mirror of https://github.com/arendst/Tasmota.git
1310 lines
52 KiB
C++
1310 lines
52 KiB
C++
/*
|
|
xdrv_03_energy.ino - Energy sensor support for Tasmota
|
|
|
|
Copyright (C) 2021 Theo Arends
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_ENERGY_SENSOR
|
|
/*********************************************************************************************\
|
|
* Energy
|
|
\*********************************************************************************************/
|
|
|
|
#define XDRV_03 3
|
|
#define XSNS_03 3
|
|
|
|
//#define USE_ENERGY_MARGIN_DETECTION
|
|
// #define USE_ENERGY_POWER_LIMIT
|
|
|
|
#define ENERGY_NONE 0
|
|
#define ENERGY_WATCHDOG 4 // Allow up to 4 seconds before deciding no valid data present
|
|
#define ENERGY_MAX_PHASES 3
|
|
|
|
#include <Ticker.h>
|
|
|
|
#define D_CMND_POWERCAL "PowerCal"
|
|
#define D_CMND_VOLTAGECAL "VoltageCal"
|
|
#define D_CMND_CURRENTCAL "CurrentCal"
|
|
#define D_CMND_FREQUENCYCAL "FrequencyCal"
|
|
#define D_CMND_TARIFF "Tariff"
|
|
#define D_CMND_MODULEADDRESS "ModuleAddress"
|
|
|
|
enum EnergyCommands {
|
|
CMND_POWERCAL, CMND_VOLTAGECAL, CMND_CURRENTCAL, CMND_FREQUENCYCAL,
|
|
CMND_POWERSET, CMND_VOLTAGESET, CMND_CURRENTSET, CMND_FREQUENCYSET, CMND_MODULEADDRESS, CMND_ENERGYCONFIG };
|
|
|
|
const char kEnergyCommands[] PROGMEM = "|" // No prefix
|
|
D_CMND_POWERCAL "|" D_CMND_VOLTAGECAL "|" D_CMND_CURRENTCAL "|" D_CMND_FREQUENCYCAL "|"
|
|
D_CMND_POWERSET "|" D_CMND_VOLTAGESET "|" D_CMND_CURRENTSET "|" D_CMND_FREQUENCYSET "|" D_CMND_MODULEADDRESS "|" D_CMND_ENERGYCONFIG "|"
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
D_CMND_POWERDELTA "|" D_CMND_POWERLOW "|" D_CMND_POWERHIGH "|" D_CMND_VOLTAGELOW "|" D_CMND_VOLTAGEHIGH "|" D_CMND_CURRENTLOW "|" D_CMND_CURRENTHIGH "|"
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
D_CMND_MAXENERGY "|" D_CMND_MAXENERGYSTART "|"
|
|
D_CMND_MAXPOWER "|" D_CMND_MAXPOWERHOLD "|" D_CMND_MAXPOWERWINDOW "|"
|
|
D_CMND_SAFEPOWER "|" D_CMND_SAFEPOWERHOLD "|" D_CMND_SAFEPOWERWINDOW "|"
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
D_CMND_ENERGYTODAY "|" D_CMND_ENERGYYESTERDAY "|" D_CMND_ENERGYTOTAL "|" D_CMND_ENERGYUSAGE "|" D_CMND_ENERGYEXPORT "|" D_CMND_TARIFF;
|
|
|
|
void (* const EnergyCommand[])(void) PROGMEM = {
|
|
&CmndPowerCal, &CmndVoltageCal, &CmndCurrentCal, &CmndFrequencyCal,
|
|
&CmndPowerSet, &CmndVoltageSet, &CmndCurrentSet, &CmndFrequencySet, &CmndModuleAddress, &CmndEnergyConfig,
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
&CmndPowerDelta, &CmndPowerLow, &CmndPowerHigh, &CmndVoltageLow, &CmndVoltageHigh, &CmndCurrentLow, &CmndCurrentHigh,
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
&CmndMaxEnergy, &CmndMaxEnergyStart,
|
|
&CmndMaxPower, &CmndMaxPowerHold, &CmndMaxPowerWindow,
|
|
&CmndSafePower, &CmndSafePowerHold, &CmndSafePowerWindow,
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
&CmndEnergyToday, &CmndEnergyYesterday, &CmndEnergyTotal, &CmndEnergyUsage, &CmndEnergyExport, &CmndTariff};
|
|
|
|
const char kEnergyPhases[] PROGMEM = "|%*_f / %*_f|%*_f / %*_f / %*_f||[%*_f,%*_f]|[%*_f,%*_f,%*_f]";
|
|
|
|
struct ENERGY {
|
|
float voltage[ENERGY_MAX_PHASES]; // 123.1 V
|
|
float current[ENERGY_MAX_PHASES]; // 123.123 A
|
|
float active_power[ENERGY_MAX_PHASES]; // 123.1 W
|
|
float apparent_power[ENERGY_MAX_PHASES]; // 123.1 VA
|
|
float reactive_power[ENERGY_MAX_PHASES]; // 123.1 VAr
|
|
float power_factor[ENERGY_MAX_PHASES]; // 0.12
|
|
float frequency[ENERGY_MAX_PHASES]; // 123.1 Hz
|
|
float import_active[ENERGY_MAX_PHASES]; // 123.123 kWh
|
|
float export_active[ENERGY_MAX_PHASES]; // 123.123 kWh
|
|
float start_energy[ENERGY_MAX_PHASES]; // 12345.12345 kWh total previous
|
|
float daily[ENERGY_MAX_PHASES]; // 123.123 kWh
|
|
float total[ENERGY_MAX_PHASES]; // 12345.12345 kWh total energy
|
|
float daily_sum; // 123.123 kWh
|
|
float total_sum; // 12345.12345 kWh total energy
|
|
float yesterday_sum; // 123.123 kWh
|
|
|
|
int32_t kWhtoday_delta[ENERGY_MAX_PHASES]; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy.kWhtoday (HLW and CSE only)
|
|
int32_t kWhtoday_offset[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
|
|
int32_t kWhtoday[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
|
|
int32_t period[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
|
|
|
|
uint8_t fifth_second;
|
|
uint8_t command_code;
|
|
uint8_t data_valid[ENERGY_MAX_PHASES];
|
|
|
|
uint8_t phase_count; // Number of phases active
|
|
bool voltage_common; // Use common voltage
|
|
bool frequency_common; // Use common frequency
|
|
bool use_overtemp; // Use global temperature as overtemp trigger on internal energy monitor hardware
|
|
bool kWhtoday_offset_init;
|
|
|
|
bool voltage_available; // Enable if voltage is measured
|
|
bool current_available; // Enable if current is measured
|
|
|
|
bool type_dc;
|
|
bool power_on;
|
|
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
uint16_t power_history[ENERGY_MAX_PHASES][3];
|
|
uint8_t power_steady_counter; // Allow for power on stabilization
|
|
bool min_power_flag;
|
|
bool max_power_flag;
|
|
bool min_voltage_flag;
|
|
bool max_voltage_flag;
|
|
bool min_current_flag;
|
|
bool max_current_flag;
|
|
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
uint16_t mplh_counter;
|
|
uint16_t mplw_counter;
|
|
uint8_t mplr_counter;
|
|
uint8_t max_energy_state;
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
} Energy;
|
|
|
|
Ticker ticker_energy;
|
|
|
|
/********************************************************************************************/
|
|
|
|
char* EnergyFormatIndex(char* result, float* input, uint32_t resolution, bool json, uint32_t index, bool single = false) {
|
|
char layout[20];
|
|
GetTextIndexed(layout, sizeof(layout), (index -1) + (ENERGY_MAX_PHASES * json), kEnergyPhases);
|
|
switch (index) {
|
|
case 2:
|
|
ext_snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, layout, resolution, &input[0], resolution, &input[1]);
|
|
break;
|
|
case 3:
|
|
ext_snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, layout, resolution, &input[0], resolution, &input[1], resolution, &input[2]);
|
|
break;
|
|
default:
|
|
ext_snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, PSTR("%*_f"), resolution, &input[0]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
char* EnergyFormat(char* result, float* input, uint32_t resolution, bool json, bool single = false) {
