Tasmota/sonoff/xsns_bmp.ino

490 lines
16 KiB
C++

/*
xsns_bmp.ino - BMP pressure, temperature and humidity sensor support for Sonoff-Tasmota
Copyright (C) 2017 Heiko Krupp and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_BMP
/*********************************************************************************************\
* BMP085, BMP180, BMP280, BME280 - Pressure and Temperature and Humidy (BME280 only)
*
* Source: Heiko Krupp and Adafruit Industries
\*********************************************************************************************/
#define BMP_ADDR 0x77
#define BMP180_CHIPID 0x55
#define BMP280_CHIPID 0x58
#define BME280_CHIPID 0x60
#define BMP_REGISTER_CHIPID 0xD0
uint8_t bmpaddr;
uint8_t bmptype = 0;
char bmpstype[7];
/*********************************************************************************************\
* BMP085 and BME180
*
* Programmer : Heiko Krupp with changes from Theo Arends
\*********************************************************************************************/
#define BMP180_REG_CONTROL 0xF4
#define BMP180_REG_RESULT 0xF6
#define BMP180_TEMPERATURE 0x2E
#define BMP180_PRESSURE3 0xF4 // Max. oversampling -> OSS = 3
#define BMP180_AC1 0xAA
#define BMP180_AC2 0xAC
#define BMP180_AC3 0xAE
#define BMP180_AC4 0xB0
#define BMP180_AC5 0xB2
#define BMP180_AC6 0xB4
#define BMP180_VB1 0xB6
#define BMP180_VB2 0xB8
#define BMP180_MB 0xBA
#define BMP180_MC 0xBC
#define BMP180_MD 0xBE
#define BMP180_OSS 3
int16_t cal_ac1;
int16_t cal_ac2;
int16_t cal_ac3;
int16_t cal_b1;
int16_t cal_b2;
int16_t cal_mc;
int16_t cal_md;
uint16_t cal_ac4;
uint16_t cal_ac5;
uint16_t cal_ac6;
int32_t bmp180_b5 = 0;
boolean bmp180_calibration()
{
cal_ac1 = i2c_read16(bmpaddr, BMP180_AC1);
cal_ac2 = i2c_read16(bmpaddr, BMP180_AC2);
cal_ac3 = i2c_read16(bmpaddr, BMP180_AC3);
cal_ac4 = i2c_read16(bmpaddr, BMP180_AC4);
cal_ac5 = i2c_read16(bmpaddr, BMP180_AC5);
cal_ac6 = i2c_read16(bmpaddr, BMP180_AC6);
cal_b1 = i2c_read16(bmpaddr, BMP180_VB1);
cal_b2 = i2c_read16(bmpaddr, BMP180_VB2);
cal_mc = i2c_read16(bmpaddr, BMP180_MC);
cal_md = i2c_read16(bmpaddr, BMP180_MD);
// Check for Errors in calibration data. Value never is 0x0000 or 0xFFFF
if (!cal_ac1 | !cal_ac2 | !cal_ac3 | !cal_ac4 | !cal_ac5 | !cal_ac6 | !cal_b1 | !cal_b2 | !cal_mc | !cal_md) {
return false;
}
if ((cal_ac1 == 0xFFFF)|
(cal_ac2 == 0xFFFF)|
(cal_ac3 == 0xFFFF)|
(cal_ac4 == 0xFFFF)|
(cal_ac5 == 0xFFFF)|
(cal_ac6 == 0xFFFF)|
(cal_b1 == 0xFFFF)|
(cal_b2 == 0xFFFF)|
(cal_mc == 0xFFFF)|
(cal_md == 0xFFFF)) {
return false;
}
return true;
}
double bmp180_readTemperature()
{
i2c_write8(bmpaddr, BMP180_REG_CONTROL, BMP180_TEMPERATURE);
delay(5); // 5ms conversion time
int ut = i2c_read16(bmpaddr, BMP180_REG_RESULT);
int32_t x1 = (ut - (int32_t)cal_ac6) * ((int32_t)cal_ac5) >> 15;
int32_t x2 = ((int32_t)cal_mc << 11) / (x1+(int32_t)cal_md);
bmp180_b5=x1+x2;
