*********************************************************************************************/
|
||
|
||
inline int32_t TimeDifference(uint32_t prev, uint32_t next)
|
||
{
|
||
return ((int32_t) (next - prev));
|
||
}
|
||
|
||
int32_t TimePassedSince(uint32_t timestamp)
|
||
{
|
||
// Compute the number of milliSeconds passed since timestamp given.
|
||
// Note: value can be negative if the timestamp has not yet been reached.
|
||
return TimeDifference(timestamp, millis());
|
||
}
|
||
|
||
bool TimeReached(uint32_t timer)
|
||
{
|
||
// Check if a certain timeout has been reached.
|
||
const long passed = TimePassedSince(timer);
|
||
return (passed >= 0);
|
||
}
|
||
|
||
void SetNextTimeInterval(uint32_t& timer, const uint32_t step)
|
||
{
|
||
timer += step;
|
||
const long passed = TimePassedSince(timer);
|
||
if (passed < 0) { return; } // Event has not yet happened, which is fine.
|
||
if (static_cast<unsigned long>(passed) > step) {
|
||
// No need to keep running behind, start again.
|
||
timer = millis() + step;
|
||
return;
|
||
}
|
||
// Try to get in sync again.
|
||
timer = millis() + (step - passed);
|
||
}
|
||
|
||
int32_t TimePassedSinceUsec(uint32_t timestamp)
|
||
{
|
||
return TimeDifference(timestamp, micros());
|
||
}
|
||
|
||
bool TimeReachedUsec(uint32_t timer)
|
||
{
|
||
// Check if a certain timeout has been reached.
|
||
const long passed = TimePassedSinceUsec(timer);
|
||
return (passed >= 0);
|
||
}
|
||
|
||
/*********************************************************************************************\
|
||
* Basic I2C routines
|
||
\*********************************************************************************************/
|
||
|
||
#ifdef USE_I2C
|
||
const uint8_t I2C_RETRY_COUNTER = 3;
|
||
|
||
uint32_t i2c_active[4] = { 0 };
|
||
uint32_t i2c_buffer = 0;
|
||
|
||
bool I2cBegin(int sda, int scl, uint32_t frequency = 100000);
|
||
bool I2cBegin(int sda, int scl, uint32_t frequency) {
|
||
bool result = true;
|
||
#ifdef ESP8266
|
||
Wire.begin(sda, scl);
|
||
#endif
|
||
#ifdef ESP32
|
||
#if ESP_IDF_VERSION_MAJOR > 3 // Core 2.x uses a different I2C library
|
||
static bool reinit = false;
|
||
if (reinit) { Wire.end(); }
|
||
#endif // ESP_IDF_VERSION_MAJOR > 3
|
||
result = Wire.begin(sda, scl, frequency);
|
||
#if ESP_IDF_VERSION_MAJOR > 3 // Core 2.x uses a different I2C library
|
||
reinit = result;
|
||
#endif // ESP_IDF_VERSION_MAJOR > 3
|
||
#endif
|
||
// AddLog(LOG_LEVEL_DEBUG, PSTR("I2C: Bus1 %d"), result);
|
||
return result;
|
||
}
|
||
|
||
#ifdef ESP32
|
||
bool I2c2Begin(int sda, int scl, uint32_t frequency = 100000);
|
||
bool I2c2Begin(int sda, int scl, uint32_t frequency) {
|
||
bool result = Wire1.begin(sda, scl, frequency);
|
||
// AddLog(LOG_LEVEL_DEBUG, PSTR("I2C: Bus2 %d"), result);
|
||
return result;
|
||
}
|
||
|
||
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size, uint32_t bus = 0);
|
||
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size, uint32_t bus)
|
||
#else
|
||
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size)
|
||
#endif
|
||
{
|
||
uint8_t retry = I2C_RETRY_COUNTER;
|
||
bool status = false;
|
||
#ifdef ESP32
|
||
if (!TasmotaGlobal.i2c_enabled_2) { bus = 0; }
|
||
TwoWire & myWire = (bus == 0) ? Wire : Wire1;
|
||
#else
|
||
TwoWire & myWire = Wire;
|
||
#endif
|
||
|
||
i2c_buffer = 0;
|
||
while (!status && retry) {
|
||
myWire.beginTransmission(addr); // start transmission to device
|
||
myWire.write(reg); // sends register address to read from
|
||
if (0 == myWire.endTransmission(false)) { // Try to become I2C Master, send data and collect bytes, keep master status for next request...