|
|
uint8_t index = (single) ? 1 : Energy.phase_count; // 1,2,3
|
|
return EnergyFormatIndex(result, input, resolution, json, index, single);
|
|
}
|
|
|
|
char* EnergyFormatSum(char* result, float* input, uint32_t resolution, bool json, bool single = false) {
|
|
uint8_t index = (single) ? 1 : Energy.phase_count; // 1,2,3
|
|
float input_sum = 0.0;
|
|
if (!Settings->flag5.energy_phase) {
|
|
for (uint32_t i = 0; i < index; i++) {
|
|
input_sum += input[i];
|
|
}
|
|
input = &input_sum;
|
|
index = 1;
|
|
}
|
|
return EnergyFormatIndex(result, input, resolution, json, index, single);
|
|
}
|
|
|
|
/********************************************************************************************/
|
|
|
|
bool EnergyTariff1Active() // Off-Peak hours
|
|
{
|
|
uint8_t dst = 0;
|
|
if (IsDst() && (Settings->tariff[0][1] != Settings->tariff[1][1])) {
|
|
dst = 1;
|
|
}
|
|
if (Settings->tariff[0][dst] != Settings->tariff[1][dst]) {
|
|
if (Settings->flag3.energy_weekend && ((RtcTime.day_of_week == 1) || // CMND_TARIFF
|
|
(RtcTime.day_of_week == 7))) {
|
|
return true;
|
|
}
|
|
uint32_t minutes = MinutesPastMidnight();
|
|
if (Settings->tariff[0][dst] > Settings->tariff[1][dst]) {
|
|
// {"Tariff":{"Off-Peak":{"STD":"22:00","DST":"23:00"},"Standard":{"STD":"06:00","DST":"07:00"},"Weekend":"OFF"}}
|
|
return ((minutes >= Settings->tariff[0][dst]) || (minutes < Settings->tariff[1][dst]));
|
|
} else {
|
|
// {"Tariff":{"Off-Peak":{"STD":"00:29","DST":"01:29"},"Standard":{"STD":"07:29","DST":"08:29"},"Weekend":"OFF"}}
|
|
return ((minutes >= Settings->tariff[0][dst]) && (minutes < Settings->tariff[1][dst]));
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void EnergyUpdateToday(void) {
|
|
Energy.total_sum = 0.0;
|
|
Energy.yesterday_sum = 0.0;
|
|
Energy.daily_sum = 0.0;
|
|
|
|
for (uint32_t i = 0; i < Energy.phase_count; i++) {
|
|
if (abs(Energy.kWhtoday_delta[i]) > 1000) {
|
|
int32_t delta = Energy.kWhtoday_delta[i] / 1000;
|
|
Energy.kWhtoday_delta[i] -= (delta * 1000);
|
|
Energy.kWhtoday[i] += delta;
|
|
}
|
|
|
|
RtcSettings.energy_kWhtoday_ph[i] = Energy.kWhtoday_offset[i] + Energy.kWhtoday[i];
|
|
Energy.daily[i] = (float)(RtcSettings.energy_kWhtoday_ph[i]) / 100000;
|
|
Energy.total[i] = (float)(RtcSettings.energy_kWhtotal_ph[i] + RtcSettings.energy_kWhtoday_ph[i]) / 100000;
|
|
|
|
Energy.total_sum += Energy.total[i];
|
|
Energy.yesterday_sum += (float)Settings->energy_kWhyesterday_ph[i] / 100000;
|
|
Energy.daily_sum += Energy.daily[i];
|
|
}
|
|
|
|
if (RtcTime.valid){ // We calc the difference only if we have a valid RTC time.
|
|
|
|
uint32_t energy_diff = (uint32_t)(Energy.total_sum * 100000) - RtcSettings.energy_usage.last_usage_kWhtotal;
|
|
RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy.total_sum * 100000);
|
|
|
|
uint32_t return_diff = 0;
|
|
if (!isnan(Energy.export_active[0])) {
|
|
// return_diff = (uint32_t)(Energy.export_active * 100000) - RtcSettings.energy_usage.last_return_kWhtotal;
|
|
// RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(Energy.export_active * 100000);
|
|
|
|
float export_active = 0.0;
|
|
for (uint32_t i = 0; i < Energy.phase_count; i++) {
|
|
if (!isnan(Energy.export_active[i])) {
|
|
export_active += Energy.export_active[i];
|
|
}
|
|
}
|
|
return_diff = (uint32_t)(export_active * 100000) - RtcSettings.energy_usage.last_return_kWhtotal;
|
|
RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(export_active * 100000);
|
|
}
|
|
|
|
if (EnergyTariff1Active()) { // Tarrif1 = Off-Peak
|
|
RtcSettings.energy_usage.usage1_kWhtotal += energy_diff;
|
|
RtcSettings.energy_usage.return1_kWhtotal += return_diff;
|
|
} else {
|
|
RtcSettings.energy_usage.usage2_kWhtotal += energy_diff;
|
|
RtcSettings.energy_usage.return2_kWhtotal += return_diff;
|
|
}
|
|
}
|
|
}
|
|
|
|
void EnergyUpdateTotal(void) {
|
|
// Provide total import active energy as float Energy.import_active[phase] in kWh: 98Wh = 0.098kWh
|
|
|
|
for (uint32_t i = 0; i < Energy.phase_count; i++) {
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: EnergyTotal[%d] %4_f kWh"), i, &Energy.import_active[i]);
|
|
|
|
if (0 == Energy.start_energy[i] || (Energy.import_active[i] < Energy.start_energy[i])) {
|
|
Energy.start_energy[i] = Energy.import_active[i]; // Init after restart and handle roll-over if any
|
|
}
|
|
else if (Energy.import_active[i] != Energy.start_energy[i]) {
|
|
Energy.kWhtoday[i] = (int32_t)((Energy.import_active[i] - Energy.start_energy[i]) * 100000);
|
|
}
|
|
|
|
if ((Energy.total[i] < (Energy.import_active[i] - 0.01)) && // We subtract a little offset to avoid continuous updates
|
|
Settings->flag3.hardware_energy_total) { // SetOption72 - Enable hardware energy total counter as reference (#6561)
|
|
RtcSettings.energy_kWhtotal_ph[i] = (int32_t)((Energy.import_active[i] * 100000) - Energy.kWhtoday_offset[i] - Energy.kWhtoday[i]);
|
|
Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];
|
|
Energy.total[i] = (float)(RtcSettings.energy_kWhtotal_ph[i] + Energy.kWhtoday_offset[i] + Energy.kWhtoday[i]) / 100000;
|
|
Settings->energy_kWhtotal_time = (!Energy.kWhtoday_offset[i]) ? LocalTime() : Midnight();
|
|
// AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy Total updated with hardware value"));
|
|
}
|
|
}
|
|
|
|
EnergyUpdateToday();
|
|
}
|
|
|
|
/*********************************************************************************************/
|
|
|
|
void Energy200ms(void)
|
|
{
|
|
Energy.power_on = (TasmotaGlobal.power != 0) | Settings->flag.no_power_on_check; // SetOption21 - Show voltage even if powered off
|
|
|
|
Energy.fifth_second++;
|
|
if (5 == Energy.fifth_second) {
|
|
Energy.fifth_second = 0;
|
|
|
|
XnrgCall(FUNC_ENERGY_EVERY_SECOND);
|
|
|
|
if (RtcTime.valid) {
|
|
|
|
if (!Energy.kWhtoday_offset_init && (RtcTime.day_of_year == Settings->energy_kWhdoy)) {
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
Energy.kWhtoday_offset[i] = Settings->energy_kWhtoday_ph[i];
|
|
}
|
|
Energy.kWhtoday_offset_init = true;
|
|
}
|
|
|
|
if (LocalTime() == Midnight()) {
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
Settings->energy_kWhyesterday_ph[i] = RtcSettings.energy_kWhtoday_ph[i];
|
|
|
|
RtcSettings.energy_kWhtotal_ph[i] += RtcSettings.energy_kWhtoday_ph[i];
|
|
Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];
|
|
|
|
Energy.period[i] -= RtcSettings.energy_kWhtoday_ph[i]; // this becomes a large unsigned, effectively a negative for EnergyShow calculation