return ((bmp180_b5+8)>>4)/10.0;
}
double bmp180_readPressure()
{
int32_t p;
uint8_t msb;
uint8_t lsb;
uint8_t xlsb;
i2c_write8(bmpaddr, BMP180_REG_CONTROL, BMP180_PRESSURE3); // Highest resolution
delay(2 + (4 << BMP180_OSS)); // 26ms conversion time at ultra high resolution
uint32_t up = i2c_read24(bmpaddr, BMP180_REG_RESULT);
up >>= (8 - BMP180_OSS);
int32_t b6 = bmp180_b5 - 4000;
int32_t x1 = ((int32_t)cal_b2 * ( (b6 * b6)>>12 )) >> 11;
int32_t x2 = ((int32_t)cal_ac2 * b6) >> 11;
int32_t x3 = x1 + x2;
int32_t b3 = ((((int32_t)cal_ac1*4 + x3) << BMP180_OSS) + 2)>>2;
x1 = ((int32_t)cal_ac3 * b6) >> 13;
x2 = ((int32_t)cal_b1 * ((b6 * b6) >> 12)) >> 16;
x3 = ((x1 + x2) + 2) >> 2;
uint32_t b4 = ((uint32_t)cal_ac4 * (uint32_t)(x3 + 32768)) >> 15;
uint32_t b7 = ((uint32_t)up - b3) * (uint32_t)( 50000UL >> BMP180_OSS);
if (b7 < 0x80000000) {
p = (b7 * 2) / b4;
} else {
p = (b7 / b4) * 2;
}
x1 = (p >> 8) * (p >> 8);
x1 = (x1 * 3038) >> 16;
x2 = (-7357 * p) >> 16;
p += ((x1 + x2 + (int32_t)3791)>>4);
return p/100.0; // convert to mbar
}
double bmp180_calcSealevelPressure(float pAbs, float altitude_meters)
{
double pressure = pAbs*100.0;
return (double)(pressure / pow(1.0-altitude_meters/44330, 5.255))/100.0;
}
/*********************************************************************************************\
* BMP280 and BME280
*
* Programmer : BMP280/BME280 Datasheet and Adafruit with changes by Theo Arends
\*********************************************************************************************/
#define BME280_REGISTER_CONTROLHUMID 0xF2
#define BME280_REGISTER_CONTROL 0xF4
#define BME280_REGISTER_PRESSUREDATA 0xF7
#define BME280_REGISTER_TEMPDATA 0xFA
#define BME280_REGISTER_HUMIDDATA 0xFD
#define BME280_REGISTER_DIG_T1 0x88
#define BME280_REGISTER_DIG_T2 0x8A
#define BME280_REGISTER_DIG_T3 0x8C
#define BME280_REGISTER_DIG_P1 0x8E
#define BME280_REGISTER_DIG_P2 0x90
#define BME280_REGISTER_DIG_P3 0x92
#define BME280_REGISTER_DIG_P4 0x94
#define BME280_REGISTER_DIG_P5 0x96
#define BME280_REGISTER_DIG_P6 0x98
#define BME280_REGISTER_DIG_P7 0x9A
#define BME280_REGISTER_DIG_P8 0x9C
#define BME280_REGISTER_DIG_P9 0x9E
#define BME280_REGISTER_DIG_H1 0xA1
#define BME280_REGISTER_DIG_H2 0xE1
#define BME280_REGISTER_DIG_H3 0xE3
#define BME280_REGISTER_DIG_H4 0xE4
#define BME280_REGISTER_DIG_H5 0xE5
#define BME280_REGISTER_DIG_H6 0xE7
struct bme280_calib_data
{
uint16_t dig_T1;
int16_t dig_T2;
int16_t dig_T3;
uint16_t dig_P1;
int16_t dig_P2;
int16_t dig_P3;
int16_t dig_P4;
int16_t dig_P5;
int16_t dig_P6;
int16_t dig_P7;
int16_t dig_P8;
int16_t dig_P9;
uint8_t dig_H1;
int16_t dig_H2;
uint8_t dig_H3;
int16_t dig_H4;
int16_t dig_H5;
int8_t dig_H6;
} _bme280_calib;
int32_t t_fine;
boolean bmp280_calibrate()
{
// if (i2c_read8(bmpaddr, BMP_REGISTER_CHIPID) != BMP280_CHIPID) return false;
_bme280_calib.dig_T1 = i2c_read16_LE(bmpaddr, BME280_REGISTER_DIG_T1);
