Tasmota/tasmota/settings.ino

1246 lines
45 KiB
C++

/*
settings.ino - user settings for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*********************************************************************************************\
* RTC memory
\*********************************************************************************************/
const uint16_t RTC_MEM_VALID = 0xA55A;
uint32_t rtc_settings_crc = 0;
uint32_t GetRtcSettingsCrc(void) {
uint32_t crc = 0;
uint8_t *bytes = (uint8_t*)&RtcSettings;
for (uint32_t i = 0; i < sizeof(RtcSettings); i++) {
crc += bytes[i]*(i+1);
}
return crc;
}
void RtcSettingsSave(void) {
RtcSettings.baudrate = Settings.baudrate * 300;
if (GetRtcSettingsCrc() != rtc_settings_crc) {
RtcSettings.valid = RTC_MEM_VALID;
#ifdef ESP8266
ESP.rtcUserMemoryWrite(100, (uint32_t*)&RtcSettings, sizeof(RtcSettings));
#endif // ESP8266
#ifdef ESP32
RtcDataSettings = RtcSettings;
#endif // ESP32
rtc_settings_crc = GetRtcSettingsCrc();
}
}
bool RtcSettingsLoad(uint32_t update) {
#ifdef ESP8266
ESP.rtcUserMemoryRead(100, (uint32_t*)&RtcSettings, sizeof(RtcSettings)); // 0x290
#endif // ESP8266
#ifdef ESP32
RtcSettings = RtcDataSettings;
#endif // ESP32
bool read_valid = (RTC_MEM_VALID == RtcSettings.valid);
if (update) {
if (!read_valid) {
memset(&RtcSettings, 0, sizeof(RtcSettings));
RtcSettings.valid = RTC_MEM_VALID;
RtcSettings.energy_kWhtoday = Settings.energy_kWhtoday;
RtcSettings.energy_kWhtotal = Settings.energy_kWhtotal;
RtcSettings.energy_usage = Settings.energy_usage;
for (uint32_t i = 0; i < MAX_COUNTERS; i++) {
RtcSettings.pulse_counter[i] = Settings.pulse_counter[i];
}
RtcSettings.power = Settings.power;
// RtcSettings.baudrate = Settings.baudrate * 300;
RtcSettings.baudrate = APP_BAUDRATE;
RtcSettingsSave();
}
rtc_settings_crc = GetRtcSettingsCrc();
}
return read_valid;
}
bool RtcSettingsValid(void) {
return (RTC_MEM_VALID == RtcSettings.valid);
}
/********************************************************************************************/
uint32_t rtc_reboot_crc = 0;
uint32_t GetRtcRebootCrc(void) {
uint32_t crc = 0;
uint8_t *bytes = (uint8_t*)&RtcReboot;
for (uint32_t i = 0; i < sizeof(RtcReboot); i++) {
crc += bytes[i]*(i+1);
}
return crc;
}
void RtcRebootSave(void) {
if (GetRtcRebootCrc() != rtc_reboot_crc) {
RtcReboot.valid = RTC_MEM_VALID;
#ifdef ESP8266
ESP.rtcUserMemoryWrite(100 - sizeof(RtcReboot), (uint32_t*)&RtcReboot, sizeof(RtcReboot));
#endif // ESP8266
#ifdef ESP32
RtcDataReboot = RtcReboot;
#endif // ESP32
rtc_reboot_crc = GetRtcRebootCrc();
}
}
void RtcRebootReset(void) {
RtcReboot.fast_reboot_count = 0;
RtcRebootSave();
}
void RtcRebootLoad(void) {
#ifdef ESP8266
ESP.rtcUserMemoryRead(100 - sizeof(RtcReboot), (uint32_t*)&RtcReboot, sizeof(RtcReboot)); // 0x280
#endif // ESP8266
#ifdef ESP32
RtcReboot = RtcDataReboot;
#endif // ESP32
if (RtcReboot.valid != RTC_MEM_VALID) {
memset(&RtcReboot, 0, sizeof(RtcReboot));
RtcReboot.valid = RTC_MEM_VALID;
// RtcReboot.fast_reboot_count = 0; // Explicit by memset
RtcRebootSave();
}
rtc_reboot_crc = GetRtcRebootCrc();
}
bool RtcRebootValid(void) {
return (RTC_MEM_VALID == RtcReboot.valid);
}
/*********************************************************************************************\
* ESP8266 Tasmota Flash usage offset from 0x40200000
*
* Tasmota 1M Tasmota 2M Tasmota 4M - Flash usage
* 0x00000000 - 4k Unzipped binary bootloader
* 0x00000FFF
*
* 0x00001000 - Unzipped binary code start
* ::::
* 0x000xxxxx - Unzipped binary code end
