mirror of https://github.com/arendst/Tasmota.git
328 lines
11 KiB
C++
328 lines
11 KiB
C++
/*
|
|
xdrv_23_zigbee_4a_eeprom.ino - zigbee support for Tasmota - saving configuration in I2C Eeprom of ZBBridge
|
|
|
|
Copyright (C) 2020 Theo Arends and Stephan Hadinger
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_ZIGBEE
|
|
|
|
|
|
// =======================
|
|
// ZbData v1
|
|
// File structure:
|
|
//
|
|
// [Array of devices]
|
|
// uint8 - length of device record (excluding the length byte)
|
|
// uint16 - short address
|
|
//
|
|
// [Device specific data first]
|
|
// uint8 - length of structure (excluding the length byte)
|
|
// uint8[] - device wide data
|
|
//
|
|
// [Array of data structures]
|
|
// uint8 - length of structure
|
|
// uint8[] - list of data
|
|
//
|
|
|
|
// returns the lenght of consumed buffer, or -1 if error
|
|
int32_t hydrateDeviceWideData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) {
|
|
size_t segment_len = buf.get8(start);
|
|
if ((segment_len < 6) || (segment_len > len)) {
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid device wide data length=%d"), segment_len);
|
|
return -1;
|
|
}
|
|
device.last_seen = buf.get32(start+1);
|
|
device.lqi = buf.get8(start + 5);
|
|
device.batterypercent = buf.get8(start + 6);
|
|
return segment_len + 1;
|
|
}
|
|
|
|
// return true if success
|
|
bool hydrateDeviceData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) {
|
|
// First hydrate device wide data
|
|
int32_t ret = hydrateDeviceWideData(device, buf, start, len);
|
|
if (ret < 0) { return false; }
|
|
|
|
size_t offset = ret;
|
|
while (offset + 5 <= len) { // each entry is at least 5 bytes
|
|
uint8_t data_len = buf.get8(start + offset);
|
|
// #ifdef Z_EEPROM_DEBUG
|
|
// {
|
|
// char hex_char[((data_len+1) * 2) + 2];
|
|
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "hydrateDeviceData data_len=%d contains %s"), data_len, ToHex_P(buf.buf(start+offset+1), data_len, hex_char, sizeof(hex_char)));
|
|
// }
|
|
// #endif
|
|
Z_Data & data_elt = device.data.createFromBuffer(buf, start + offset + 1, data_len);
|
|
(void)data_elt; // avoid compiler warning
|
|
offset += data_len + 1;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// negative means error
|
|
// positive is the segment length
|
|
int32_t hydrateSingleDevice(const class SBuffer & buf, size_t start, size_t len) {
|
|
uint8_t segment_len = buf.get8(start);
|
|
if ((segment_len < 4) || (start + segment_len > len)) {
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid segment_len=%d"), segment_len);
|
|
return -1;
|
|
}
|
|
// read shortaddr
|
|
uint16_t shortaddr = buf.get16(start + 1);
|
|
if (shortaddr >= 0xFFF0) {
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid shortaddr=0x%04X"), shortaddr);
|
|
return -1;
|
|
}
|
|
#ifdef Z_EEPROM_DEBUG
|
|
{
|
|
if (segment_len > 3) {
|
|
char hex_char[((segment_len+1) * 2) + 2];
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData 0x%04X,%s"), shortaddr, ToHex_P(buf.buf(start+3), segment_len+1-3, hex_char, sizeof(hex_char)));
|
|
}
|
|
}
|
|
#endif
|
|
// check if the device exists, if not skip the record
|
|
Z_Device & device = zigbee_devices.findShortAddr(shortaddr);
|
|
if (&device != nullptr) {
|
|
|
|
// parse the rest
|
|
bool ret = hydrateDeviceData(device, buf, start + 3, segment_len - 3);
|
|
|
|
if (!ret) { return -1; }
|
|
}
|
|
return segment_len + 1;
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
*
|
|
* Hydrate data from the EEPROM
|
|
*
|
|
\*********************************************************************************************/
|
|
// Parse the entire blob
|
|
// return true if ok
|
|
bool hydrateDevicesDataFromEEPROM(void) {
|
|
#ifdef USE_ZIGBEE_EZSP
|
|