_bme280_calib.dig_T2 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_T2);
_bme280_calib.dig_T3 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_T3);
_bme280_calib.dig_P1 = i2c_read16_LE(bmpaddr, BME280_REGISTER_DIG_P1);
_bme280_calib.dig_P2 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P2);
_bme280_calib.dig_P3 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P3);
_bme280_calib.dig_P4 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P4);
_bme280_calib.dig_P5 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P5);
_bme280_calib.dig_P6 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P6);
_bme280_calib.dig_P7 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P7);
_bme280_calib.dig_P8 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P8);
_bme280_calib.dig_P9 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P9);
// i2c_write8(bmpaddr, BME280_REGISTER_CONTROL, 0x3F); // Temp 1x oversampling, Press 16x oversampling, normal mode (Adafruit)
i2c_write8(bmpaddr, BME280_REGISTER_CONTROL, 0xB7); // 16x oversampling, normal mode (Adafruit)
return true;
}
boolean bme280_calibrate()
{
// if (i2c_read8(bmpaddr, BMP_REGISTER_CHIPID) != BME280_CHIPID) return false;
_bme280_calib.dig_T1 = i2c_read16_LE(bmpaddr, BME280_REGISTER_DIG_T1);
_bme280_calib.dig_T2 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_T2);
_bme280_calib.dig_T3 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_T3);
_bme280_calib.dig_P1 = i2c_read16_LE(bmpaddr, BME280_REGISTER_DIG_P1);
_bme280_calib.dig_P2 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P2);
_bme280_calib.dig_P3 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P3);
_bme280_calib.dig_P4 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P4);
_bme280_calib.dig_P5 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P5);
_bme280_calib.dig_P6 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P6);
_bme280_calib.dig_P7 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P7);
_bme280_calib.dig_P8 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P8);
_bme280_calib.dig_P9 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_P9);
_bme280_calib.dig_H1 = i2c_read8(bmpaddr, BME280_REGISTER_DIG_H1);
_bme280_calib.dig_H2 = i2c_readS16_LE(bmpaddr, BME280_REGISTER_DIG_H2);
_bme280_calib.dig_H3 = i2c_read8(bmpaddr, BME280_REGISTER_DIG_H3);
_bme280_calib.dig_H4 = (i2c_read8(bmpaddr, BME280_REGISTER_DIG_H4) << 4) | (i2c_read8(bmpaddr, BME280_REGISTER_DIG_H4 + 1) & 0xF);
_bme280_calib.dig_H5 = (i2c_read8(bmpaddr, BME280_REGISTER_DIG_H5 + 1) << 4) | (i2c_read8(bmpaddr, BME280_REGISTER_DIG_H5) >> 4);
_bme280_calib.dig_H6 = (int8_t)i2c_read8(bmpaddr, BME280_REGISTER_DIG_H6);
// Set before CONTROL_meas (DS 5.4.3)
i2c_write8(bmpaddr, BME280_REGISTER_CONTROLHUMID, 0x05); // 16x oversampling (Adafruit)
i2c_write8(bmpaddr, BME280_REGISTER_CONTROL, 0xB7); // 16x oversampling, normal mode (Adafruit)