* 0x000x1000 - First page used by Core OTA
* ::::
* 0x000F2FFF 0x000F5FFF 0x000F5FFF
******************************************************************************
* Next 32k is overwritten by OTA
* 0x000F3000 0x000F6000 0x000F6000 - 4k Tasmota Quick Power Cycle counter (SETTINGS_LOCATION - CFG_ROTATES) - First four bytes only
* 0x000F3FFF 0x000F6FFF 0x000F6FFF
* 0x000F4000 0x000F7000 0x000F7000 - 4k First Tasmota rotating settings page
* ::::
* 0x000FA000 0x000FD000 0x000FD000 - 4k Last Tasmota rotating settings page = Last page used by Core OTA (SETTINGS_LOCATION)
* 0x000FAFFF 0x000FDFFF 0x000FDFFF
******************************************************************************
* 0x000FE000 0x000FE000 - 3k9 Not used
* 0x000FEFF0 0x000FEFF0 - 4k1 Empty
* 0x000FFFFF 0x000FFFFF
*
* 0x000FB000 0x00100000 0x00100000 - 0k, 980k or 2980k Core FS start (LittleFS)
* 0x000FB000 0x001FA000 0x003FA000 - 0k, 980k or 2980k Core FS end (LittleFS)
* 0x001FAFFF 0x003FAFFF
*
* 0x000FB000 0x001FB000 0x003FB000 - 4k Core EEPROM = Tasmota settings page during OTA and when no flash rotation is active (EEPROM_LOCATION)
* 0x000FBFFF 0x001FBFFF 0x003FBFFF
*
* 0x000FC000 0x001FC000 0x003FC000 - 4k SDK - Uses first 128 bytes for phy init data mirrored by Core in RAM. See core_esp8266_phy.cpp phy_init_data[128] = Core user_rf_cal_sector
* 0x000FD000 0x001FD000 0x003FD000 - 4k SDK - Uses scattered bytes from 0x340 (iTead use as settings storage from 0x000FD000)
* 0x000FE000 0x001FE000 0x003FE000 - 4k SDK - Uses scattered bytes from 0x340 (iTead use as mirrored settings storage from 0x000FE000)
* 0x000FF000 0x001FF000 0x0031F000 - 4k SDK - Uses at least first 32 bytes of this page - Tasmota Zigbee persistence from 0x000FF800 to 0x000FFFFF
* 0x000FFFFF 0x001FFFFF 0x003FFFFF
\*********************************************************************************************/
extern "C" {
#include "spi_flash.h"
}
#include "eboot_command.h"
#ifdef ESP8266
extern "C" uint32_t _FS_start; // 1M = 0x402fb000, 2M = 0x40300000, 4M = 0x40300000
const uint32_t FLASH_FS_START = (((uint32_t)&_FS_start - 0x40200000) / SPI_FLASH_SEC_SIZE);
uint32_t SETTINGS_LOCATION = FLASH_FS_START -1; // 0xFA, 0x0FF or 0x0FF
// From libraries/EEPROM/EEPROM.cpp EEPROMClass
extern "C" uint32_t _EEPROM_start; // 1M = 0x402FB000, 2M = 0x403FB000, 4M = 0x405FB000
const uint32_t EEPROM_LOCATION = ((uint32_t)&_EEPROM_start - 0x40200000) / SPI_FLASH_SEC_SIZE; // 0xFB, 0x1FB or 0x3FB
#endif // ESP8266
#ifdef ESP32
// dummy defines
#define EEPROM_LOCATION (SPI_FLASH_SEC_SIZE * 200)
uint32_t SETTINGS_LOCATION = EEPROM_LOCATION;
#endif // ESP32
const uint8_t CFG_ROTATES = 7; // Number of flash sectors used (handles uploads)
uint32_t settings_location = EEPROM_LOCATION;
uint32_t settings_crc32 = 0;
uint8_t *settings_buffer = nullptr;
void SettingsInit(void) {
if (SETTINGS_LOCATION > 0xFA) {
SETTINGS_LOCATION = 0xFD; // Skip empty partition part and keep in first 1M
}
}
/********************************************************************************************/
/*
* Based on cores/esp8266/Updater.cpp
*/
void SetFlashModeDout(void) {
#ifdef ESP8266
uint8_t *_buffer;
uint32_t address;
eboot_command ebcmd;
eboot_command_read(&ebcmd);
address = ebcmd.args[0];
_buffer = new uint8_t[FLASH_SECTOR_SIZE];
if (ESP.flashRead(address, (uint32_t*)_buffer, FLASH_SECTOR_SIZE)) {
if (_buffer[2] != 3) { // DOUT
_buffer[2] = 3;
if (ESP.flashEraseSector(address / FLASH_SECTOR_SIZE)) {
ESP.flashWrite(address, (uint32_t*)_buffer, FLASH_SECTOR_SIZE);
}
}
}