|
||
myWire.requestFrom((int)addr, (int)size); // send data n-bytes read
|
||
if (myWire.available() == size) {
|
||
for (uint32_t i = 0; i < size; i++) {
|
||
i2c_buffer = i2c_buffer << 8 | myWire.read(); // receive DATA
|
||
}
|
||
status = true;
|
||
}
|
||
}
|
||
retry--;
|
||
}
|
||
if (!retry) myWire.endTransmission();
|
||
return status;
|
||
}
|
||
|
||
bool I2cValidRead8(uint8_t *data, uint8_t addr, uint8_t reg)
|
||
{
|
||
bool status = I2cValidRead(addr, reg, 1);
|
||
*data = (uint8_t)i2c_buffer;
|
||
return status;
|
||
}
|
||
|
||
bool I2cValidRead16(uint16_t *data, uint8_t addr, uint8_t reg)
|
||
{
|
||
bool status = I2cValidRead(addr, reg, 2);
|
||
*data = (uint16_t)i2c_buffer;
|
||
return status;
|
||
}
|
||
|
||
bool I2cValidReadS16(int16_t *data, uint8_t addr, uint8_t reg)
|
||
{
|
||
bool status = I2cValidRead(addr, reg, 2);
|
||
*data = (int16_t)i2c_buffer;
|
||
return status;
|
||
}
|
||
|
||
bool I2cValidRead16LE(uint16_t *data, uint8_t addr, uint8_t reg)
|
||
{
|
||
uint16_t ldata;
|
||
bool status = I2cValidRead16(&ldata, addr, reg);
|
||
*data = (ldata >> 8) | (ldata << 8);
|
||
return status;
|
||
}
|
||
|
||
bool I2cValidReadS16_LE(int16_t *data, uint8_t addr, uint8_t reg)
|
||
{
|
||
uint16_t ldata;
|
||
bool status = I2cValidRead16LE(&ldata, addr, reg);
|
||
*data = (int16_t)ldata;
|
||
return status;
|
||
}
|
||
|
||
bool I2cValidRead24(int32_t *data, uint8_t addr, uint8_t reg)
|
||
{
|
||
bool status = I2cValidRead(addr, reg, 3);
|
||
*data = i2c_buffer;
|
||
return status;
|
||
}
|
||
|
||
uint8_t I2cRead8(uint8_t addr, uint8_t reg)
|
||
{
|
||
I2cValidRead(addr, reg, 1);
|
||
return (uint8_t)i2c_buffer;
|
||
}
|
||
|
||
uint16_t I2cRead16(uint8_t addr, uint8_t reg)
|
||
{
|
||
I2cValidRead(addr, reg, 2);
|
||
return (uint16_t)i2c_buffer;
|
||
}
|
||
|
||
int16_t I2cReadS16(uint8_t addr, uint8_t reg)
|
||
{
|
||
I2cValidRead(addr, reg, 2);
|
||
return (int16_t)i2c_buffer;
|
||
}
|
||
|
||
uint16_t I2cRead16LE(uint8_t addr, uint8_t reg)
|
||
{
|
||
I2cValidRead(addr, reg, 2);
|
||
uint16_t temp = (uint16_t)i2c_buffer;
|
||
return (temp >> 8) | (temp << 8);
|
||
}
|
||
|
||
int16_t I2cReadS16_LE(uint8_t addr, uint8_t reg)
|
||
{
|
||
return (int16_t)I2cRead16LE(addr, reg);
|
||
}
|
||
|
||
int32_t I2cRead24(uint8_t addr, uint8_t reg)
|
||
{
|
||
I2cValidRead(addr, reg, 3);
|
||
return i2c_buffer;
|
||
}
|
||
|
||
#ifdef ESP32
|
||
bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size, uint32_t bus = 0);
|
||
bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size, uint32_t bus)
|
||
#else
|
||
bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size)
|
||
#endif
|
||
{
|
||
uint8_t x = I2C_RETRY_COUNTER;
|
||
|
||
#ifdef ESP32
|
||
if (!TasmotaGlobal.i2c_enabled_2) { bus = 0; }
|
||
TwoWire & myWire = (bus == 0) ? Wire : Wire1;
|
||
#else
|
||
TwoWire & myWire = Wire;
|
||
#endif
|
||
|
||
do {
|
||
myWire.beginTransmission((uint8_t)addr); // start transmission to device
|
||
myWire.write(reg); // sends register address to write to
|
||
uint8_t bytes = size;
|
||
while (bytes--) {
|
||
myWire.write((val >> (8 * bytes)) & 0xFF); // write data
|
||
}
|
||
x--;
|
||
} while (myWire.endTransmission(true) != 0 && x != 0); // end transmission
|
||
return (x);