return true;
}
double bmp280_readTemperature(void)
{
int32_t var1;
int32_t var2;
int32_t adc_T = i2c_read24(bmpaddr, BME280_REGISTER_TEMPDATA);
adc_T >>= 4;
var1 = ((((adc_T>>3) - ((int32_t)_bme280_calib.dig_T1 <<1))) * ((int32_t)_bme280_calib.dig_T2)) >> 11;
var2 = (((((adc_T>>4) - ((int32_t)_bme280_calib.dig_T1)) * ((adc_T>>4) - ((int32_t)_bme280_calib.dig_T1))) >> 12) *
((int32_t)_bme280_calib.dig_T3)) >> 14;
t_fine = var1 + var2;
double T = (t_fine * 5 + 128) >> 8;
return T / 100.0;
}
double bmp280_readPressure(void)
{
int64_t var1;
int64_t var2;
int64_t p;
// Must be done first to get the t_fine variable set up
// bmp280_readTemperature();
int32_t adc_P = i2c_read24(bmpaddr, BME280_REGISTER_PRESSUREDATA);
adc_P >>= 4;
var1 = ((int64_t)t_fine) - 128000;
var2 = var1 * var1 * (int64_t)_bme280_calib.dig_P6;
var2 = var2 + ((var1 * (int64_t)_bme280_calib.dig_P5) << 17);
var2 = var2 + (((int64_t)_bme280_calib.dig_P4) << 35);
var1 = ((var1 * var1 * (int64_t)_bme280_calib.dig_P3) >> 8) + ((var1 * (int64_t)_bme280_calib.dig_P2) << 12);
var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)_bme280_calib.dig_P1) >> 33;
if (0 == var1) {
return 0; // avoid exception caused by division by zero
}
p = 1048576 - adc_P;
p = (((p << 31) - var2) * 3125) / var1;
var1 = (((int64_t)_bme280_calib.dig_P9) * (p >> 13) * (p >> 13)) >> 25;
var2 = (((int64_t)_bme280_calib.dig_P8) * p) >> 19;
p = ((p + var1 + var2) >> 8) + (((int64_t)_bme280_calib.dig_P7) << 4);
return (double)p / 25600.0;
}
double bme280_readHumidity(void)
{
int32_t v_x1_u32r;
// Must be done first to get the t_fine variable set up
// bmp280_readTemperature();
int32_t adc_H = i2c_read16(bmpaddr, BME280_REGISTER_HUMIDDATA);
v_x1_u32r = (t_fine - ((int32_t)76800));
v_x1_u32r = (((((adc_H << 14) - (((int32_t)_bme280_calib.dig_H4) << 20) -
(((int32_t)_bme280_calib.dig_H5) * v_x1_u32r)) + ((int32_t)16384)) >> 15) *
(((((((v_x1_u32r * ((int32_t)_bme280_calib.dig_H6)) >> 10) *
(((v_x1_u32r * ((int32_t)_bme280_calib.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) +
((int32_t)2097152)) * ((int32_t)_bme280_calib.dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) *
((int32_t)_bme280_calib.dig_H1)) >> 4));
v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r;
v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r;
double h = (v_x1_u32r >> 12);
return h / 1024.0;
}
/*********************************************************************************************\
* BMP
\*********************************************************************************************/
double bmp_readTemperature(void)
{
double t = NAN;
switch (bmptype) {
case BMP180_CHIPID:
t = bmp180_readTemperature();
break;
case BMP280_CHIPID:
case BME280_CHIPID:
t = bmp280_readTemperature();
}
if (!isnan(t)) {
t = convertTemp(t);
return t;
}
return 0;
}
double bmp_readPressure(void)
{