|
|
Energy.kWhtoday[i] = 0;
|
|
Energy.kWhtoday_offset[i] = 0;
|
|
RtcSettings.energy_kWhtoday_ph[i] = 0;
|
|
Energy.start_energy[i] = 0;
|
|
// Energy.kWhtoday_delta = 0; // dont zero this, we need to carry the remainder over to tomorrow
|
|
}
|
|
EnergyUpdateToday();
|
|
#if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT)
|
|
Energy.max_energy_state = 3;
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
}
|
|
#if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT)
|
|
if ((RtcTime.hour == Settings->energy_max_energy_start) && (3 == Energy.max_energy_state )) {
|
|
Energy.max_energy_state = 0;
|
|
}
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
|
|
}
|
|
}
|
|
|
|
XnrgCall(FUNC_EVERY_200_MSECOND);
|
|
}
|
|
|
|
void EnergySaveState(void)
|
|
{
|
|
Settings->energy_kWhdoy = (RtcTime.valid) ? RtcTime.day_of_year : 0;
|
|
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
Settings->energy_kWhtoday_ph[i] = RtcSettings.energy_kWhtoday_ph[i];
|
|
Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];
|
|
}
|
|
|
|
Settings->energy_usage = RtcSettings.energy_usage;
|
|
}
|
|
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
bool EnergyMargin(bool type, uint16_t margin, uint16_t value, bool &flag, bool &save_flag)
|
|
{
|
|
bool change;
|
|
|
|
if (!margin) return false;
|
|
change = save_flag;
|
|
if (type) {
|
|
flag = (value > margin);
|
|
} else {
|
|
flag = (value < margin);
|
|
}
|
|
save_flag = flag;
|
|
return (change != save_flag);
|
|
}
|
|
|
|
void EnergyMarginCheck(void)
|
|
{
|
|
if (Energy.power_steady_counter) {
|
|
Energy.power_steady_counter--;
|
|
return;
|
|
}
|
|
|
|
bool jsonflg = false;
|
|
Response_P(PSTR("{\"" D_RSLT_MARGINS "\":{"));
|
|
|
|
int16_t power_diff[ENERGY_MAX_PHASES] = { 0 };
|
|
for (uint32_t phase = 0; phase < Energy.phase_count; phase++) {
|
|
uint16_t active_power = (uint16_t)(Energy.active_power[phase]);
|
|
|
|
// AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: APower %d, HPower0 %d, HPower1 %d, HPower2 %d"), active_power, Energy.power_history[phase][0], Energy.power_history[phase][1], Energy.power_history[phase][2]);
|
|
|
|
if (Settings->energy_power_delta[phase]) {
|
|
power_diff[phase] = active_power - Energy.power_history[phase][0];
|
|
uint16_t delta = abs(power_diff[phase]);
|
|
bool threshold_met = false;
|
|
if (delta > 0) {
|
|
if (Settings->energy_power_delta[phase] < 101) { // 1..100 = Percentage
|
|
uint16_t min_power = (Energy.power_history[phase][0] > active_power) ? active_power : Energy.power_history[phase][0];
|
|
if (0 == min_power) { min_power++; } // Fix divide by 0 exception (#6741)
|
|
delta = (delta * 100) / min_power;
|
|
if (delta > Settings->energy_power_delta[phase]) {
|
|
threshold_met = true;
|
|
}
|
|
} else { // 101..32000 = Absolute
|
|
if (delta > (Settings->energy_power_delta[phase] -100)) {
|
|
threshold_met = true;
|
|
}
|
|
}
|
|
}
|
|
if (threshold_met) {
|
|
Energy.power_history[phase][1] = active_power; // We only want one report so reset history
|
|
Energy.power_history[phase][2] = active_power;
|
|
jsonflg = true;
|
|
} else {
|
|
power_diff[phase] = 0;
|
|
}
|
|
}
|
|
Energy.power_history[phase][0] = Energy.power_history[phase][1]; // Shift in history every second allowing power changes to settle for up to three seconds
|
|
Energy.power_history[phase][1] = Energy.power_history[phase][2];
|
|
Energy.power_history[phase][2] = active_power;
|
|
}
|
|
if (jsonflg) {
|
|
/*
|
|
char power_diff_chr[Energy.phase_count][FLOATSZ];
|
|
for (uint32_t phase = 0; phase < Energy.phase_count; phase++) {
|
|
dtostrfd(power_diff[phase], 0, power_diff_chr[phase]);
|
|
}
|
|
char value_chr[FLOATSZ * ENERGY_MAX_PHASES];
|
|
ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFormat(value_chr, power_diff_chr[0], 1));
|
|
*/
|
|
float power_diff_f[Energy.phase_count];
|
|
for (uint32_t phase = 0; phase < Energy.phase_count; phase++) {
|
|
power_diff_f[phase] = power_diff[phase];
|
|
}
|
|
char value_chr[FLOATSZ * ENERGY_MAX_PHASES];
|
|
ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFormat(value_chr, power_diff_f, 0, 1));
|
|
}
|
|
|
|
uint16_t energy_power_u = (uint16_t)(Energy.active_power[0]);
|
|
|
|
if (Energy.power_on && (Settings->energy_min_power || Settings->energy_max_power || Settings->energy_min_voltage || Settings->energy_max_voltage || Settings->energy_min_current || Settings->energy_max_current)) {
|
|
uint16_t energy_voltage_u = (uint16_t)(Energy.voltage[0]);
|
|
uint16_t energy_current_u = (uint16_t)(Energy.current[0] * 1000);
|
|
|
|
DEBUG_DRIVER_LOG(PSTR("NRG: W %d, U %d, I %d"), energy_power_u, energy_voltage_u, energy_current_u);
|
|
|
|
bool flag;
|
|
if (EnergyMargin(false, Settings->energy_min_power, energy_power_u, flag, Energy.min_power_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_POWERLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
if (EnergyMargin(true, Settings->energy_max_power, energy_power_u, flag, Energy.max_power_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_POWERHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
if (EnergyMargin(false, Settings->energy_min_voltage, energy_voltage_u, flag, Energy.min_voltage_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGELOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
if (EnergyMargin(true, Settings->energy_max_voltage, energy_voltage_u, flag, Energy.max_voltage_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGEHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
if (EnergyMargin(false, Settings->energy_min_current, energy_current_u, flag, Energy.min_current_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
if (EnergyMargin(true, Settings->energy_max_current, energy_current_u, flag, Energy.max_current_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
}
|
|
if (jsonflg) {
|
|
ResponseJsonEndEnd();
|
|
MqttPublishPrefixTopicRulesProcess_P(TELE, PSTR(D_RSLT_MARGINS), MQTT_TELE_RETAIN);
|
|
EnergyMqttShow();
|
|
}
|
|
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
// Max Power
|
|
if (Settings->energy_max_power_limit) {
|
|
if (Energy.active_power[0] > Settings->energy_max_power_limit) {
|
|
if (!Energy.mplh_counter) {
|
|
Energy.mplh_counter = Settings->energy_max_power_limit_hold;
|
|
} else {
|
|
Energy.mplh_counter--;
|
|
if (!Energy.mplh_counter) {
|
|
ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHED "\":%d}"), energy_power_u);