|
||
}
|
||
|
||
bool I2cWrite8(uint8_t addr, uint8_t reg, uint16_t val)
|
||
{
|
||
return I2cWrite(addr, reg, val, 1);
|
||
}
|
||
|
||
bool I2cWrite16(uint8_t addr, uint8_t reg, uint16_t val)
|
||
{
|
||
return I2cWrite(addr, reg, val, 2);
|
||
}
|
||
|
||
int8_t I2cReadBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len)
|
||
{
|
||
Wire.beginTransmission((uint8_t)addr);
|
||
Wire.write((uint8_t)reg);
|
||
Wire.endTransmission();
|
||
if (len != Wire.requestFrom((uint8_t)addr, (uint8_t)len)) {
|
||
return 1;
|
||
}
|
||
while (len--) {
|
||
*reg_data = (uint8_t)Wire.read();
|
||
reg_data++;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
int8_t I2cWriteBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len)
|
||
{
|
||
Wire.beginTransmission((uint8_t)addr);
|
||
Wire.write((uint8_t)reg);
|
||
while (len--) {
|
||
Wire.write(*reg_data);
|
||
reg_data++;
|
||
}
|
||
Wire.endTransmission();
|
||
return 0;
|
||
}
|
||
|
||
void I2cScan(uint32_t bus = 0);
|
||
void I2cScan(uint32_t bus) {
|
||
// Return error codes defined in twi.h and core_esp8266_si2c.c
|
||
// I2C_OK 0
|
||
// I2C_SCL_HELD_LOW 1 = SCL held low by another device, no procedure available to recover
|
||
// I2C_SCL_HELD_LOW_AFTER_READ 2 = I2C bus error. SCL held low beyond client clock stretch time
|
||
// I2C_SDA_HELD_LOW 3 = I2C bus error. SDA line held low by client/another_master after n bits
|
||
// I2C_SDA_HELD_LOW_AFTER_INIT 4 = line busy. SDA again held low by another device. 2nd master?
|
||
// 5 = bus busy. Timeout
|
||
// https://www.arduino.cc/reference/en/language/functions/communication/wire/endtransmission/
|
||
// 0: success
|
||
// 1: data too long to fit in transmit buffer
|
||
// 2: received NACK on transmit of address
|
||
// 3: received NACK on transmit of data
|
||
// 4: other error
|
||
// 5: timeout
|
||
|
||
uint8_t error = 0;
|
||
uint8_t address = 0;
|
||
uint8_t any = 0;
|
||
|
||
Response_P(PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_DEVICES_FOUND_AT));
|
||
for (address = 1; address <= 127; address++) {
|
||
#ifdef ESP32
|
||
if (!TasmotaGlobal.i2c_enabled_2) { bus = 0; }
|
||
TwoWire & myWire = (bus == 0) ? Wire : Wire1;
|
||
#else
|
||
TwoWire & myWire = Wire;
|
||
#endif
|
||
myWire.beginTransmission(address);
|
||
error = myWire.endTransmission();
|
||
if (0 == error) {
|
||
any = 1;
|
||
ResponseAppend_P(PSTR(" 0x%02x"), address);
|
||
}
|
||
else if (error != 2) { // Seems to happen anyway using this scan
|
||
any = 2;
|
||
Response_P(PSTR("{\"" D_CMND_I2CSCAN "\":\"Error %d at 0x%02x"), error, address);
|
||
break;
|
||
}
|
||
}
|
||
if (any) {
|
||
ResponseAppend_P(PSTR("\"}"));
|
||
}
|
||
else {
|
||
Response_P(PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_NO_DEVICES_FOUND "\"}"));
|
||
}
|
||
}
|
||
|
||
void I2cResetActive(uint32_t addr, uint32_t count = 1)
|
||
{
|
||
addr &= 0x7F; // Max I2C address is 127
|
||
count &= 0x7F; // Max 4 x 32 bits available
|
||
while (count-- && (addr < 128)) {
|
||
i2c_active[addr / 32] &= ~(1 << (addr % 32));
|
||
addr++;
|
||
}
|
||
// AddLog(LOG_LEVEL_DEBUG, PSTR("I2C: Active %08X,%08X,%08X,%08X"), i2c_active[0], i2c_active[1], i2c_active[2], i2c_active[3]);
|
||
}
|
||
|
||
void I2cSetActive(uint32_t addr, uint32_t count = 1)