switch (bmptype) {
case BMP180_CHIPID:
return bmp180_readPressure();
case BMP280_CHIPID:
case BME280_CHIPID:
return bmp280_readPressure();
}
return 0;
}
double bmp_readHumidity(void)
{
switch (bmptype) {
case BMP180_CHIPID:
case BMP280_CHIPID:
break;
case BME280_CHIPID:
return bme280_readHumidity();
}
return 0;
}
boolean bmp_detect()
{
if (bmptype) {
return true;
}
boolean success = false;
bmpaddr = BMP_ADDR;
bmptype = i2c_read8(bmpaddr, BMP_REGISTER_CHIPID);
if (!bmptype) {
bmpaddr--;
bmptype = i2c_read8(bmpaddr, BMP_REGISTER_CHIPID);
}
strcpy_P(bmpstype, PSTR("BMP"));
switch (bmptype) {
case BMP180_CHIPID:
success = bmp180_calibration();
strcpy_P(bmpstype, PSTR("BMP180"));
break;
case BMP280_CHIPID:
success = bmp280_calibrate();
strcpy_P(bmpstype, PSTR("BMP280"));
break;
case BME280_CHIPID:
success = bme280_calibrate();
strcpy_P(bmpstype, PSTR("BME280"));
}
if (success) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_I2C "%s " D_FOUND_AT " 0x%x"), bmpstype, bmpaddr);
addLog(LOG_LEVEL_DEBUG);
} else {
bmptype = 0;
}
return success;
}
/*********************************************************************************************\
* Presentation
\*********************************************************************************************/
void bmp_mqttPresent(uint8_t* djson)
{
if (!bmptype) {
return;
}
char stemp1[10];
char stemp2[10];
char stemp3[10];
double t = bmp_readTemperature();
double p = bmp_readPressure();
double h = bmp_readHumidity();
dtostrfd(t, sysCfg.flag.temperature_resolution, stemp1);
dtostrfd(p, sysCfg.flag.pressure_resolution, stemp2);
dtostrfd(h, sysCfg.flag.humidity_resolution, stemp3);
if (!strcmp(bmpstype,"BME280")) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s, \"%s\":{\"" D_TEMPERATURE "\":%s, \"" D_HUMIDITY "\":%s, \"" D_PRESSURE "\":%s}"),
mqtt_data, bmpstype, stemp1, stemp3, stemp2);
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s, \"%s\":{\"" D_TEMPERATURE "\":%s, \"" D_PRESSURE "\":%s}"),
mqtt_data, bmpstype, stemp1, stemp2);
}
*djson = 1;
#ifdef USE_DOMOTICZ
domoticz_sensor3(stemp1, stemp3, stemp2);
#endif // USE_DOMOTICZ
}
#ifdef USE_WEBSERVER
String bmp_webPresent()
{
String page = "";
if (bmptype) {
char stemp[10];
char sensor[80];
double t_bmp = bmp_readTemperature();
double p_bmp = bmp_readPressure();
double h_bmp = bmp_readHumidity();
dtostrfi(t_bmp, sysCfg.flag.temperature_resolution, stemp);
snprintf_P(sensor, sizeof(sensor), HTTP_SNS_TEMP, bmpstype, stemp, tempUnit());
page += sensor;
if (!strcmp(bmpstype,"BME280")) {
dtostrfi(h_bmp, sysCfg.flag.humidity_resolution, stemp);
snprintf_P(sensor, sizeof(sensor), HTTP_SNS_HUM, bmpstype, stemp);
page += sensor;
}
dtostrfi(p_bmp, sysCfg.flag.pressure_resolution, stemp);
snprintf_P(sensor, sizeof(sensor), HTTP_SNS_PRESSURE, bmpstype, stemp);
page += sensor;
}
return page;
}
#endif // USE_WEBSERVER
#endif // USE_BMP
#endif // USE_I2C