Tasmota/tasmota/xsns_02_analog.ino

450 lines
15 KiB
C++

/*
xsns_02_analog.ino - ESP8266 ADC support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef USE_ADC_VCC
/*********************************************************************************************\
* ADC support
\*********************************************************************************************/
#define XSNS_02 2
#define TO_CELSIUS(x) ((x) - 273.15)
#define TO_KELVIN(x) ((x) + 273.15)
// Parameters for equation
#define ANALOG_V33 3.3 // ESP8266 Analog voltage
#define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celcius in Kelvin (= 298.15)
// Shelly 2.5 NTC Thermistor
// 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd
// |
// ADC0
#define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor
#define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance
#define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient
// LDR parameters
// 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd
// |
// ADC0
#define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor
#define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental
#define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental
// CT Based Apparrent Power Measurement Parameters
// 3V3 --- R1 ----v--- R1 --- Gnd
// |
// CT+ CT-
// |
// ADC0
// Default settings for a 20A/1V Current Transformer.
// Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER
#define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use
#define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..1023 to RMS current in Amps. Value of 100000 corresponds to 1
#define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V
#define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total
struct {
float temperature = 0;
float current = 0;
float energy = 0;
uint32_t previous_millis = 0;
uint16_t last_value = 0;
} Adc;
void AdcInit(void)
{
if ((Settings.adc_param_type != my_adc0) || (Settings.adc_param1 > 1000000)) {
if (ADC0_TEMP == my_adc0) {
// Default Shelly 2.5 and 1PM parameters
Settings.adc_param_type = ADC0_TEMP;
Settings.adc_param1 = ANALOG_NTC_BRIDGE_RESISTANCE;
Settings.adc_param2 = ANALOG_NTC_RESISTANCE;
Settings.adc_param3 = ANALOG_NTC_B_COEFFICIENT * 10000;
}
else if (ADC0_LIGHT == my_adc0) {
Settings.adc_param_type = ADC0_LIGHT;
Settings.adc_param1 = ANALOG_LDR_BRIDGE_RESISTANCE;
Settings.adc_param2 = ANALOG_LDR_LUX_CALC_SCALAR;
Settings.adc_param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000;
}
else if (ADC0_RANGE == my_adc0) {
Settings.adc_param_type = ADC0_RANGE;
Settings.adc_param1 = 0;
Settings.adc_param2 = 1023;
Settings.adc_param3 = 0;
Settings.adc_param4 = 100;
}
else if (ADC0_CT_POWER == my_adc0) {
Settings.adc_param_type = ADC0_CT_POWER;
Settings.adc_param1 = ANALOG_CT_FLAGS; //(uint32_t) 0
Settings.adc_param2 = ANALOG_CT_MULTIPLIER; //(uint32_t) 100000
Settings.adc_param3 = ANALOG_CT_VOLTAGE; //(int) 10
}
}
}
uint16_t AdcRead(uint8_t factor)
{
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 << factor;
uint16_t analog = 0;
for (uint32_t i = 0; i < samples; i++) {
analog += analogRead(A0);
delay(1);
}
analog >>= factor;
return analog;
}
#ifdef USE_RULES
void AdcEvery250ms(void)
{
if (ADC0_INPUT == my_adc0) {
uint16_t new_value = AdcRead(5);
if ((new_value < Adc.last_value -10) || (new_value > Adc.last_value +10)) {
Adc.last_value = new_value;
uint16_t value = Adc.last_value / 10;
Response_P(PSTR("{\"ANALOG\":{\"A0div10\":%d}}"), (value > 99) ? 100 : value);
XdrvRulesProcess();
}
}
}
#endif // USE_RULES
uint16_t AdcGetLux(void)
{
int adc = AdcRead(2);
// Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
double resistorVoltage = ((double)adc / 1023) * ANALOG_V33;
double ldrVoltage = ANALOG_V33 - resistorVoltage;
double ldrResistance = ldrVoltage / resistorVoltage * (double)Settings.adc_param1;
double ldrLux = (double)Settings.adc_param2 * FastPrecisePow(ldrResistance, (double)Settings.adc_param3 / 10000);