|
||
{
|
||
addr &= 0x7F; // Max I2C address is 127
|
||
count &= 0x7F; // Max 4 x 32 bits available
|
||
while (count-- && (addr < 128)) {
|
||
i2c_active[addr / 32] |= (1 << (addr % 32));
|
||
addr++;
|
||
}
|
||
// AddLog(LOG_LEVEL_DEBUG, PSTR("I2C: Active %08X,%08X,%08X,%08X"), i2c_active[0], i2c_active[1], i2c_active[2], i2c_active[3]);
|
||
}
|
||
|
||
void I2cSetActiveFound(uint32_t addr, const char *types, uint32_t bus = 0);
|
||
void I2cSetActiveFound(uint32_t addr, const char *types, uint32_t bus) {
|
||
I2cSetActive(addr);
|
||
#ifdef ESP32
|
||
if (0 == bus) {
|
||
AddLog(LOG_LEVEL_INFO, S_LOG_I2C_FOUND_AT, types, addr);
|
||
} else {
|
||
AddLog(LOG_LEVEL_INFO, S_LOG_I2C_FOUND_AT_PORT, types, addr, bus);
|
||
}
|
||
#else
|
||
AddLog(LOG_LEVEL_INFO, S_LOG_I2C_FOUND_AT, types, addr);
|
||
#endif // ESP32
|
||
}
|
||
|
||
bool I2cActive(uint32_t addr)
|
||
{
|
||
addr &= 0x7F; // Max I2C address is 127
|
||
if (i2c_active[addr / 32] & (1 << (addr % 32))) {
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool I2cSetDevice(uint32_t addr, uint32_t bus = 0);
|
||
bool I2cSetDevice(uint32_t addr, uint32_t bus) {
|
||
#ifdef ESP32
|
||
if (!TasmotaGlobal.i2c_enabled_2) { bus = 0; }
|
||
TwoWire & myWire = (bus == 0) ? Wire : Wire1;
|
||
#else
|
||
TwoWire & myWire = Wire;
|
||
#endif
|
||
addr &= 0x7F; // Max I2C address is 127
|
||
if (I2cActive(addr)) {
|
||
return false; // If already active report as not present;
|
||
}
|
||
myWire.beginTransmission((uint8_t)addr);
|
||
// return (0 == myWire.endTransmission());
|
||
uint32_t err = myWire.endTransmission();
|
||
if (err && (err != 2)) {
|
||
AddLog(LOG_LEVEL_DEBUG, PSTR("I2C: Error %d at 0x%02x"), err, addr);
|
||
}
|
||
return (0 == err);
|
||
}
|
||
#endif // USE_I2C
|
||
|
||
/*********************************************************************************************\
|
||
* Syslog
|
||
*
|
||
* Example:
|
||
* AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_LOG "Any value %d"), value);
|
||
*
|
||
\*********************************************************************************************/
|
||
|
||
void SetTasConlog(uint32_t loglevel) {
|
||
Settings->seriallog_level = loglevel;
|
||
TasmotaGlobal.seriallog_level = loglevel;
|
||
TasmotaGlobal.seriallog_timer = 0;
|
||
}
|
||
|
||
void SetSeriallog(uint32_t loglevel) {
|
||
#ifdef ESP32
|
||
if (tasconsole_serial) {
|
||
#endif // ESP32
|
||
|
||
SetTasConlog(loglevel);
|
||
|
||
#ifdef ESP32
|
||
}
|
||
#endif // ESP32
|
||
}
|
||
|
||
void SetSyslog(uint32_t loglevel)
|
||
{
|
||
Settings->syslog_level = loglevel;
|
||
TasmotaGlobal.syslog_level = loglevel;
|
||
TasmotaGlobal.syslog_timer = 0;
|
||
}
|
||
|
||
void SyslogAsync(bool refresh) {
|
||
static IPAddress syslog_host_addr; // Syslog host IP address
|
||
static uint32_t syslog_host_hash = 0; // Syslog host name hash
|
||
static uint32_t index = 1;
|
||
|
||
if (!TasmotaGlobal.syslog_level || TasmotaGlobal.global_state.network_down) { return; }
|
||
if (refresh && !NeedLogRefresh(TasmotaGlobal.syslog_level, index)) { return; }
|
||
|
||
char* line;
|
||
size_t len;
|
||
while (GetLog(TasmotaGlobal.syslog_level, &index, &line, &len)) {
|
||
// 00:00:02.096 HTP: Web server active on wemos5 with IP address 192.168.2.172