delete[] _buffer;
#endif // ESP8266
}
void SettingsBufferFree(void) {
if (settings_buffer != nullptr) {
free(settings_buffer);
settings_buffer = nullptr;
}
}
bool SettingsBufferAlloc(void) {
SettingsBufferFree();
if (!(settings_buffer = (uint8_t *)malloc(sizeof(Settings)))) {
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_UPLOAD_ERR_2)); // Not enough (memory) space
return false;
}
return true;
}
uint16_t GetCfgCrc16(uint8_t *bytes, uint32_t size) {
uint16_t crc = 0;
for (uint32_t i = 0; i < size; i++) {
if ((i < 14) || (i > 15)) { crc += bytes[i]*(i+1); } // Skip crc
}
return crc;
}
uint16_t GetSettingsCrc(void) {
// Fix miscalculation if previous Settings was 3584 and current Settings is 4096 between 0x06060007 and 0x0606000A
uint32_t size = ((Settings.version < 0x06060007) || (Settings.version > 0x0606000A)) ? 3584 : sizeof(Settings);
return GetCfgCrc16((uint8_t*)&Settings, size);
}
uint32_t GetCfgCrc32(uint8_t *bytes, uint32_t size) {
// https://create.stephan-brumme.com/crc32/#bitwise
uint32_t crc = 0;
while (size--) {
crc ^= *bytes++;
for (uint32_t j = 0; j < 8; j++) {
crc = (crc >> 1) ^ (-int(crc & 1) & 0xEDB88320);
}
}
return ~crc;
}
uint32_t GetSettingsCrc32(void) {
return GetCfgCrc32((uint8_t*)&Settings, sizeof(Settings) -4); // Skip crc32
}
void SettingsSaveAll(void) {
if (Settings.flag.save_state) {
Settings.power = TasmotaGlobal.power;
} else {
Settings.power = 0;
}
XsnsCall(FUNC_SAVE_BEFORE_RESTART);
XdrvCall(FUNC_SAVE_BEFORE_RESTART);
SettingsSave(0);
}
/*********************************************************************************************\
* Quick power cycle monitoring
\*********************************************************************************************/
void UpdateQuickPowerCycle(bool update) {
#ifndef FIRMWARE_MINIMAL
if (Settings.flag3.fast_power_cycle_disable) { return; } // SetOption65 - Disable fast power cycle detection for device reset
const uint32_t QPC_COUNT = 7; // Number of Power Cycles before Settings erase
const uint32_t QPC_SIGNATURE = 0xFFA55AFF;
#ifdef ESP8266
const uint32_t qpc_sector = SETTINGS_LOCATION - CFG_ROTATES;
const uint32_t qpc_location = qpc_sector * SPI_FLASH_SEC_SIZE;
uint32_t qpc_buffer[QPC_COUNT +1];
ESP.flashRead(qpc_location, (uint32*)&qpc_buffer, sizeof(qpc_buffer));
if (update && (QPC_SIGNATURE == qpc_buffer[0])) {
uint32_t counter = 1;
while ((0 == qpc_buffer[counter]) && (counter <= QPC_COUNT)) { counter++; }
if (QPC_COUNT == counter) { // 7 power cycles in a row
SettingsErase(3); // Quickly reset all settings including QuickPowerCycle flag
EspRestart(); // And restart
} else {
qpc_buffer[0] = 0;
ESP.flashWrite(qpc_location + (counter * 4), (uint32*)&qpc_buffer, 4);
AddLog(LOG_LEVEL_INFO, PSTR("QPC: Count %d"), counter);
}
}
else if ((qpc_buffer[0] != QPC_SIGNATURE) || (0 == qpc_buffer[1])) {
qpc_buffer[0] = QPC_SIGNATURE;
// Assume flash is default all ones and setting a bit to zero does not need an erase
if (ESP.flashEraseSector(qpc_sector)) {
ESP.flashWrite(qpc_location, (uint32*)&qpc_buffer, 4);
AddLog(LOG_LEVEL_INFO, PSTR("QPC: Reset"));
}
}
#endif // ESP8266
#ifdef ESP32
uint32_t pc_register;
QPCRead(&pc_register, sizeof(pc_register));
if (update && ((pc_register & 0xFFFFFFF0) == 0xFFA55AF0)) {
uint32_t counter = pc_register & 0xF; // Allow up to 15 cycles
if (0xF == counter) { counter = 0; }
counter++;
if (QPC_COUNT == counter) { // 7 power cycles in a row
SettingsErase(3); // Quickly reset all settings including QuickPowerCycle flag
EspRestart(); // And restart