if (!zigbee.eeprom_ready) { return false; }
|
|
int32_t file_length = ZFS::getLength(ZIGB_DATA2);
|
|
if (file_length > 0) {
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device data in EEPROM (%d bytes)"), file_length);
|
|
} else {
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device data in EEPROM"));
|
|
return false;
|
|
}
|
|
|
|
const uint16_t READ_BUFFER = 192;
|
|
uint16_t cursor = 0x0000; // cursor in the file
|
|
bool read_more = true;
|
|
|
|
SBuffer buf(READ_BUFFER);
|
|
while (read_more) {
|
|
buf.setLen(buf.size()); // set to max size and fill with zeros
|
|
int32_t bytes_read = ZFS::readBytes(ZIGB_DATA2, buf.getBuffer(), buf.size(), cursor, READ_BUFFER);
|
|
// #ifdef Z_EEPROM_DEBUG
|
|
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "readBytes buffer_len=%d, read_start=%d, read_len=%d, actual_read=%d"), buf.size(), cursor, length, bytes_read);
|
|
// #endif
|
|
if (bytes_read > 0) {
|
|
buf.setLen(bytes_read); // adjust to actual size
|
|
int32_t segment_len = hydrateSingleDevice(buf, 0, buf.len());
|
|
// #ifdef Z_EEPROM_DEBUG
|
|
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "hydrateSingleDevice segment_len=%d"), segment_len);
|
|
// #endif
|
|
if (segment_len <= 0) { return false; }
|
|
|
|
cursor += segment_len;
|
|
} else {
|
|
read_more = false;
|
|
}
|
|
}
|
|
return true;
|
|
#else // USE_ZIGBEE_EZSP
|
|
return false;
|
|
#endif // USE_ZIGBEE_EZSP
|
|
}
|
|
|
|
class SBuffer hibernateDeviceData(const struct Z_Device & device, bool mqtt = false) {
|
|
SBuffer buf(192);
|
|
|
|
// If we have zero information about the device, just skip ir
|
|
if (device.validLqi() ||
|
|
device.validBatteryPercent() ||
|
|
device.validLastSeen() ||
|
|
!device.data.isEmpty()) {
|
|
|
|
buf.add8(0x00); // overall length, will be updated later
|
|
buf.add16(device.shortaddr);
|
|
|
|
// device wide data
|
|
buf.add8(6); // 6 bytes
|
|
buf.add32(device.last_seen);
|
|
buf.add8(device.lqi);
|
|
buf.add8(device.batterypercent);
|
|
|
|
for (const auto & data_elt : device.data) {
|
|
size_t item_len = data_elt.DataTypeToLength(data_elt.getType());
|
|
buf.add8(item_len); // place-holder for length
|
|
buf.addBuffer((uint8_t*) &data_elt, item_len);
|
|
}
|
|
|
|
// update overall length
|
|
buf.set8(0, buf.len() - 1);
|
|
|
|
{
|
|
size_t buf_len = buf.len() - 3;
|
|
char hex[2*buf_len + 1];
|
|
// skip first 3 bytes
|
|
ToHex_P(buf.buf(3), buf_len, hex, sizeof(hex));
|
|
|
|
if (mqtt) {
|
|
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_DATA "\":\"ZbData 0x%04X,%s\"}"), device.shortaddr, hex);
|
|
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA));
|
|
} else {
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData 0x%04X,%s"), device.shortaddr, hex);
|
|
}
|
|
}
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
*
|
|
* Hibernate data to the EEPROM
|
|
*
|
|
\*********************************************************************************************/
|
|
void hibernateAllData(void) {
|
|
#ifdef USE_ZIGBEE_EZSP
|
|
if (Rtc.utc_time < START_VALID_TIME) { return; }
|
|
if (!zigbee.eeprom_ready) { return; }
|
|
|
|
ZFS_Write_File write_data(ZIGB_DATA2);
|
|
// first prefix is number of devices
|
|
uint8_t device_num = zigbee_devices.devicesSize();
|
|
|
|
for (const auto & device : zigbee_devices.getDevices()) {
|
|
// allocte a buffer for a single device
|
|
SBuffer buf = hibernateDeviceData(device, false); // simple log, no mqtt
|
|
if (buf.len() > 0) {
|
|
write_data.addBytes(buf.getBuffer(), buf.len());
|
|
}
|
|
}
|
|
int32_t ret = write_data.close();
|
|
#ifdef Z_EEPROM_DEBUG
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData - %d bytes written to EEPROM"), ret);
|
|
#endif
|
|
#endif // USE_ZIGBEE_EZSP