|
||
// HTP: Web server active on wemos5 with IP address 192.168.2.172
|
||
uint32_t mxtime = strchr(line, ' ') - line +1; // Remove mxtime
|
||
if (mxtime > 0) {
|
||
uint32_t current_hash = GetHash(SettingsText(SET_SYSLOG_HOST), strlen(SettingsText(SET_SYSLOG_HOST)));
|
||
if (syslog_host_hash != current_hash) {
|
||
IPAddress temp_syslog_host_addr;
|
||
if (!WifiHostByName(SettingsText(SET_SYSLOG_HOST), temp_syslog_host_addr)) { // If sleep enabled this might result in exception so try to do it once using hash
|
||
TasmotaGlobal.syslog_level = 0;
|
||
TasmotaGlobal.syslog_timer = SYSLOG_TIMER;
|
||
AddLog(LOG_LEVEL_INFO, PSTR("SLG: " D_RETRY_IN " %d " D_UNIT_SECOND), SYSLOG_TIMER);
|
||
return;
|
||
}
|
||
syslog_host_hash = current_hash;
|
||
syslog_host_addr = temp_syslog_host_addr;
|
||
}
|
||
if (!PortUdp.beginPacket(syslog_host_addr, Settings->syslog_port)) {
|
||
TasmotaGlobal.syslog_level = 0;
|
||
TasmotaGlobal.syslog_timer = SYSLOG_TIMER;
|
||
AddLog(LOG_LEVEL_INFO, PSTR("SLG: " D_SYSLOG_HOST_NOT_FOUND ". " D_RETRY_IN " %d " D_UNIT_SECOND), SYSLOG_TIMER);
|
||
return;
|
||
}
|
||
|
||
char header[64];
|
||
snprintf_P(header, sizeof(header), PSTR("%s ESP-"), NetworkHostname());
|
||
char* line_start = line +mxtime;
|
||
#ifdef ESP8266
|
||
// Packets over 1460 bytes are not send
|
||
uint32_t line_len;
|
||
int32_t log_len = len -mxtime -1;
|
||
while (log_len > 0) {
|
||
PortUdp.write(header);
|
||
line_len = (log_len > 1460) ? 1460 : log_len;
|
||
PortUdp.write((uint8_t*)line_start, line_len);
|
||
PortUdp.endPacket();
|
||
log_len -= 1460;
|
||
line_start += 1460;
|
||
}
|
||
#else
|
||
PortUdp.write((const uint8_t*)header, strlen(header));
|
||
PortUdp.write((uint8_t*)line_start, len -mxtime -1);
|
||
PortUdp.endPacket();
|
||
#endif
|
||
|
||
delay(1); // Add time for UDP handling (#5512)
|
||
}
|
||
}
|
||
}
|
||
|
||
bool NeedLogRefresh(uint32_t req_loglevel, uint32_t index) {
|
||
if (!TasmotaGlobal.log_buffer) { return false; } // Leave now if there is no buffer available
|
||
|
||
#ifdef ESP32
|
||
// this takes the mutex, and will be release when the class is destroyed -
|
||
// i.e. when the functon leaves You CAN call mutex.give() to leave early.
|
||
TasAutoMutex mutex((SemaphoreHandle_t *)&TasmotaGlobal.log_buffer_mutex);
|
||
#endif // ESP32
|
||
|
||
// Skip initial buffer fill
|
||
if (strlen(TasmotaGlobal.log_buffer) < LOG_BUFFER_SIZE / 2) { return false; }
|
||
|
||
char* line;
|
||
size_t len;
|
||
if (!GetLog(req_loglevel, &index, &line, &len)) { return false; }
|
||
return ((line - TasmotaGlobal.log_buffer) < LOG_BUFFER_SIZE / 4);
|
||
}
|
||
|
||
bool GetLog(uint32_t req_loglevel, uint32_t* index_p, char** entry_pp, size_t* len_p) {
|
||
if (!TasmotaGlobal.log_buffer) { return false; } // Leave now if there is no buffer available
|
||
if (TasmotaGlobal.uptime < 3) { return false; } // Allow time to setup correct log level
|
||
|
||
uint32_t index = *index_p;
|
||
if (!req_loglevel || (index == TasmotaGlobal.log_buffer_pointer)) { return false; }
|
||
|
||
#ifdef ESP32
|
||
// this takes the mutex, and will be release when the class is destroyed -
|
||
// i.e. when the functon leaves You CAN call mutex.give() to leave early.