} else {
pc_register = 0xFFA55AF0 | counter;
QPCWrite(&pc_register, sizeof(pc_register));
AddLog(LOG_LEVEL_INFO, PSTR("QPC: Count %d"), counter);
}
}
else if (pc_register != QPC_SIGNATURE) {
pc_register = QPC_SIGNATURE;
QPCWrite(&pc_register, sizeof(pc_register));
AddLog(LOG_LEVEL_INFO, PSTR("QPC: Reset"));
}
#endif // ESP32
#endif // FIRMWARE_MINIMAL
}
/*********************************************************************************************\
* Config Settings.text char array support
\*********************************************************************************************/
uint32_t GetSettingsTextLen(void) {
char* position = Settings.text_pool;
for (uint32_t size = 0; size < SET_MAX; size++) {
while (*position++ != '\0') { }
}
return position - Settings.text_pool;
}
bool settings_text_mutex = false;
uint32_t settings_text_busy_count = 0;
bool SettingsUpdateFinished(void) {
uint32_t wait_loop = 10;
while (settings_text_mutex && wait_loop) { // Wait for any update to finish
yield();
delayMicroseconds(1);
wait_loop--;
}
return (wait_loop > 0); // true if finished
}
bool SettingsUpdateText(uint32_t index, const char* replace_me) {
if (index >= SET_MAX) {
return false; // Setting not supported - internal error
}
// Make a copy first in case we use source from Settings.text
uint32_t replace_len = strlen_P(replace_me);
char replace[replace_len +1];
memcpy_P(replace, replace_me, sizeof(replace));
uint32_t index_save = index;
uint32_t start_pos = 0;
uint32_t end_pos = 0;
char* position = Settings.text_pool;
for (uint32_t size = 0; size < SET_MAX; size++) {
while (*position++ != '\0') { }
if (1 == index) {
start_pos = position - Settings.text_pool;
}
else if (0 == index) {
end_pos = position - Settings.text_pool -1;
}
index--;
}
uint32_t char_len = position - Settings.text_pool;
uint32_t current_len = end_pos - start_pos;
int diff = replace_len - current_len;
// AddLog(LOG_LEVEL_DEBUG, PSTR("TST: start %d, end %d, len %d, current %d, replace %d, diff %d"),
// start_pos, end_pos, char_len, current_len, replace_len, diff);
int too_long = (char_len + diff) - settings_text_size;
if (too_long > 0) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_CONFIG "Text overflow by %d char(s)"), too_long);
return false; // Replace text too long
}
if (settings_text_mutex && !SettingsUpdateFinished()) {
settings_text_busy_count++;
} else {
settings_text_mutex = true;
if (diff != 0) {
// Shift Settings.text up or down
memmove_P(Settings.text_pool + start_pos + replace_len, Settings.text_pool + end_pos, char_len - end_pos);
}
// Replace text
memmove_P(Settings.text_pool + start_pos, replace, replace_len);
// Fill for future use
memset(Settings.text_pool + char_len + diff, 0x00, settings_text_size - char_len - diff);
settings_text_mutex = false;
}
#ifdef DEBUG_FUNC_SETTINGSUPDATETEXT
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_CONFIG "CR %d/%d, Busy %d, Id %02d = \"%s\""), GetSettingsTextLen(), settings_text_size, settings_text_busy_count, index_save, replace);
#else
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_CONFIG "CR %d/%d, Busy %d"), GetSettingsTextLen(), settings_text_size, settings_text_busy_count);
#endif
return true;
}
char* SettingsText(uint32_t index) {
char* position = Settings.text_pool;
if (index >= SET_MAX) {
position += settings_text_size -1; // Setting not supported - internal error - return empty string
} else {
SettingsUpdateFinished();
for (;index > 0; index--) {
while (*position++ != '\0') { }
}
}
return position;