|
|
MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
|
|
EnergyMqttShow();
|
|
SetAllPower(POWER_ALL_OFF, SRC_MAXPOWER);
|
|
if (!Energy.mplr_counter) {
|
|
Energy.mplr_counter = Settings->param[P_MAX_POWER_RETRY] +1; // SetOption33 - Max Power Retry count
|
|
}
|
|
Energy.mplw_counter = Settings->energy_max_power_limit_window;
|
|
}
|
|
}
|
|
}
|
|
else if (TasmotaGlobal.power && (energy_power_u <= Settings->energy_max_power_limit)) {
|
|
Energy.mplh_counter = 0;
|
|
Energy.mplr_counter = 0;
|
|
Energy.mplw_counter = 0;
|
|
}
|
|
if (!TasmotaGlobal.power) {
|
|
if (Energy.mplw_counter) {
|
|
Energy.mplw_counter--;
|
|
} else {
|
|
if (Energy.mplr_counter) {
|
|
Energy.mplr_counter--;
|
|
if (Energy.mplr_counter) {
|
|
ResponseTime_P(PSTR(",\"" D_JSON_POWERMONITOR "\":\"%s\"}"), GetStateText(1));
|
|
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_POWERMONITOR));
|
|
RestorePower(true, SRC_MAXPOWER);
|
|
} else {
|
|
ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHEDRETRY "\":\"%s\"}"), GetStateText(0));
|
|
MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
|
|
EnergyMqttShow();
|
|
SetAllPower(POWER_ALL_OFF, SRC_MAXPOWER);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Max Energy
|
|
if (Settings->energy_max_energy) {
|
|
uint16_t energy_daily_u = (uint16_t)(Energy.daily_sum * 1000);
|
|
if (!Energy.max_energy_state && (RtcTime.hour == Settings->energy_max_energy_start)) {
|
|
Energy.max_energy_state = 1;
|
|
ResponseTime_P(PSTR(",\"" D_JSON_ENERGYMONITOR "\":\"%s\"}"), GetStateText(1));
|
|
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_ENERGYMONITOR));
|
|
RestorePower(true, SRC_MAXENERGY);
|
|
}
|
|
else if ((1 == Energy.max_energy_state ) && (energy_daily_u >= Settings->energy_max_energy)) {
|
|
Energy.max_energy_state = 2;
|
|
ResponseTime_P(PSTR(",\"" D_JSON_MAXENERGYREACHED "\":%3_f}"), &Energy.daily_sum);
|
|
MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
|
|
EnergyMqttShow();
|
|
SetAllPower(POWER_ALL_OFF, SRC_MAXENERGY);
|
|
}
|
|
}
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
}
|
|
|
|
void EnergyMqttShow(void)
|
|
{
|
|
// {"Time":"2017-12-16T11:48:55","ENERGY":{"Total":0.212,"Yesterday":0.000,"Today":0.014,"Period":2.0,"Power":22.0,"Factor":1.00,"Voltage":213.6,"Current":0.100}}
|
|
int tele_period_save = TasmotaGlobal.tele_period;
|
|
TasmotaGlobal.tele_period = 2;
|
|
ResponseClear();
|
|
ResponseAppendTime();
|
|
EnergyShow(true);
|
|
TasmotaGlobal.tele_period = tele_period_save;
|
|
ResponseJsonEnd();
|
|
MqttPublishTeleSensor();
|
|
}
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
|
|
void EnergyEverySecond(void)
|
|
{
|
|
// Overtemp check
|
|
if (Energy.use_overtemp && TasmotaGlobal.global_update) {
|
|
if (TasmotaGlobal.power && !isnan(TasmotaGlobal.temperature_celsius) && (TasmotaGlobal.temperature_celsius > (float)Settings->param[P_OVER_TEMP])) { // SetOption42 Device overtemp, turn off relays
|
|
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Temperature %1_f"), &TasmotaGlobal.temperature_celsius);
|
|
|
|
SetAllPower(POWER_ALL_OFF, SRC_OVERTEMP);
|
|
}
|
|
}
|
|
|
|
// Invalid data reset
|
|
if (TasmotaGlobal.uptime > ENERGY_WATCHDOG) {
|
|
uint32_t data_valid = Energy.phase_count;
|
|
for (uint32_t i = 0; i < Energy.phase_count; i++) {
|
|
if (Energy.data_valid[i] <= ENERGY_WATCHDOG) {
|
|
Energy.data_valid[i]++;
|
|
if (Energy.data_valid[i] > ENERGY_WATCHDOG) {
|
|
// Reset energy registers
|
|
Energy.voltage[i] = 0;
|
|
Energy.current[i] = 0;
|
|
Energy.active_power[i] = 0;
|
|
if (!isnan(Energy.apparent_power[i])) { Energy.apparent_power[i] = 0; }
|
|
if (!isnan(Energy.reactive_power[i])) { Energy.reactive_power[i] = 0; }
|
|
if (!isnan(Energy.frequency[i])) { Energy.frequency[i] = 0; }
|
|
if (!isnan(Energy.power_factor[i])) { Energy.power_factor[i] = 0; }
|
|
if (!isnan(Energy.export_active[i])) { Energy.export_active[i] = 0; }
|
|
|
|
data_valid--;
|
|
}
|
|
}
|
|
}
|
|
if (!data_valid) {
|
|
//Energy.start_energy = 0;
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy reset by invalid data"));
|
|
|
|
XnrgCall(FUNC_ENERGY_RESET);
|
|
}
|
|
}
|
|
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
EnergyMarginCheck();
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Commands
|
|
\*********************************************************************************************/
|
|
|
|
void EnergyCommandCalResponse(uint32_t nvalue) {
|
|
snprintf_P(XdrvMailbox.command, CMDSZ, PSTR("%sCal"), XdrvMailbox.command);
|
|
ResponseCmndNumber(nvalue);
|
|
}
|
|
|
|
void ResponseCmndEnergyTotalYesterdayToday(void) {
|
|
char value_chr[FLOATSZ * ENERGY_MAX_PHASES]; // Used by EnergyFormatIndex
|
|
char value2_chr[FLOATSZ * ENERGY_MAX_PHASES];
|
|
char value3_chr[FLOATSZ * ENERGY_MAX_PHASES];
|
|
|
|
float energy_yesterday_ph[3];
|
|
for (uint32_t i = 0; i < Energy.phase_count; i++) {
|
|
energy_yesterday_ph[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000;
|
|
Energy.total[i] = (float)(RtcSettings.energy_kWhtotal_ph[i] + Energy.kWhtoday_offset[i] + Energy.kWhtoday[i]) / 100000;
|
|
}
|
|
|
|
Response_P(PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s}"),
|
|
XdrvMailbox.command,
|
|
EnergyFormat(value_chr, Energy.total, Settings->flag2.energy_resolution, true),
|
|
EnergyFormat(value2_chr, energy_yesterday_ph, Settings->flag2.energy_resolution, true),
|
|
EnergyFormat(value3_chr, Energy.daily, Settings->flag2.energy_resolution, true));
|
|
}
|
|
|
|
void CmndEnergyTotal(void) {
|
|
uint32_t values[2] = { 0 };
|
|
uint32_t params = ParseParameters(2, values);
|
|
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy.phase_count) && (params > 0)) {
|
|
uint32_t phase = XdrvMailbox.index -1;
|
|
// Reset Energy Total
|
|
RtcSettings.energy_kWhtotal_ph[phase] = values[0] * 100;
|
|
Settings->energy_kWhtotal_ph[phase] = RtcSettings.energy_kWhtotal_ph[phase];
|
|
if (params > 1) {
|
|
Settings->energy_kWhtotal_time = values[1];
|
|
} else {
|
|
Settings->energy_kWhtotal_time = (!Energy.kWhtoday_offset[phase]) ? LocalTime() : Midnight();
|
|
}
|
|
RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy.total[phase] * 1000);
|
|
}
|
|
ResponseCmndEnergyTotalYesterdayToday();
|
|
}
|
|
|
|
void CmndEnergyYesterday(void) {
|
|
uint32_t values[2] = { 0 };
|
|
uint32_t params = ParseParameters(2, values);
|
|