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Timer to save every 60 minutes
|
|
\*********************************************************************************************/
|
|
const uint32_t Z_SAVE_DATA_TIMER = 60 * 60 * 1000; // save data every 60 minutes (in ms)
|
|
|
|
//
|
|
// Callback for setting the timer to save Zigbee Data in x seconds
|
|
//
|
|
int32_t Z_Set_Save_Data_Timer_EEPROM(uint8_t value) {
|
|
zigbee_devices.setTimer(0x0000, 0, Z_SAVE_DATA_TIMER, 0, 0, Z_CAT_ALWAYS, 0 /* value */, &Z_SaveDataTimer);
|
|
return 0; // continue
|
|
}
|
|
|
|
void Z_SaveDataTimer(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
|
|
hibernateAllData();
|
|
Z_Set_Save_Data_Timer_EEPROM(0); // set a new timer
|
|
}
|
|
|
|
#ifdef USE_ZIGBEE_EZSP
|
|
/*********************************************************************************************\
|
|
* Write Devices in EEPROM
|
|
\*********************************************************************************************/
|
|
// EEPROM variant that writes one item at a time and is not limited to 2KB
|
|
bool hibernateDevicesInEEPROM(void) {
|
|
if (Rtc.utc_time < START_VALID_TIME) { return false; }
|
|
if (!zigbee.eeprom_ready) { return false; }
|
|
|
|
ZFS_Write_File write_data(ZIGB_NAME2);
|
|
|
|
// first prefix is number of devices
|
|
uint8_t devices_size = zigbee_devices.devicesSize();
|
|
if (devices_size > 64) { devices_size = 64; } // arbitrarily limit to 64 devices in EEPROM instead of 32 in Flash
|
|
write_data.addBytes(&devices_size, sizeof(devices_size));
|
|
|
|
for (const auto & device : zigbee_devices.getDevices()) {
|
|
const SBuffer buf = hibernateDevicev2(device);
|
|
if (buf.len() > 0) {
|
|
write_data.addBytes(buf.getBuffer(), buf.len());
|
|
}
|
|
}
|
|
int32_t ret = write_data.close();
|
|
|
|
if (ret < 0) {
|
|
AddLog_P(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Error writing Devices to EEPROM"));
|
|
return false;
|
|
} else {
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data saved in %s (%d bytes)"), PSTR("EEPROM"), ret);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// dump = true, only dump to logs, don't actually load
|
|
bool loadZigbeeDevicesFromEEPROM(void) {
|
|
if (!zigbee.eeprom_ready) { return false; }
|
|
uint16_t file_len = ZFS::getLength(ZIGB_NAME2);
|
|
|
|
uint8_t num_devices = 0;
|
|
ZFS::readBytes(ZIGB_NAME2, &num_devices, sizeof(num_devices), 0, sizeof(num_devices));
|
|
|
|
if ((file_len < 10) || (num_devices == 0x00) || (num_devices == 0xFF)) { // No data
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device information in %s"), PSTR("EEPROM"));
|
|
return false;
|
|
}
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device information in %s (%d bytes)"), PSTR("EEPROM"), file_len);
|
|
|
|
uint32_t k = 1; // byte index in global buffer
|
|
for (uint32_t i = 0; (i < num_devices) && (k < file_len); i++) {
|
|
uint8_t dev_record_len = 0;
|
|
int32_t ret = ZFS::readBytes(ZIGB_NAME2, &dev_record_len, 1, k, 1);
|
|
SBuffer buf(dev_record_len);
|
|
buf.setLen(dev_record_len);
|
|
ret = ZFS::readBytes(ZIGB_NAME2, buf.getBuffer(), dev_record_len, k, dev_record_len);
|
|
if (ret != dev_record_len) {
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "File too short when reading EEPROM"));
|
|
return false;
|
|
}
|
|
|
|
hydrateSingleDevice(buf, 2);
|
|
|
|
// next iteration
|
|
k += dev_record_len;
|
|
}
|
|
|
|
zigbee_devices.clean(); // don't write back to Flash what we just loaded
|
|
return true;
|
|
}
|
|
|
|
void ZFS_Erase(void) {
|
|
if (zigbee.eeprom_present) {
|
|
ZFS::erase();
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased in %s"), PSTR("EEPROM"));
|
|
}
|
|
}
|
|
|
|
#endif // USE_ZIGBEE_EZSP
|
|
|
|
#endif // USE_ZIGBEE
|