return (uint16_t)ldrLux;
}
uint16_t AdcGetRange(void)
{
// formula for calibration: value, fromLow, fromHigh, toLow, toHigh
// Example: 514, 632, 236, 0, 100
// int( ((<param2> - <analog-value>) / (<param2> - <param1>) ) * (<param3> - <param4>) ) + <param4> )
int adc = AdcRead(2);
double adcrange = ( ((double)Settings.adc_param2 - (double)adc) / ( ((double)Settings.adc_param2 - (double)Settings.adc_param1)) * ((double)Settings.adc_param3 - (double)Settings.adc_param4) + (double)Settings.adc_param4 );
return (uint16_t)adcrange;
}
void AdcGetCurrentPower(uint8_t factor)
{
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 << factor;
uint16_t analog = 0;
uint16_t analog_min = 1023;
uint16_t analog_max = 0;
if (0 == Settings.adc_param1) {
for (uint32_t i = 0; i < samples; i++) {
analog = analogRead(A0);
if (analog < analog_min) {
analog_min = analog;
}
if (analog > analog_max) {
analog_max = analog;
}
delay(1);
}
Adc.current = (float)(analog_max-analog_min) * ((float)(Settings.adc_param2) / 100000);
}
else {
analog = AdcRead(5);
if (analog > Settings.adc_param1) {
Adc.current = ((float)(analog) - (float)Settings.adc_param1) * ((float)(Settings.adc_param2) / 100000);
}
else {
Adc.current = 0;
}
}
float power = Adc.current * (float)(Settings.adc_param3) / 10;
uint32_t current_millis = millis();
Adc.energy = Adc.energy + ((power * (current_millis - Adc.previous_millis)) / 3600000000);
Adc.previous_millis = current_millis;
}
void AdcEverySecond(void)
{
if (ADC0_TEMP == my_adc0) {
int adc = AdcRead(2);
// Steinhart-Hart equation for thermistor as temperature sensor
double Rt = (adc * Settings.adc_param1) / (1024.0 * ANALOG_V33 - (double)adc);
double BC = (double)Settings.adc_param3 / 10000;
double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Settings.adc_param2));
Adc.temperature = ConvertTemp(TO_CELSIUS(T));
}
else if (ADC0_CT_POWER == my_adc0) {
AdcGetCurrentPower(5);
}
}
void AdcShow(bool json)
{
if (ADC0_INPUT == my_adc0) {
uint16_t analog = AdcRead(5);
if (json) {
ResponseAppend_P(PSTR(",\"ANALOG\":{\"A0\":%d}"), analog);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_ANALOG, "", 0, analog);
#endif // USE_WEBSERVER
}
}
else if (ADC0_TEMP == my_adc0) {
char temperature[33];
dtostrfd(Adc.temperature, Settings.flag2.temperature_resolution, temperature);
if (json) {
ResponseAppend_P(JSON_SNS_TEMP, "ANALOG", temperature);
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzSensor(DZ_TEMP, temperature);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if (0 == tele_period) {
KnxSensor(KNX_TEMPERATURE, Adc.temperature);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, "", temperature, TempUnit());
#endif // USE_WEBSERVER
}
}
else if (ADC0_LIGHT == my_adc0) {
uint16_t adc_light = AdcGetLux();
if (json) {
ResponseAppend_P(JSON_SNS_ILLUMINANCE, "ANALOG", adc_light);
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzSensor(DZ_ILLUMINANCE, adc_light);
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, "", adc_light);
#endif // USE_WEBSERVER
}
}
else if (ADC0_RANGE == my_adc0) {
uint16_t adc_range = AdcGetRange();
if (json) {
ResponseAppend_P(JSON_SNS_RANGE, "ANALOG", adc_range);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_RANGE, "", adc_range);
#endif // USE_WEBSERVER
}
}
else if (ADC0_CT_POWER == my_adc0) {
AdcGetCurrentPower(5);
float voltage = (float)(Settings.adc_param3) / 10;
char voltage_chr[FLOATSZ];
dtostrfd(voltage, Settings.flag2.voltage_resolution, voltage_chr);
char current_chr[FLOATSZ];
dtostrfd(Adc.current, Settings.flag2.current_resolution, current_chr);
char power_chr[FLOATSZ];
dtostrfd(voltage * Adc.current, Settings.flag2.wattage_resolution, power_chr);
char energy_chr[FLOATSZ];
dtostrfd(Adc.energy, Settings.flag2.energy_resolution, energy_chr);
if (json) {
ResponseAppend_P(PSTR(",\"ANALOG\":{\"" D_JSON_ENERGY "\":%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"),
energy_chr, power_chr, voltage_chr, current_chr);