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy.phase_count) && (params > 0)) {
|
|
uint32_t phase = XdrvMailbox.index -1;
|
|
// Reset Energy Yesterday
|
|
Settings->energy_kWhyesterday_ph[phase] = values[0] * 100;
|
|
if (params > 1) {
|
|
Settings->energy_kWhtotal_time = values[1];
|
|
}
|
|
}
|
|
ResponseCmndEnergyTotalYesterdayToday();
|
|
}
|
|
void CmndEnergyToday(void) {
|
|
uint32_t values[2] = { 0 };
|
|
uint32_t params = ParseParameters(2, values);
|
|
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy.phase_count) && (params > 0)) {
|
|
uint32_t phase = XdrvMailbox.index -1;
|
|
// Reset Energy Today
|
|
Energy.kWhtoday_offset[phase] = values[0] * 100;
|
|
Energy.kWhtoday[phase] = 0;
|
|
Energy.kWhtoday_delta[phase] = 0;
|
|
Energy.start_energy[phase] = 0;
|
|
Energy.period[phase] = Energy.kWhtoday_offset[phase];
|
|
Settings->energy_kWhtoday_ph[phase] = Energy.kWhtoday_offset[phase];
|
|
RtcSettings.energy_kWhtoday_ph[phase] = Energy.kWhtoday_offset[phase];
|
|
Energy.daily[phase] = (float)Energy.kWhtoday_offset[phase] / 100000;
|
|
if (params > 1) {
|
|
Settings->energy_kWhtotal_time = values[1];
|
|
}
|
|
else if (!RtcSettings.energy_kWhtotal_ph[phase] && !Energy.kWhtoday_offset[phase]) {
|
|
Settings->energy_kWhtotal_time = LocalTime();
|
|
}
|
|
}
|
|
ResponseCmndEnergyTotalYesterdayToday();
|
|
}
|
|
|
|
void ResponseCmndEnergyUsageExport(void) {
|
|
float usage1_kWhtotal = (float)Settings->energy_usage.usage1_kWhtotal / 100000;
|
|
float usage2_kWhtotal = (float)Settings->energy_usage.usage2_kWhtotal / 100000;
|
|
float return1_kWhtotal = (float)Settings->energy_usage.return1_kWhtotal / 100000;
|
|
float return2_kWhtotal = (float)Settings->energy_usage.return2_kWhtotal / 100000;
|
|
|
|
Response_P(PSTR("{\"%s\":{\"" D_JSON_USAGE "\":[%*_f,%*_f],\"" D_JSON_EXPORT "\":[%*_f,%*_f]}}"),
|
|
XdrvMailbox.command,
|
|
Settings->flag2.energy_resolution, &usage1_kWhtotal,
|
|
Settings->flag2.energy_resolution, &usage2_kWhtotal,
|
|
Settings->flag2.energy_resolution, &return1_kWhtotal,
|
|
Settings->flag2.energy_resolution, &return2_kWhtotal);
|
|
}
|
|
|
|
void CmndEnergyUsage(void) {
|
|
uint32_t values[2] = { 0 };
|
|
uint32_t params = ParseParameters(2, values);
|
|
if (params > 0) {
|
|
// Reset energy_usage.usage totals
|
|
RtcSettings.energy_usage.usage1_kWhtotal = values[0] * 100;
|
|
if (params > 1) {
|
|
RtcSettings.energy_usage.usage2_kWhtotal = values[1] * 100;
|
|
}
|
|
Settings->energy_usage.usage1_kWhtotal = RtcSettings.energy_usage.usage1_kWhtotal;
|
|
Settings->energy_usage.usage2_kWhtotal = RtcSettings.energy_usage.usage2_kWhtotal;
|
|
}
|
|
ResponseCmndEnergyUsageExport();
|
|
}
|
|
|
|
void CmndEnergyExport(void) {
|
|
uint32_t values[2] = { 0 };
|
|
uint32_t params = ParseParameters(2, values);
|
|
if (params > 0) {
|
|
// Reset energy_usage.return totals
|
|
RtcSettings.energy_usage.return1_kWhtotal = values[0] * 100;
|
|
if (params > 1) {
|
|
RtcSettings.energy_usage.return2_kWhtotal = values[1] * 100;
|
|
}
|
|
Settings->energy_usage.return1_kWhtotal = RtcSettings.energy_usage.return1_kWhtotal;
|
|
Settings->energy_usage.return2_kWhtotal = RtcSettings.energy_usage.return2_kWhtotal;
|
|
}
|
|
ResponseCmndEnergyUsageExport();
|
|
}
|
|
|
|
void CmndTariff(void) {
|
|
// Tariff1 22:00,23:00 - Tariff1 start hour for Standard Time and Daylight Savings Time
|
|
// Tariff2 6:00,7:00 - Tariff2 start hour for Standard Time and Daylight Savings Time
|
|
// Tariffx 1320, 1380 = minutes and also 22:00, 23:00
|
|
// Tariffx 22, 23 = hours and also 22:00, 23:00
|
|
// Tariff9 0/1
|
|
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) {
|
|
uint32_t tariff = XdrvMailbox.index -1;
|
|
uint32_t time_type = 0;
|
|
char *p;
|
|
char *str = strtok_r(XdrvMailbox.data, ", ", &p); // 23:15, 22:30
|
|
while ((str != nullptr) && (time_type < 2)) {
|
|
char *q;
|
|
uint32_t value = strtol(str, &q, 10); // 23 or 22
|
|
Settings->tariff[tariff][time_type] = value;
|
|
if (value < 24) { // Below 24 is hours
|
|
Settings->tariff[tariff][time_type] *= 60; // Multiply hours by 60 minutes
|
|
char *minute = strtok_r(nullptr, ":", &q);
|
|
if (minute) {
|
|
value = strtol(minute, nullptr, 10); // 15 or 30
|
|
if (value > 59) {
|
|
value = 59;
|
|
}
|
|
Settings->tariff[tariff][time_type] += value;
|
|
}
|
|
}
|
|
if (Settings->tariff[tariff][time_type] > 1439) {
|
|
Settings->tariff[tariff][time_type] = 1439; // Max is 23:59
|
|
}
|
|
str = strtok_r(nullptr, ", ", &p);
|
|
time_type++;
|
|
}
|
|
}
|
|
else if (XdrvMailbox.index == 9) {
|
|
Settings->flag3.energy_weekend = XdrvMailbox.payload & 1; // CMND_TARIFF
|
|
}
|
|
Response_P(PSTR("{\"%s\":{\"Off-Peak\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Standard\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Weekend\":\"%s\"}}"),
|
|
XdrvMailbox.command,
|
|
GetMinuteTime(Settings->tariff[0][0]).c_str(),GetMinuteTime(Settings->tariff[0][1]).c_str(),
|
|
GetMinuteTime(Settings->tariff[1][0]).c_str(),GetMinuteTime(Settings->tariff[1][1]).c_str(),
|
|
GetStateText(Settings->flag3.energy_weekend)); // CMND_TARIFF
|
|
}
|
|
|
|
void CmndPowerCal(void) {
|
|
Energy.command_code = CMND_POWERCAL;
|
|
if (XnrgCall(FUNC_COMMAND)) { // microseconds
|
|
if (XdrvMailbox.payload > 999) {
|
|
Settings->energy_power_calibration = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_power_calibration);
|
|
}
|
|
}
|
|
|
|
void CmndVoltageCal(void) {
|
|
Energy.command_code = CMND_VOLTAGECAL;
|
|
if (XnrgCall(FUNC_COMMAND)) { // microseconds
|
|
if (XdrvMailbox.payload > 999) {
|
|
Settings->energy_voltage_calibration = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_voltage_calibration);
|
|
}
|
|
}
|
|
|
|
void CmndCurrentCal(void) {
|
|
Energy.command_code = CMND_CURRENTCAL;
|
|
if (XnrgCall(FUNC_COMMAND)) { // microseconds
|
|
if (XdrvMailbox.payload > 999) {
|
|
Settings->energy_current_calibration = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_current_calibration);
|
|
}
|
|
}
|
|
|
|
void CmndFrequencyCal(void) {
|
|
Energy.command_code = CMND_FREQUENCYCAL;
|
|
if (XnrgCall(FUNC_COMMAND)) { // microseconds
|
|
if (XdrvMailbox.payload > 999) {
|
|
Settings->energy_frequency_calibration = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_frequency_calibration);
|
|
}
|
|
}
|
|
|
|
void CmndPowerSet(void) {
|
|
Energy.command_code = CMND_POWERSET;
|
|
if (XnrgCall(FUNC_COMMAND)) { // Watt
|
|
EnergyCommandCalResponse(Settings->energy_power_calibration);