|
||
TasAutoMutex mutex((SemaphoreHandle_t *)&TasmotaGlobal.log_buffer_mutex);
|
||
#endif // ESP32
|
||
|
||
if (!index) { // Dump all
|
||
index = TasmotaGlobal.log_buffer[0];
|
||
}
|
||
|
||
do {
|
||
size_t len = 0;
|
||
uint32_t loglevel = 0;
|
||
char* entry_p = TasmotaGlobal.log_buffer;
|
||
do {
|
||
uint32_t cur_idx = *entry_p;
|
||
entry_p++;
|
||
size_t tmp = strchrspn(entry_p, '\1');
|
||
tmp++; // Skip terminating '\1'
|
||
if (cur_idx == index) { // Found the requested entry
|
||
loglevel = *entry_p - '0';
|
||
entry_p++; // Skip loglevel
|
||
len = tmp -1;
|
||
break;
|
||
}
|
||
entry_p += tmp;
|
||
} while (entry_p < TasmotaGlobal.log_buffer + LOG_BUFFER_SIZE && *entry_p != '\0');
|
||
index++;
|
||
if (index > 255) { index = 1; } // Skip 0 as it is not allowed
|
||
*index_p = index;
|
||
if ((len > 0) &&
|
||
(loglevel <= req_loglevel) &&
|
||
(TasmotaGlobal.masterlog_level <= req_loglevel)) {
|
||
*entry_pp = entry_p;
|
||
*len_p = len;
|
||
return true;
|
||
}
|
||
delay(0);
|
||
} while (index != TasmotaGlobal.log_buffer_pointer);
|
||
return false;
|
||
}
|
||
|
||
void AddLogData(uint32_t loglevel, const char* log_data, const char* log_data_payload = nullptr, const char* log_data_retained = nullptr) {
|
||
if (!TasmotaGlobal.enable_logging) { return; }
|
||
// Store log_data in buffer
|
||
// To lower heap usage log_data_payload may contain the payload data from MqttPublishPayload()
|
||
// and log_data_retained may contain optional retained message from MqttPublishPayload()
|
||
#ifdef ESP32
|
||
// this takes the mutex, and will be release when the class is destroyed -
|
||
// i.e. when the functon leaves You CAN call mutex.give() to leave early.
|
||
TasAutoMutex mutex((SemaphoreHandle_t *)&TasmotaGlobal.log_buffer_mutex);
|
||
#endif // ESP32
|
||
|
||
char mxtime[21]; // "13:45:21.999-123/12 "
|
||
snprintf_P(mxtime, sizeof(mxtime), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d.%03d"),
|
||
RtcTime.hour, RtcTime.minute, RtcTime.second, RtcMillis());
|
||
if (Settings->flag5.show_heap_with_timestamp) {
|
||
#ifdef ESP8266
|
||
snprintf_P(mxtime, sizeof(mxtime), PSTR("%s-%03d"),
|
||
mxtime, ESP_getFreeHeap1024());
|
||
#else
|
||
snprintf_P(mxtime, sizeof(mxtime), PSTR("%s-%03d/%02d"),
|
||
mxtime, ESP_getFreeHeap1024(), ESP_getHeapFragmentation());
|
||
#endif
|
||
}
|
||
strcat(mxtime, " ");
|
||
|
||
char empty[2] = { 0 };
|
||
if (!log_data_payload) { log_data_payload = empty; }
|
||
if (!log_data_retained) { log_data_retained = empty; }
|
||
|
||
if ((loglevel <= TasmotaGlobal.seriallog_level) &&
|
||
(TasmotaGlobal.masterlog_level <= TasmotaGlobal.seriallog_level)) {
|
||
TasConsole.printf("%s%s%s%s\r\n", mxtime, log_data, log_data_payload, log_data_retained);
|
||
#ifdef USE_SERIAL_BRIDGE
|
||
SerialBridgePrintf("%s%s%s%s\r\n", mxtime, log_data, log_data_payload, log_data_retained);
|
||
#endif // USE_SERIAL_BRIDGE
|
||
}
|
||
|
||
if (!TasmotaGlobal.log_buffer) { return; } // Leave now if there is no buffer available
|
||
|
||
uint32_t highest_loglevel = Settings->weblog_level;
|
||
if (Settings->mqttlog_level > highest_loglevel) { highest_loglevel = Settings->mqttlog_level; }
|
||
if (TasmotaGlobal.syslog_level > highest_loglevel) { highest_loglevel = TasmotaGlobal.syslog_level; }
|
||
if (TasmotaGlobal.templog_level > highest_loglevel) { highest_loglevel = TasmotaGlobal.templog_level; }
|
||
if (TasmotaGlobal.uptime < 3) { highest_loglevel = LOG_LEVEL_DEBUG_MORE; } // Log all before setup correct log level
|
||
|
||
if ((loglevel <= highest_loglevel) && // Log only when needed
|
||
(TasmotaGlobal.masterlog_level <= highest_loglevel)) {
|
||
// Delimited, zero-terminated buffer of log lines.