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzSensor(DZ_POWER_ENERGY, power_chr);
DomoticzSensor(DZ_VOLTAGE, voltage_chr);
DomoticzSensor(DZ_CURRENT, current_chr);
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_VOLTAGE, voltage_chr);
WSContentSend_PD(HTTP_SNS_CURRENT, current_chr);
WSContentSend_PD(HTTP_SNS_POWER, power_chr);
WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, energy_chr);
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
const char kAdcCommands[] PROGMEM = "|" // No prefix
D_CMND_ADC "|" D_CMND_ADCS "|" D_CMND_ADCPARAM;
void (* const AdcCommand[])(void) PROGMEM = {
&CmndAdc, &CmndAdcs, &CmndAdcParam };
void CmndAdc(void)
{
if (ValidAdc() && (XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < ADC0_END)) {
Settings.my_adc0 = XdrvMailbox.payload;
restart_flag = 2;
}
char stemp1[TOPSZ];
Response_P(PSTR("{\"" D_CMND_ADC "0\":{\"%d\":\"%s\"}}"), Settings.my_adc0, GetTextIndexed(stemp1, sizeof(stemp1), Settings.my_adc0, kAdc0Names));
}
void CmndAdcs(void)
{
Response_P(PSTR("{\"" D_CMND_ADCS "\":{"));
bool jsflg = false;
char stemp1[TOPSZ];
for (uint32_t i = 0; i < ADC0_END; i++) {
if (jsflg) {
ResponseAppend_P(PSTR(","));
}
jsflg = true;
ResponseAppend_P(PSTR("\"%d\":\"%s\""), i, GetTextIndexed(stemp1, sizeof(stemp1), i, kAdc0Names));
}
ResponseJsonEndEnd();
}
void CmndAdcParam(void)
{
if (XdrvMailbox.data_len) {
if ((ADC0_TEMP == XdrvMailbox.payload) ||
(ADC0_LIGHT == XdrvMailbox.payload) ||
(ADC0_RANGE == XdrvMailbox.payload) ||
(ADC0_CT_POWER == XdrvMailbox.payload)) {
if (strstr(XdrvMailbox.data, ",") != nullptr) { // Process parameter entry
char sub_string[XdrvMailbox.data_len +1];
// AdcParam 2, 32000, 10000, 3350
// AdcParam 3, 10000, 12518931, -1.405
// AdcParam 6, 0, 1023, 0, 100
Settings.adc_param_type = XdrvMailbox.payload;
Settings.adc_param1 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
Settings.adc_param2 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 3), nullptr, 10);
if (ADC0_RANGE == XdrvMailbox.payload) {
Settings.adc_param3 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 4), nullptr, 10));
Settings.adc_param4 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 5), nullptr, 10));
} else {
Settings.adc_param3 = (int)(CharToFloat(subStr(sub_string, XdrvMailbox.data, ",", 4)) * 10000);
}
if (ADC0_CT_POWER == XdrvMailbox.payload) {
if (((1 == Settings.adc_param1) & CT_FLAG_ENERGY_RESET) > 0) {
Adc.energy = 0;
Settings.adc_param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag
}
}
} else { // Set default values based on current adc type
// AdcParam 2
// AdcParam 3
// AdcParam 6
// AdcParam 7
Settings.adc_param_type = 0;
AdcInit();
}
}
}
// AdcParam
Response_P(PSTR("{\"" D_CMND_ADCPARAM "\":[%d,%d,%d"), Settings.adc_param_type, Settings.adc_param1, Settings.adc_param2);
if (ADC0_RANGE == my_adc0) {
ResponseAppend_P(PSTR(",%d,%d"), Settings.adc_param3, Settings.adc_param4);
} else {
int value = Settings.adc_param3;
uint8_t precision;
for (precision = 4; precision > 0; precision--) {
if (value % 10) { break; }
value /= 10;
}
char param3[33];
dtostrfd(((double)Settings.adc_param3)/10000, precision, param3);
ResponseAppend_P(PSTR(",%s"), param3);
}
ResponseAppend_P(PSTR("]}"));
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns02(uint8_t function)
{
bool result = false;
switch (function) {
case FUNC_COMMAND:
result = DecodeCommand(kAdcCommands, AdcCommand);
break;
default:
if ((ADC0_INPUT == my_adc0) ||
(ADC0_TEMP == my_adc0) ||
(ADC0_LIGHT == my_adc0) ||
(ADC0_RANGE == my_adc0) ||
(ADC0_CT_POWER == my_adc0)) {
switch (function) {
#ifdef USE_RULES
case FUNC_EVERY_250_MSECOND:
AdcEvery250ms();
break;
#endif // USE_RULES
case FUNC_EVERY_SECOND:
AdcEverySecond();
break;
case FUNC_INIT:
AdcInit();
break;
case FUNC_JSON_APPEND:
AdcShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
AdcShow(0);
break;
#endif // USE_WEBSERVER
}
}
}
return result;
}
#endif // USE_ADC_VCC