|
|
}
|
|
}
|
|
|
|
void CmndVoltageSet(void) {
|
|
Energy.command_code = CMND_VOLTAGESET;
|
|
if (XnrgCall(FUNC_COMMAND)) { // Volt
|
|
EnergyCommandCalResponse(Settings->energy_voltage_calibration);
|
|
}
|
|
}
|
|
|
|
void CmndCurrentSet(void) {
|
|
Energy.command_code = CMND_CURRENTSET;
|
|
if (XnrgCall(FUNC_COMMAND)) { // milliAmpere
|
|
EnergyCommandCalResponse(Settings->energy_current_calibration);
|
|
}
|
|
}
|
|
|
|
void CmndFrequencySet(void) {
|
|
Energy.command_code = CMND_FREQUENCYSET;
|
|
if (XnrgCall(FUNC_COMMAND)) { // Hz
|
|
EnergyCommandCalResponse(Settings->energy_frequency_calibration);
|
|
}
|
|
}
|
|
|
|
void CmndModuleAddress(void) {
|
|
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 4) && (1 == Energy.phase_count)) {
|
|
Energy.command_code = CMND_MODULEADDRESS;
|
|
if (XnrgCall(FUNC_COMMAND)) { // Module address
|
|
ResponseCmndDone();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CmndEnergyConfig(void) {
|
|
Energy.command_code = CMND_ENERGYCONFIG;
|
|
if (XnrgCall(FUNC_COMMAND)) {
|
|
ResponseCmndDone();
|
|
}
|
|
}
|
|
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
void CmndPowerDelta(void) {
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= ENERGY_MAX_PHASES)) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32000)) {
|
|
Settings->energy_power_delta[XdrvMailbox.index -1] = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndIdxNumber(Settings->energy_power_delta[XdrvMailbox.index -1]);
|
|
}
|
|
}
|
|
|
|
void CmndPowerLow(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
|
|
Settings->energy_min_power = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_min_power);
|
|
}
|
|
|
|
void CmndPowerHigh(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
|
|
Settings->energy_max_power = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_max_power);
|
|
}
|
|
|
|
void CmndVoltageLow(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) {
|
|
Settings->energy_min_voltage = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_min_voltage);
|
|
}
|
|
|
|
void CmndVoltageHigh(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) {
|
|
Settings->energy_max_voltage = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_max_voltage);
|
|
}
|
|
|
|
void CmndCurrentLow(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) {
|
|
Settings->energy_min_current = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_min_current);
|
|
}
|
|
|
|
void CmndCurrentHigh(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) {
|
|
Settings->energy_max_current = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_max_current);
|
|
}
|
|
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
void CmndMaxPower(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
|
|
Settings->energy_max_power_limit = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_max_power_limit);
|
|
}
|
|
|
|
void CmndMaxPowerHold(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
|
|
Settings->energy_max_power_limit_hold = (1 == XdrvMailbox.payload) ? MAX_POWER_HOLD : XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_max_power_limit_hold);
|
|
}
|
|
|
|
void CmndMaxPowerWindow(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
|
|
Settings->energy_max_power_limit_window = (1 == XdrvMailbox.payload) ? MAX_POWER_WINDOW : XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_max_power_limit_window);
|
|
}
|
|
|
|
void CmndSafePower(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
|
|
Settings->energy_max_power_safe_limit = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_max_power_safe_limit);
|
|
}
|
|
|
|
void CmndSafePowerHold(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
|
|
Settings->energy_max_power_safe_limit_hold = (1 == XdrvMailbox.payload) ? SAFE_POWER_HOLD : XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_max_power_safe_limit_hold);
|
|
}
|
|
|
|
void CmndSafePowerWindow(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 1440)) {
|
|
Settings->energy_max_power_safe_limit_window = (1 == XdrvMailbox.payload) ? SAFE_POWER_WINDOW : XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_max_power_safe_limit_window);
|
|
}
|
|
|
|
void CmndMaxEnergy(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
|
|
Settings->energy_max_energy = XdrvMailbox.payload;
|
|
Energy.max_energy_state = 3;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_max_energy);
|
|
}
|
|
|
|
void CmndMaxEnergyStart(void) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 24)) {
|
|
Settings->energy_max_energy_start = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndNumber(Settings->energy_max_energy_start);
|
|
}
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
|
|
void EnergyDrvInit(void) {
|
|
memset(&Energy, 0, sizeof(Energy)); // Reset all to 0 and false;
|
|
for (uint32_t phase = 0; phase < ENERGY_MAX_PHASES; phase++) {
|
|
Energy.apparent_power[phase] = NAN;
|
|
Energy.reactive_power[phase] = NAN;
|
|
Energy.power_factor[phase] = NAN;
|
|
Energy.frequency[phase] = NAN;
|
|
Energy.export_active[phase] = NAN;
|
|
}
|
|
Energy.phase_count = 1; // Number of phases active
|
|
Energy.voltage_available = true; // Enable if voltage is measured
|
|
Energy.current_available = true; // Enable if current is measured
|
|
Energy.power_on = true;
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
Energy.power_steady_counter = 8; // Allow for power on stabilization
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
|
|
TasmotaGlobal.energy_driver = ENERGY_NONE;
|
|
XnrgCall(FUNC_PRE_INIT); // Find first energy driver
|
|
}
|
|
|
|
void EnergySnsInit(void)
|
|
{
|
|
XnrgCall(FUNC_INIT);
|
|
|
|
if (TasmotaGlobal.energy_driver) {
|
|
|
|
// Update for split phase totals (v9.5.0.9)
|
|
if ((Settings->energy_kWhtotal > 0) && (0 == Settings->energy_kWhtotal_ph[0])) {
|
|
Settings->energy_kWhtotal_ph[0] = Settings->energy_kWhtotal;
|
|
Settings->energy_kWhtoday_ph[0] = Settings->energy_kWhtoday;
|
|
Settings->energy_kWhyesterday_ph[0] = Settings->energy_kWhyesterday;
|
|
RtcSettings.energy_kWhtoday_ph[0] = RtcSettings.energy_kWhtoday;
|
|
RtcSettings.energy_kWhtotal_ph[0] = RtcSettings.energy_kWhtotal;
|
|
Settings->energy_kWhtotal = 0;
|
|
}
|
|
|
|
// Energy.kWhtoday_offset = 0;
|
|
// Do not use at Power On as Rtc was invalid (but has been restored from Settings already)
|
|
if ((ResetReason() != REASON_DEFAULT_RST) && RtcSettingsValid()) {