|
||
// Each entry has this format: [index][loglevel][log data]['\1']
|
||
|
||
// Truncate log messages longer than MAX_LOGSZ which is the log buffer size minus 64 spare
|
||
uint32_t log_data_len = strlen(log_data) + strlen(log_data_payload) + strlen(log_data_retained);
|
||
char too_long[TOPSZ];
|
||
if (log_data_len > MAX_LOGSZ) {
|
||
snprintf_P(too_long, sizeof(too_long) - 20, PSTR("%s%s"), log_data, log_data_payload); // 20 = strlen("... 123456 truncated")
|
||
snprintf_P(too_long, sizeof(too_long), PSTR("%s... %d truncated"), too_long, log_data_len);
|
||
log_data = too_long;
|
||
log_data_payload = empty;
|
||
log_data_retained = empty;
|
||
}
|
||
|
||
TasmotaGlobal.log_buffer_pointer &= 0xFF;
|
||
if (!TasmotaGlobal.log_buffer_pointer) {
|
||
TasmotaGlobal.log_buffer_pointer++; // Index 0 is not allowed as it is the end of char string
|
||
}
|
||
while (TasmotaGlobal.log_buffer_pointer == TasmotaGlobal.log_buffer[0] || // If log already holds the next index, remove it
|
||
strlen(TasmotaGlobal.log_buffer) + strlen(log_data) + strlen(log_data_payload) + strlen(log_data_retained) + strlen(mxtime) + 4 > LOG_BUFFER_SIZE) // 4 = log_buffer_pointer + '\1' + '\0'
|
||
{
|
||
char* it = TasmotaGlobal.log_buffer;
|
||
it++; // Skip log_buffer_pointer
|
||
it += strchrspn(it, '\1'); // Skip log line
|
||
it++; // Skip delimiting "\1"
|
||
memmove(TasmotaGlobal.log_buffer, it, LOG_BUFFER_SIZE -(it-TasmotaGlobal.log_buffer)); // Move buffer forward to remove oldest log line
|
||
}
|
||
snprintf_P(TasmotaGlobal.log_buffer, LOG_BUFFER_SIZE, PSTR("%s%c%c%s%s%s%s\1"),
|
||
TasmotaGlobal.log_buffer, TasmotaGlobal.log_buffer_pointer++, '0'+loglevel, mxtime, log_data, log_data_payload, log_data_retained);
|
||
TasmotaGlobal.log_buffer_pointer &= 0xFF;
|
||
if (!TasmotaGlobal.log_buffer_pointer) {
|
||
TasmotaGlobal.log_buffer_pointer++; // Index 0 is not allowed as it is the end of char string
|
||
}
|
||
}
|
||
}
|
||
|
||
void AddLog(uint32_t loglevel, PGM_P formatP, ...) {
|
||
uint32_t highest_loglevel = TasmotaGlobal.seriallog_level;
|
||
if (Settings->weblog_level > highest_loglevel) { highest_loglevel = Settings->weblog_level; }
|
||
if (Settings->mqttlog_level > highest_loglevel) { highest_loglevel = Settings->mqttlog_level; }
|
||
if (TasmotaGlobal.syslog_level > highest_loglevel) { highest_loglevel = TasmotaGlobal.syslog_level; }
|
||
if (TasmotaGlobal.templog_level > highest_loglevel) { highest_loglevel = TasmotaGlobal.templog_level; }
|
||
if (TasmotaGlobal.uptime < 3) { highest_loglevel = LOG_LEVEL_DEBUG_MORE; } // Log all before setup correct log level
|
||
|
||
// If no logging is requested then do not access heap to fight fragmentation
|
||
if ((loglevel <= highest_loglevel) && (TasmotaGlobal.masterlog_level <= highest_loglevel)) {
|
||
va_list arg;
|
||
va_start(arg, formatP);
|
||
char* log_data = ext_vsnprintf_malloc_P(formatP, arg);
|
||
va_end(arg);
|
||
if (log_data == nullptr) { return; }
|
||
|
||
AddLogData(loglevel, log_data);
|
||
free(log_data);
|
||
}
|
||
}
|
||
|
||
void AddLogBuffer(uint32_t loglevel, uint8_t *buffer, uint32_t count)
|
||
{
|
||
char hex_char[(count * 3) + 2];
|
||
AddLog(loglevel, PSTR("DMP: %s"), ToHex_P(buffer, count, hex_char, sizeof(hex_char), ' '));
|
||
}
|
||
|
||
void AddLogSerial(uint32_t loglevel)
|
||
{
|
||
AddLogBuffer(loglevel, (uint8_t*)TasmotaGlobal.serial_in_buffer, TasmotaGlobal.serial_in_byte_counter);
|
||
}
|
||
|
||
void AddLogMissed(const char *sensor, uint32_t misses)
|
||
{
|
||
AddLog(LOG_LEVEL_DEBUG, PSTR("SNS: %s missed %d"), sensor, SENSOR_MAX_MISS - misses);
|
||
}
|
||
|
||
void AddLogBufferSize(uint32_t loglevel, uint8_t *buffer, uint32_t count, uint32_t size) {
|
||
char log_data[4 + (count * size * 3)];
|
||
|
||
snprintf_P(log_data, sizeof(log_data), PSTR("DMP:"));
|
||
for (uint32_t i = 0; i < count; i++) {
|
||
if (1 == size) { // uint8_t
|
||
snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X"), log_data, *(buffer));
|
||
} else { // uint16_t
|
||
snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X%02X"), log_data, *(buffer +1), *(buffer));
|
||
}
|
||
buffer += size;
|
||
}
|
||
AddLogData(loglevel, log_data);
|
||
}
|
||
|
||
void AddLogSpi(bool hardware, uint32_t clk, uint32_t mosi, uint32_t miso) {
|
||
// Needs optimization
|
||
uint32_t enabled = (hardware) ? TasmotaGlobal.spi_enabled : TasmotaGlobal.soft_spi_enabled;
|
||
switch(enabled) {
|
||
case SPI_MOSI:
|
||
AddLog(LOG_LEVEL_INFO, PSTR("SPI: %s using GPIO%02d(CLK) and GPIO%02d(MOSI)"),
|
||
(hardware) ? PSTR("Hardware") : PSTR("Software"), clk, mosi);
|
||
break;
|
||
case SPI_MISO:
|
||
AddLog(LOG_LEVEL_INFO, PSTR("SPI: %s using GPIO%02d(CLK) and GPIO%02d(MISO)"),
|
||
(hardware) ? PSTR("Hardware") : PSTR("Software"), clk, miso);
|
||
break;
|
||
case SPI_MOSI_MISO:
|
||
AddLog(LOG_LEVEL_INFO, PSTR("SPI: %s using GPIO%02d(CLK), GPIO%02d(MOSI) and GPIO%02d(MISO)"),
|
||
(hardware) ? PSTR("Hardware") : PSTR("Software"), clk, mosi, miso);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/*********************************************************************************************\
|
||
* HTML and URL encode
|
||
\*********************************************************************************************/
|
||
|
||
const char kUnescapeCode[] = "&><\"\'\\";
|
||
const char kEscapeCode[] PROGMEM = "&|>|<|"|'|\";
|
||
|
||
String HtmlEscape(const String unescaped) {
|
||
char escaped[10];
|
||
size_t ulen = unescaped.length();
|
||
String result;
|
||
result.reserve(ulen); // pre-reserve the required space to avoid mutiple reallocations
|
||
for (size_t i = 0; i < ulen; i++) {
|
||
char c = unescaped[i];
|
||
char *p = strchr(kUnescapeCode, c);
|
||
if (p != nullptr) {
|
||
result += GetTextIndexed(escaped, sizeof(escaped), p - kUnescapeCode, kEscapeCode);
|
||
} else {
|
||
result += c;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
String UrlEscape(const char *unescaped) {
|
||
static const char *hex = "0123456789ABCDEF";
|
||
String result;
|
||
result.reserve(strlen(unescaped));
|
||
|
||
while (*unescaped != '\0') {
|
||
if (('a' <= *unescaped && *unescaped <= 'z') ||
|
||
('A' <= *unescaped && *unescaped <= 'Z') ||
|
||
('0' <= *unescaped && *unescaped <= '9') ||
|
||
*unescaped == '-' || *unescaped == '_' || *unescaped == '.' || *unescaped == '~')
|
||
{
|
||
result += *unescaped;
|
||
}
|
||
else
|
||
{
|
||
result += '%';
|
||
result += hex[*unescaped >> 4];
|
||
result += hex[*unescaped & 0xf];
|
||
}
|
||
unescaped++;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/*********************************************************************************************\
|
||
* Uncompress static PROGMEM strings
|
||
\*********************************************************************************************/
|
||
|
||
#ifdef USE_UNISHOX_COMPRESSION
|
||
|
||
#include <unishox.h>
|
||
|
||
Unishox compressor;
|
||
|
||
// New variant where you provide the String object yourself
|
||
int32_t DecompressNoAlloc(const char * compressed, size_t uncompressed_size, String & content) {
|
||
uncompressed_size += 2; // take a security margin
|
||
|
||
// We use a nasty trick here. To avoid allocating twice the buffer,
|
||
// we first extend the buffer of the String object to the target size (maybe overshooting by 7 bytes)
|
||
// then we decompress in this buffer,
|
||
// and finally assign the raw string to the String, which happens to work: String uses memmove(), so overlapping works
|
||
content.reserve(uncompressed_size);
|
||
char * buffer = content.begin();
|
||
|
||
int32_t len = compressor.unishox_decompress(compressed, strlen_P(compressed), buffer, uncompressed_size);
|
||
if (len > 0) {
|
||
buffer[len] = 0; // terminate string with NULL
|
||
content = buffer; // copy in place
|
||
}
|
||
return len;
|
||
}
|
||
|
||
String Decompress(const char * compressed, size_t uncompressed_size) {
|
||
String content("");
|
||
DecompressNoAlloc(compressed, uncompressed_size, content);
|
||
return content;
|
||
}
|
||
|
||
#endif // USE_UNISHOX_COMPRESSION
|