Tasmota/tasmota/tasmota_xsns_sensor/xsns_07_sht1x.ino

215 lines
6.1 KiB
C++

/*
xsns_07_sht1x.ino - SHT1x temperature and sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_SHT
/*********************************************************************************************\
* SHT1x - Temperature and Humidity
*
* Reading temperature and humidity takes about 320 milliseconds!
* Source: Marinus vd Broek https://github.com/ESP8266nu/ESPEasy
*
* I2C Address: None and ruins I2C bus hence reinit I2C after each call
\*********************************************************************************************/
#define XSNS_07 7
#define XI2C_08 8 // See I2CDEVICES.md
enum {
SHT1X_CMD_MEASURE_TEMP = B00000011,
SHT1X_CMD_MEASURE_RH = B00000101,
SHT1X_CMD_SOFT_RESET = B00011110
};
struct {
float temperature = 0;
float humidity = 0;
int8_t sda_pin;
int8_t scl_pin;
uint8_t type = 0;
uint8_t valid = 0;
char types[6] = "SHT1X";
} Sht1x;
bool ShtReset(void) {
pinMode(Sht1x.sda_pin, INPUT_PULLUP);
pinMode(Sht1x.scl_pin, OUTPUT);
delay(11);
for (uint32_t i = 0; i < 9; i++) {
digitalWrite(Sht1x.scl_pin, HIGH);
digitalWrite(Sht1x.scl_pin, LOW);
}
bool success = ShtSendCommand(SHT1X_CMD_SOFT_RESET);
delay(11);
return success;
}
bool ShtSendCommand(const uint8_t cmd) {
pinMode(Sht1x.sda_pin, OUTPUT);
// Transmission Start sequence
digitalWrite(Sht1x.sda_pin, HIGH);
digitalWrite(Sht1x.scl_pin, HIGH);
digitalWrite(Sht1x.sda_pin, LOW);
digitalWrite(Sht1x.scl_pin, LOW);
digitalWrite(Sht1x.scl_pin, HIGH);
digitalWrite(Sht1x.sda_pin, HIGH);
digitalWrite(Sht1x.scl_pin, LOW);
// Send the command (address must be 000b)
TasShiftOut(Sht1x.sda_pin, Sht1x.scl_pin, MSBFIRST, cmd);
// Wait for ACK
bool ackerror = false;
digitalWrite(Sht1x.scl_pin, HIGH);
pinMode(Sht1x.sda_pin, INPUT_PULLUP);
if (digitalRead(Sht1x.sda_pin) != LOW) {
ackerror = true;
}
digitalWrite(Sht1x.scl_pin, LOW);
delayMicroseconds(1); // Give the sensor time to release the data line
if (digitalRead(Sht1x.sda_pin) != HIGH) {
ackerror = true;
}
if (ackerror) {
// Sht1x.type = 0;
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_SHT1 D_SENSOR_DID_NOT_ACK_COMMAND));
}
return (!ackerror);
}
bool ShtAwaitResult(void) {
// Maximum 320ms for 14 bit measurement
for (uint32_t i = 0; i < 16; i++) {
if (LOW == digitalRead(Sht1x.sda_pin)) {
return true;
}
delay(20);
}
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_SHT1 D_SENSOR_BUSY));
// Sht1x.type = 0;
return false;
}
int ShtReadData(void) {
int val = 0;
// Read most significant byte
val = TasShiftIn(Sht1x.sda_pin, Sht1x.scl_pin, 8);
val <<= 8;
// Send ACK
pinMode(Sht1x.sda_pin, OUTPUT);
digitalWrite(Sht1x.sda_pin, LOW);
digitalWrite(Sht1x.scl_pin, HIGH);
digitalWrite(Sht1x.scl_pin, LOW);
pinMode(Sht1x.sda_pin, INPUT_PULLUP);
// Read least significant byte
val |= TasShiftIn(Sht1x.sda_pin, Sht1x.scl_pin, 8);
// Keep DATA pin high to skip CRC
digitalWrite(Sht1x.scl_pin, HIGH);
digitalWrite(Sht1x.scl_pin, LOW);
return val;
}
bool ShtRead(void) {
if (Sht1x.valid) { Sht1x.valid--; }
if (!ShtReset()) { return false; }
if (!ShtSendCommand(SHT1X_CMD_MEASURE_TEMP)) { return false; }
if (!ShtAwaitResult()) { return false; }
float tempRaw = ShtReadData();
if (!ShtSendCommand(SHT1X_CMD_MEASURE_RH)) { return false; }
if (!ShtAwaitResult()) { return false; }
float humRaw = ShtReadData();
// Temperature conversion coefficients from SHT1X datasheet for version 4
const float d1 = -39.7f; // 3.5V
const float d2 = 0.01f; // 14-bit
Sht1x.temperature = d1 + (tempRaw * d2);
const float c1 = -2.0468f;
const float c2 = 0.0367f;
const float c3 = -1.5955E-6f;
const float t1 = 0.01f;
const float t2 = 0.00008f;
float rhLinear = c1 + c2 * humRaw + c3 * humRaw * humRaw;
Sht1x.humidity = (Sht1x.temperature - 25) * (t1 + t2 * humRaw) + rhLinear;
Sht1x.temperature = ConvertTemp(Sht1x.temperature);
Sht1x.humidity = ConvertHumidity(Sht1x.humidity);
Sht1x.valid = SENSOR_MAX_MISS;
return true;
}
/********************************************************************************************/
void ShtDetect(void) {
Sht1x.sda_pin = Pin(GPIO_I2C_SDA);
Sht1x.scl_pin = Pin(GPIO_I2C_SCL);
if (ShtRead()) {
Sht1x.type = 1;
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_I2C D_SHT1X_FOUND));
}
I2cBegin(Sht1x.sda_pin, Sht1x.scl_pin); // Reinit I2C bus
}
void ShtEverySecond(void) {
if (!(TasmotaGlobal.uptime %4)) { // Every 4 seconds
// 344mS
if (!ShtRead()) {
AddLogMissed(Sht1x.types, Sht1x.valid);
}
I2cBegin(Sht1x.sda_pin, Sht1x.scl_pin); // Reinit I2C bus
}
}
void ShtShow(bool json) {
if (Sht1x.valid) {
TempHumDewShow(json, (0 == TasmotaGlobal.tele_period), Sht1x.types, Sht1x.temperature, Sht1x.humidity);
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns07(uint32_t function) {
if (!I2cEnabled(XI2C_08)) { return false; }
bool result = false;
if (FUNC_INIT == function) {
ShtDetect();
}
else if (Sht1x.type) {
switch (function) {
case FUNC_EVERY_SECOND:
ShtEverySecond();
break;
case FUNC_JSON_APPEND:
ShtShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
ShtShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_SHT
#endif // USE_I2C