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
Energy.kWhtoday_offset[i] = RtcSettings.energy_kWhtoday_ph[i];
|
|
}
|
|
Energy.kWhtoday_offset_init = true;
|
|
}
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
// Energy.kWhtoday_ph[i] = 0;
|
|
// Energy.kWhtoday_delta[i] = 0;
|
|
Energy.period[i] = Energy.kWhtoday_offset[i];
|
|
}
|
|
EnergyUpdateToday();
|
|
ticker_energy.attach_ms(200, Energy200ms);
|
|
}
|
|
}
|
|
|
|
#ifdef USE_WEBSERVER
|
|
const char HTTP_ENERGY_SNS1[] PROGMEM =
|
|
"{s}" D_POWERUSAGE_APPARENT "{m}%s " D_UNIT_VA "{e}"
|
|
"{s}" D_POWERUSAGE_REACTIVE "{m}%s " D_UNIT_VAR "{e}"
|
|
"{s}" D_POWER_FACTOR "{m}%s{e}";
|
|
|
|
const char HTTP_ENERGY_SNS2[] PROGMEM =
|
|
"{s}" D_ENERGY_TODAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
|
|
"{s}" D_ENERGY_YESTERDAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
|
|
"{s}" D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
|
|
|
|
const char HTTP_ENERGY_SNS3[] PROGMEM =
|
|
"{s}" D_EXPORT_ACTIVE "{m}%s " D_UNIT_KILOWATTHOUR "{e}";
|
|
#endif // USE_WEBSERVER
|
|
|
|
void EnergyShow(bool json) {
|
|
if (Energy.voltage_common) {
|
|
for (uint32_t i = 0; i < Energy.phase_count; i++) {
|
|
Energy.voltage[i] = Energy.voltage[0];
|
|
}
|
|
}
|
|
|
|
float apparent_power[Energy.phase_count];
|
|
float reactive_power[Energy.phase_count];
|
|
float power_factor[Energy.phase_count];
|
|
if (!Energy.type_dc) {
|
|
if (Energy.current_available && Energy.voltage_available) {
|
|
for (uint32_t i = 0; i < Energy.phase_count; i++) {
|
|
apparent_power[i] = Energy.apparent_power[i];
|
|
if (isnan(apparent_power[i])) {
|
|
apparent_power[i] = Energy.voltage[i] * Energy.current[i];
|
|
}
|
|
if (apparent_power[i] < Energy.active_power[i]) { // Should be impossible
|
|
Energy.active_power[i] = apparent_power[i];
|
|
}
|
|
|
|
power_factor[i] = Energy.power_factor[i];
|
|
if (isnan(power_factor[i])) {
|
|
power_factor[i] = (Energy.active_power[i] && apparent_power[i]) ? Energy.active_power[i] / apparent_power[i] : 0;
|
|
if (power_factor[i] > 1) {
|
|
power_factor[i] = 1;
|
|
}
|
|
}
|
|
|
|
reactive_power[i] = Energy.reactive_power[i];
|
|
if (isnan(reactive_power[i])) {
|
|
reactive_power[i] = 0;
|
|
uint32_t difference = ((uint32_t)(apparent_power[i] * 100) - (uint32_t)(Energy.active_power[i] * 100)) / 10;
|
|
if ((Energy.current[i] > 0.005) && ((difference > 15) || (difference > (uint32_t)(apparent_power[i] * 100 / 1000)))) {
|
|
// calculating reactive power only if current is greater than 0.005A and
|
|
// difference between active and apparent power is greater than 1.5W or 1%
|
|
//reactive_power[i] = (float)(RoundSqrtInt((uint64_t)(apparent_power[i] * apparent_power[i] * 100) - (uint64_t)(Energy.active_power[i] * Energy.active_power[i] * 100))) / 10;
|
|
float power_diff = apparent_power[i] * apparent_power[i] - Energy.active_power[i] * Energy.active_power[i];
|
|
if (power_diff < 10737418) // 2^30 / 100 (RoundSqrtInt is limited to 2^30-1)
|
|
reactive_power[i] = (float)(RoundSqrtInt((uint32_t)(power_diff * 100.0))) / 10.0;
|
|
else
|
|
reactive_power[i] = (float)(SqrtInt((uint32_t)(power_diff)));
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float active_power_sum = 0.0;
|
|
float energy_yesterday_ph[Energy.phase_count];
|
|
for (uint32_t i = 0; i < Energy.phase_count; i++) {
|
|
energy_yesterday_ph[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000;
|
|
|
|
active_power_sum += Energy.active_power[i];
|
|
}
|
|
|
|
bool energy_tariff = false;
|
|
float energy_usage[2];
|
|
float energy_return[2];
|
|
if (Settings->tariff[0][0] != Settings->tariff[1][0]) {
|
|
energy_usage[0] = (float)RtcSettings.energy_usage.usage1_kWhtotal / 100000; // Tariff1
|
|
energy_usage[1] = (float)RtcSettings.energy_usage.usage2_kWhtotal / 100000; // Tariff2
|
|
energy_return[0] = (float)RtcSettings.energy_usage.return1_kWhtotal / 100000; // Tariff1
|
|
energy_return[1] = (float)RtcSettings.energy_usage.return2_kWhtotal / 100000; // Tariff2
|
|
energy_tariff = true;
|
|
}
|
|
|
|
char value_chr[FLOATSZ * ENERGY_MAX_PHASES]; // Used by EnergyFormatIndex
|
|
char value2_chr[FLOATSZ * ENERGY_MAX_PHASES];
|
|
char value3_chr[FLOATSZ * ENERGY_MAX_PHASES];
|
|
|
|
if (json) {
|
|
bool show_energy_period = (0 == TasmotaGlobal.tele_period);
|
|
|
|
ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL_START_TIME "\":\"%s\",\"" D_JSON_TOTAL "\":%s"),
|
|
GetDateAndTime(DT_ENERGY).c_str(),
|
|
EnergyFormatSum(value_chr, Energy.total, Settings->flag2.energy_resolution, json));
|
|
|
|
if (energy_tariff) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_TOTAL D_CMND_TARIFF "\":%s"),
|
|
EnergyFormatIndex(value_chr, energy_usage, Settings->flag2.energy_resolution, json, 2));
|
|
}
|
|
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s"),
|
|
EnergyFormatSum(value_chr, energy_yesterday_ph, Settings->flag2.energy_resolution, json),
|
|
EnergyFormatSum(value2_chr, Energy.daily, Settings->flag2.energy_resolution, json));
|
|
|
|
/*
|
|
#if defined(SDM630_IMPORT) || defined(SDM72_IMPEXP)
|
|
if (!isnan(Energy.import_active[0])) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT_ACTIVE "\":%s"),
|
|
EnergyFormat(value_chr, Energy.import_active, Settings->flag2.energy_resolution, json));
|
|
if (energy_tariff) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT D_CMND_TARIFF "\":%s"),
|
|
EnergyFormatIndex(value_chr, energy_return, Settings->flag2.energy_resolution, json, 2));
|
|
}
|
|
}
|
|
#endif // SDM630_IMPORT || SDM72_IMPEXP
|
|
*/
|
|
|
|
if (!isnan(Energy.export_active[0])) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"),
|
|
EnergyFormat(value_chr, Energy.export_active, Settings->flag2.energy_resolution, json));
|
|
if (energy_tariff) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT D_CMND_TARIFF "\":%s"),
|
|
EnergyFormatIndex(value_chr, energy_return, Settings->flag2.energy_resolution, json, 2));
|
|
}
|
|
}
|
|
|
|
if (show_energy_period) {
|
|
float energy_period[Energy.phase_count];
|
|
for (uint32_t i = 0; i < Energy.phase_count; i++) {
|
|
energy_period[i] = (float)(RtcSettings.energy_kWhtoday_ph[i] - Energy.period[i]) / 100;
|
|
Energy.period[i] = RtcSettings.energy_kWhtoday_ph[i];
|
|
}
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_PERIOD "\":%s"),
|
|
EnergyFormat(value_chr, energy_period, Settings->flag2.wattage_resolution, json));
|
|
}
|
|