}
/*********************************************************************************************\
* Config Save - Save parameters to Flash ONLY if any parameter has changed
\*********************************************************************************************/
void UpdateBackwardCompatibility(void) {
// Perform updates for backward compatibility
strlcpy(Settings.user_template_name, SettingsText(SET_TEMPLATE_NAME), sizeof(Settings.user_template_name));
}
uint32_t GetSettingsAddress(void) {
return settings_location * SPI_FLASH_SEC_SIZE;
}
void SettingsSave(uint8_t rotate) {
/* Save configuration in eeprom or one of 7 slots below
*
* rotate 0 = Save in next flash slot
* rotate 1 = Save only in eeprom flash slot until SetOption12 0 or restart
* rotate 2 = Save in eeprom flash slot, erase next flash slots and continue depending on stop_flash_rotate
* stop_flash_rotate 0 = Allow flash slot rotation (SetOption12 0)
* stop_flash_rotate 1 = Allow only eeprom flash slot use (SetOption12 1)
*/
#ifndef FIRMWARE_MINIMAL
XsnsCall(FUNC_SAVE_SETTINGS);
XdrvCall(FUNC_SAVE_SETTINGS);
UpdateBackwardCompatibility();
if ((GetSettingsCrc32() != settings_crc32) || rotate) {
if (1 == rotate) { // Use eeprom flash slot only and disable flash rotate from now on (upgrade)
TasmotaGlobal.stop_flash_rotate = 1;
}
if (TasmotaGlobal.stop_flash_rotate || (2 == rotate)) { // Use eeprom flash slot and erase next flash slots if stop_flash_rotate is off (default)
settings_location = EEPROM_LOCATION;
} else { // Rotate flash slots
if (settings_location == EEPROM_LOCATION) {
settings_location = SETTINGS_LOCATION;
} else {
settings_location--;
}
if (settings_location <= (SETTINGS_LOCATION - CFG_ROTATES)) {
settings_location = EEPROM_LOCATION;
}
}
Settings.save_flag++;
if (UtcTime() > START_VALID_TIME) {
Settings.cfg_timestamp = UtcTime();
} else {
Settings.cfg_timestamp++;
}
Settings.cfg_size = sizeof(Settings);
Settings.cfg_crc = GetSettingsCrc(); // Keep for backward compatibility in case of fall-back just after upgrade
Settings.cfg_crc32 = GetSettingsCrc32();
#ifdef ESP8266
#ifdef USE_UFILESYS
TfsSaveFile(TASM_FILE_SETTINGS, (const uint8_t*)&Settings, sizeof(Settings));
#endif // USE_UFILESYS
if (ESP.flashEraseSector(settings_location)) {
ESP.flashWrite(settings_location * SPI_FLASH_SEC_SIZE, (uint32*)&Settings, sizeof(Settings));
}
if (!TasmotaGlobal.stop_flash_rotate && rotate) { // SetOption12 - (Settings) Switch between dynamic (0) or fixed (1) slot flash save location
for (uint32_t i = 0; i < CFG_ROTATES; i++) {
ESP.flashEraseSector(SETTINGS_LOCATION -i); // Delete previous configurations by resetting to 0xFF
delay(1);
}
}
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_CONFIG D_SAVED_TO_FLASH_AT " %X, " D_COUNT " %d, " D_BYTES " %d"), settings_location, Settings.save_flag, sizeof(Settings));
#endif // ESP8266
#ifdef ESP32
SettingsWrite(&Settings, sizeof(Settings));
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_CONFIG "Saved, " D_COUNT " %d, " D_BYTES " %d"), Settings.save_flag, sizeof(Settings));
#endif // ESP32
settings_crc32 = Settings.cfg_crc32;
}
#endif // FIRMWARE_MINIMAL
RtcSettingsSave();
}
void SettingsLoad(void) {
#ifdef ESP8266
// Load configuration from optional file and flash (eeprom and 7 additonal slots) if first valid load does not stop_flash_rotate
// Activated with version 8.4.0.2 - Fails to read any config before version 6.6.0.11
settings_location = 0;
uint32_t save_flag = 0;
uint32_t max_slots = CFG_ROTATES +1;
uint32_t flash_location;
uint32_t slot = 1;
#ifdef USE_UFILESYS
if (TfsLoadFile(TASM_FILE_SETTINGS, (uint8_t*)&Settings, sizeof(Settings))) {
flash_location = 1;
slot = 0;
}
#endif // USE_UFILESYS
while (slot <= max_slots) { // Read all config pages in search of valid and latest
if (slot > 0) {
flash_location = (1 == slot) ? EEPROM_LOCATION : (2 == slot) ? SETTINGS_LOCATION : flash_location -1;
ESP.flashRead(flash_location * SPI_FLASH_SEC_SIZE, (uint32*)&Settings, sizeof(Settings));
}
if ((Settings.cfg_crc32 != 0xFFFFFFFF) && (Settings.cfg_crc32 != 0x00000000) && (Settings.cfg_crc32 == GetSettingsCrc32())) {
if (Settings.save_flag > save_flag) { // Find latest page based on incrementing save_flag
save_flag = Settings.save_flag;
settings_location = flash_location;
if (Settings.flag.stop_flash_rotate && (1 == slot)) { // Stop if only eeprom area should be used and it is valid
break;
}
}
}
slot++;
delay(1);
}
if (settings_location > 0) {
#ifdef USE_UFILESYS
if (1 == settings_location) {
TfsLoadFile(TASM_FILE_SETTINGS, (uint8_t*)&Settings, sizeof(Settings));
AddLog(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG "Loaded from File, " D_COUNT " %lu"), Settings.save_flag);
} else
#endif // USE_UFILESYS
{
ESP.flashRead(settings_location * SPI_FLASH_SEC_SIZE, (uint32*)&Settings, sizeof(Settings));
AddLog(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG D_LOADED_FROM_FLASH_AT " %X, " D_COUNT " %lu"), settings_location, Settings.save_flag);
}
}
#endif // ESP8266
#ifdef ESP32
uint32_t source = SettingsRead(&Settings, sizeof(Settings));
if (source) { settings_location = 1; }
AddLog(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG "Loaded from %s, " D_COUNT " %lu"), (source)?"File":"Nvm", Settings.save_flag);
#endif // ESP32
#ifndef FIRMWARE_MINIMAL
if ((0 == settings_location) || (Settings.cfg_holder != (uint16_t)CFG_HOLDER)) { // Init defaults if cfg_holder differs from user settings in my_user_config.h
#ifdef USE_UFILESYS
if (TfsLoadFile(TASM_FILE_SETTINGS_LKG, (uint8_t*)&Settings, sizeof(Settings)) && (Settings.cfg_crc32 == GetSettingsCrc32())) {
settings_location = 1;
AddLog(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG "Loaded from LKG File, " D_COUNT " %lu"), Settings.save_flag);
} else
#endif // USE_UFILESYS
{
SettingsDefault();
}
}
settings_crc32 = GetSettingsCrc32();
#endif // FIRMWARE_MINIMAL
RtcSettingsLoad(1);
}
// Used in TLS - returns the timestamp of the last Flash settings write
uint32_t CfgTime(void) {
return Settings.cfg_timestamp;
}
#ifdef ESP8266
void SettingsErase(uint8_t type) {
/*
For Arduino core and SDK:
Erase only works from flash start address to SDK recognized flash end address (flashchip->chip_size = ESP.getFlashChipSize).
Addresses above SDK recognized size (up to ESP.getFlashChipRealSize) are not accessable.
For Esptool:
The only way to erase whole flash is esptool which uses direct SPI writes to flash.
The default erase function is EspTool (EsptoolErase)
0 = Erase from program end until end of flash as seen by SDK including optional filesystem
1 = Erase 16k SDK parameter area near end of flash as seen by SDK (0x0XFCxxx - 0x0XFFFFF) solving possible wifi errors
2 = Erase from program end until end of flash as seen by SDK excluding optional filesystem
3 = Erase Tasmota and SDK parameter area (0x0F3xxx - 0x0FFFFF)
4 = Erase SDK parameter area used for wifi calibration (0x0FCxxx - 0x0FCFFF)
*/
#ifndef FIRMWARE_MINIMAL
// Reset 2 = Erase all flash from program end to end of physical flash