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_POWERUSAGE "\":%s"),
|
|
EnergyFormat(value_chr, Energy.active_power, Settings->flag2.wattage_resolution, json));
|
|
if (!Energy.type_dc) {
|
|
if (Energy.current_available && Energy.voltage_available) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_APPARENT_POWERUSAGE "\":%s,\"" D_JSON_REACTIVE_POWERUSAGE "\":%s,\"" D_JSON_POWERFACTOR "\":%s"),
|
|
EnergyFormat(value_chr, apparent_power, Settings->flag2.wattage_resolution, json),
|
|
EnergyFormat(value2_chr, reactive_power, Settings->flag2.wattage_resolution, json),
|
|
EnergyFormat(value3_chr, power_factor, 2, json));
|
|
}
|
|
if (!isnan(Energy.frequency[0])) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_FREQUENCY "\":%s"),
|
|
EnergyFormat(value_chr, Energy.frequency, Settings->flag2.frequency_resolution, json, Energy.frequency_common));
|
|
}
|
|
}
|
|
if (Energy.voltage_available) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_VOLTAGE "\":%s"),
|
|
EnergyFormat(value_chr, Energy.voltage, Settings->flag2.voltage_resolution, json, Energy.voltage_common));
|
|
}
|
|
if (Energy.current_available) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_CURRENT "\":%s"),
|
|
EnergyFormat(value_chr, Energy.current, Settings->flag2.current_resolution, json));
|
|
}
|
|
XnrgCall(FUNC_JSON_APPEND);
|
|
ResponseJsonEnd();
|
|
|
|
#ifdef USE_DOMOTICZ
|
|
if (show_energy_period) { // Only send if telemetry
|
|
char temp_chr[FLOATSZ];
|
|
if (Energy.voltage_available) {
|
|
dtostrfd(Energy.voltage[0], Settings->flag2.voltage_resolution, temp_chr);
|
|
DomoticzSensor(DZ_VOLTAGE, temp_chr); // Voltage
|
|
}
|
|
if (Energy.current_available) {
|
|
dtostrfd(Energy.current[0], Settings->flag2.current_resolution, temp_chr);
|
|
DomoticzSensor(DZ_CURRENT, temp_chr); // Current
|
|
}
|
|
dtostrfd(Energy.total_sum * 1000, 1, temp_chr);
|
|
DomoticzSensorPowerEnergy((int)active_power_sum, temp_chr); // PowerUsage, EnergyToday
|
|
|
|
char energy_usage_chr[2][FLOATSZ];
|
|
char energy_return_chr[2][FLOATSZ];
|
|
dtostrfd((float)RtcSettings.energy_usage.usage1_kWhtotal / 100, 1, energy_usage_chr[0]); // Tariff1
|
|
dtostrfd((float)RtcSettings.energy_usage.usage2_kWhtotal / 100, 1, energy_usage_chr[1]); // Tariff2
|
|
dtostrfd((float)RtcSettings.energy_usage.return1_kWhtotal / 100, 1, energy_return_chr[0]);
|
|
dtostrfd((float)RtcSettings.energy_usage.return2_kWhtotal / 100, 1, energy_return_chr[1]);
|
|
DomoticzSensorP1SmartMeter(energy_usage_chr[0], energy_usage_chr[1], energy_return_chr[0], energy_return_chr[1], (int)active_power_sum);
|
|
|
|
}
|
|
#endif // USE_DOMOTICZ
|
|
#ifdef USE_KNX
|
|
if (show_energy_period) {
|
|
if (Energy.voltage_available) {
|
|
KnxSensor(KNX_ENERGY_VOLTAGE, Energy.voltage[0]);
|
|
}
|
|
if (Energy.current_available) {
|
|
KnxSensor(KNX_ENERGY_CURRENT, Energy.current[0]);
|
|
}
|
|
KnxSensor(KNX_ENERGY_POWER, active_power_sum);
|
|
if (!Energy.type_dc) {
|
|
KnxSensor(KNX_ENERGY_POWERFACTOR, power_factor[0]);
|
|
}
|
|
KnxSensor(KNX_ENERGY_DAILY, Energy.daily_sum);
|
|
KnxSensor(KNX_ENERGY_TOTAL, Energy.total_sum);
|
|
KnxSensor(KNX_ENERGY_YESTERDAY, Energy.yesterday_sum);
|
|
}
|
|
#endif // USE_KNX
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
if (Energy.voltage_available) {
|
|
WSContentSend_PD(HTTP_SNS_VOLTAGE, EnergyFormat(value_chr, Energy.voltage, Settings->flag2.voltage_resolution, json, Energy.voltage_common));
|
|
}
|
|
if (!Energy.type_dc) {
|
|
if (!isnan(Energy.frequency[0])) {
|
|
WSContentSend_PD(PSTR("{s}" D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}"),
|
|
EnergyFormat(value_chr, Energy.frequency, Settings->flag2.frequency_resolution, json, Energy.frequency_common));
|
|
}
|
|
}
|
|
if (Energy.current_available) {
|
|
WSContentSend_PD(HTTP_SNS_CURRENT, EnergyFormat(value_chr, Energy.current, Settings->flag2.current_resolution, json));
|
|
}
|
|
WSContentSend_PD(HTTP_SNS_POWER, EnergyFormat(value_chr, Energy.active_power, Settings->flag2.wattage_resolution, json));
|
|
if (!Energy.type_dc) {
|
|
if (Energy.current_available && Energy.voltage_available) {
|
|
WSContentSend_PD(HTTP_ENERGY_SNS1, EnergyFormat(value_chr, apparent_power, Settings->flag2.wattage_resolution, json),
|
|
EnergyFormat(value2_chr, reactive_power, Settings->flag2.wattage_resolution, json),
|
|
EnergyFormat(value3_chr, power_factor, 2, json));
|
|
}
|
|
}
|
|
WSContentSend_PD(HTTP_ENERGY_SNS2, EnergyFormatSum(value_chr, Energy.daily, Settings->flag2.energy_resolution, json),
|
|
EnergyFormatSum(value2_chr, energy_yesterday_ph, Settings->flag2.energy_resolution, json),
|
|
EnergyFormatSum(value3_chr, Energy.total, Settings->flag2.energy_resolution, json));
|
|
if (!isnan(Energy.export_active[0])) {
|
|
WSContentSend_PD(HTTP_ENERGY_SNS3, EnergyFormat(value_chr, Energy.export_active, Settings->flag2.energy_resolution, json));
|
|
}
|
|
XnrgCall(FUNC_WEB_SENSOR);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Interface
|
|
\*********************************************************************************************/
|
|
|
|
bool Xdrv03(uint8_t function)
|
|
{
|
|
bool result = false;
|
|
|
|
if (FUNC_PRE_INIT == function) {
|
|
EnergyDrvInit();
|
|
}
|
|
else if (TasmotaGlobal.energy_driver) {
|
|
switch (function) {
|
|
case FUNC_LOOP:
|
|
XnrgCall(FUNC_LOOP);
|
|
break;
|
|
case FUNC_EVERY_250_MSECOND:
|
|
if (TasmotaGlobal.uptime > 4) {
|
|
XnrgCall(FUNC_EVERY_250_MSECOND);
|
|
}
|
|
break;
|
|
case FUNC_EVERY_SECOND:
|
|
XnrgCall(FUNC_EVERY_SECOND);
|
|
break;
|
|
case FUNC_SERIAL:
|
|
result = XnrgCall(FUNC_SERIAL);
|
|
break;
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
case FUNC_SET_POWER:
|
|
Energy.power_steady_counter = 2;
|
|
break;
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
case FUNC_COMMAND:
|
|
result = DecodeCommand(kEnergyCommands, EnergyCommand);
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool Xsns03(uint8_t function)
|
|
{
|
|
bool result = false;
|
|
|
|
if (TasmotaGlobal.energy_driver) {
|
|
switch (function) {
|
|
case FUNC_EVERY_SECOND:
|
|
EnergyEverySecond();
|
|
break;
|
|
case FUNC_JSON_APPEND:
|
|
EnergyShow(true);
|
|
break;
|
|
#ifdef USE_WEBSERVER
|
|
case FUNC_WEB_SENSOR:
|
|
EnergyShow(false);
|
|
break;
|
|
#endif // USE_WEBSERVER
|
|
case FUNC_SAVE_BEFORE_RESTART:
|
|
EnergySaveState();
|
|
break;
|
|
case FUNC_INIT:
|
|
EnergySnsInit();
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif // USE_ENERGY_SENSOR
|