uint32_t _sectorStart = (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 1;
uint32_t _sectorEnd = ESP.getFlashChipRealSize() / SPI_FLASH_SEC_SIZE; // Flash size as reported by hardware
if (1 == type) { // Reset 3 = SDK parameter area
// source Esp.cpp and core_esp8266_phy.cpp
_sectorStart = (ESP.getFlashChipSize() / SPI_FLASH_SEC_SIZE) - 4;
}
else if (2 == type) { // Reset 5, 6 = Erase all flash from program end to end of physical flash but skip filesystem
/*
#ifdef USE_UFILESYS
TfsDeleteFile(TASM_FILE_SETTINGS); // Not needed as it is recreated by set defaults before restart
#endif
*/
EsptoolErase(_sectorStart, FLASH_FS_START);
_sectorStart = EEPROM_LOCATION;
_sectorEnd = ESP.getFlashChipSize() / SPI_FLASH_SEC_SIZE; // Flash size as seen by SDK
}
else if (3 == type) { // QPC Reached = QPC and Tasmota and SDK parameter area (0x0F3xxx - 0x0FFFFF)
#ifdef USE_UFILESYS
TfsDeleteFile(TASM_FILE_SETTINGS);
#endif
EsptoolErase(SETTINGS_LOCATION - CFG_ROTATES, SETTINGS_LOCATION +1);
_sectorStart = EEPROM_LOCATION;
_sectorEnd = ESP.getFlashChipSize() / SPI_FLASH_SEC_SIZE; // Flash size as seen by SDK
}
else if (4 == type) { // WIFI_FORCE_RF_CAL_ERASE = SDK wifi calibration
_sectorStart = EEPROM_LOCATION +1; // SDK phy area and Core calibration sector (0x0XFC000)
_sectorEnd = _sectorStart +1; // SDK end of phy area and Core calibration sector (0x0XFCFFF)
}
EsptoolErase(_sectorStart, _sectorEnd); // Esptool - erases flash completely
#endif // FIRMWARE_MINIMAL
}
#endif // ESP8266
void SettingsSdkErase(void) {
WiFi.disconnect(false); // Delete SDK wifi config
SettingsErase(1);
delay(1000);
}
/********************************************************************************************/
void SettingsDefault(void) {
AddLog(LOG_LEVEL_NONE, PSTR(D_LOG_CONFIG D_USE_DEFAULTS));
SettingsDefaultSet1();
SettingsDefaultSet2();
SettingsSave(2);
}
void SettingsDefaultSet1(void) {
memset(&Settings, 0x00, sizeof(Settings));
Settings.cfg_holder = (uint16_t)CFG_HOLDER;
Settings.cfg_size = sizeof(Settings);
// Settings.save_flag = 0;
Settings.version = VERSION;
// Settings.bootcount = 0;
// Settings.cfg_crc = 0;
}
// default Fingerprints in PROGMEM
const uint8_t default_fingerprint1[] PROGMEM = { MQTT_FINGERPRINT1 };
const uint8_t default_fingerprint2[] PROGMEM = { MQTT_FINGERPRINT2 };
void SettingsDefaultSet2(void) {
memset((char*)&Settings +16, 0x00, sizeof(Settings) -16);
// this little trick allows GCC to optimize the assignment by grouping values and doing only ORs
SysBitfield flag = { 0 };
SysBitfield2 flag2 = { 0 };
SysBitfield3 flag3 = { 0 };
SysBitfield4 flag4 = { 0 };
SysBitfield5 flag5 = { 0 };
#ifdef ESP8266
Settings.gpio16_converted = 0xF5A0;
// Settings.config_version = 0; // ESP8266 (Has been 0 for long time)
#endif // ESP8266
#ifdef ESP32
Settings.config_version = 1; // ESP32
#endif // ESP32
flag.stop_flash_rotate |= APP_FLASH_CYCLE;
flag.global_state |= APP_ENABLE_LEDLINK;
flag3.sleep_normal |= APP_NORMAL_SLEEP;
flag3.no_power_feedback |= APP_NO_RELAY_SCAN;
flag3.fast_power_cycle_disable |= APP_DISABLE_POWERCYCLE;
flag3.bootcount_update |= DEEPSLEEP_BOOTCOUNT;
Settings.save_data = SAVE_DATA;
Settings.param[P_BACKLOG_DELAY] = MIN_BACKLOG_DELAY;
Settings.param[P_BOOT_LOOP_OFFSET] = BOOT_LOOP_OFFSET; // SetOption36
Settings.param[P_RGB_REMAP] = RGB_REMAP_RGBW;
Settings.sleep = APP_SLEEP;
if (Settings.sleep < 50) {
Settings.sleep = 50; // Default to 50 for sleep, for now
}
// Module
flag.interlock |= APP_INTERLOCK_MODE;
Settings.interlock[0] = APP_INTERLOCK_GROUP_1;
Settings.interlock[1] = APP_INTERLOCK_GROUP_2;
Settings.interlock[2] = APP_INTERLOCK_GROUP_3;
Settings.interlock[3] = APP_INTERLOCK_GROUP_4;
Settings.module = MODULE;
Settings.fallback_module = FALLBACK_MODULE;
ModuleDefault(WEMOS);
// for (uint32_t i = 0; i < ARRAY_SIZE(Settings.my_gp.io); i++) { Settings.my_gp.io[i] = GPIO_NONE; }
SettingsUpdateText(SET_FRIENDLYNAME1, PSTR(FRIENDLY_NAME));
SettingsUpdateText(SET_FRIENDLYNAME2, PSTR(FRIENDLY_NAME"2"));
SettingsUpdateText(SET_FRIENDLYNAME3, PSTR(FRIENDLY_NAME"3"));
SettingsUpdateText(SET_FRIENDLYNAME4, PSTR(FRIENDLY_NAME"4"));
SettingsUpdateText(SET_DEVICENAME, SettingsText(SET_FRIENDLYNAME1));
SettingsUpdateText(SET_OTAURL, PSTR(OTA_URL));
// Power
flag.save_state |= SAVE_STATE;
Settings.power = APP_POWER;
Settings.poweronstate = APP_POWERON_STATE;
Settings.blinktime = APP_BLINKTIME;
Settings.blinkcount = APP_BLINKCOUNT;
Settings.ledstate = APP_LEDSTATE;
Settings.ledmask = APP_LEDMASK;
// Settings.ledpwm_off = 0;
Settings.ledpwm_on = 255;
// Settings.ledpwm_mask = 0;
Settings.pulse_timer[0] = APP_PULSETIME;
// for (uint32_t i = 1; i < MAX_PULSETIMERS; i++) { Settings.pulse_timer[i] = 0; }
// Serial
Settings.serial_config = TS_SERIAL_8N1;
Settings.baudrate = APP_BAUDRATE / 300;
Settings.sbaudrate = SOFT_BAUDRATE / 300;
Settings.serial_delimiter = 0xff;
Settings.seriallog_level = SERIAL_LOG_LEVEL;
// Ethernet
flag4.network_ethernet |= 1;
#ifdef ESP32
Settings.eth_type = ETH_TYPE;
Settings.eth_clk_mode = ETH_CLKMODE;
Settings.eth_address = ETH_ADDRESS;
#endif // ESP32
// Wifi
flag4.network_wifi |= 1;
flag3.use_wifi_scan |= WIFI_SCAN_AT_RESTART;
flag3.use_wifi_rescan |= WIFI_SCAN_REGULARLY;
Settings.wifi_output_power = 170;
Settings.param[P_ARP_GRATUITOUS] = WIFI_ARP_INTERVAL;
ParseIPv4(&Settings.ipv4_address[0], PSTR(WIFI_IP_ADDRESS));
ParseIPv4(&Settings.ipv4_address[1], PSTR(WIFI_GATEWAY));
ParseIPv4(&Settings.ipv4_address[2], PSTR(WIFI_SUBNETMASK));
ParseIPv4(&Settings.ipv4_address[3], PSTR(WIFI_DNS));
Settings.sta_config = WIFI_CONFIG_TOOL;
// Settings.sta_active = 0;
SettingsUpdateText(SET_STASSID1, PSTR(STA_SSID1));
SettingsUpdateText(SET_STASSID2, PSTR(STA_SSID2));
SettingsUpdateText(SET_STAPWD1, PSTR(STA_PASS1));
SettingsUpdateText(SET_STAPWD2, PSTR(STA_PASS2));
SettingsUpdateText(SET_HOSTNAME, WIFI_HOSTNAME);
// Syslog
SettingsUpdateText(SET_SYSLOG_HOST, PSTR(SYS_LOG_HOST));
Settings.syslog_port = SYS_LOG_PORT;
Settings.syslog_level = SYS_LOG_LEVEL;
// Webserver
flag2.emulation |= EMULATION;
flag4.alexa_gen_1 |= EMULATION_HUE_1ST_GEN;
flag3.gui_hostname_ip |= GUI_SHOW_HOSTNAME;
flag3.mdns_enabled |= MDNS_ENABLED;
Settings.webserver = WEB_SERVER;
Settings.weblog_level = WEB_LOG_LEVEL;
SettingsUpdateText(SET_WEBPWD, PSTR(WEB_PASSWORD));
SettingsUpdateText(SET_CORS, PSTR(CORS_DOMAIN));
// Button
flag.button_restrict |= KEY_DISABLE_MULTIPRESS;
flag.button_swap |= KEY_SWAP_DOUBLE_PRESS;
flag.button_single |= KEY_ONLY_SINGLE_PRESS;
Settings.param[P_HOLD_TIME] = KEY_HOLD_TIME; // Default 4 seconds hold time
// Switch
for (uint32_t i = 0; i < MAX_SWITCHES_SET; i++) { Settings.switchmode[i] = SWITCH_MODE; }
// MQTT
flag.mqtt_enabled |= MQTT_USE;
flag.mqtt_response |= MQTT_RESULT_COMMAND;
flag.mqtt_offline |= MQTT_LWT_MESSAGE;
flag.mqtt_power_retain |= MQTT_POWER_RETAIN;
flag.mqtt_button_retain |= MQTT_BUTTON_RETAIN;
flag.mqtt_switch_retain |= MQTT_SWITCH_RETAIN;
flag.mqtt_sensor_retain |= MQTT_SENSOR_RETAIN;
flag5.mqtt_info_retain |= MQTT_INFO_RETAIN;
flag5.mqtt_state_retain |= MQTT_STATE_RETAIN;
// flag.mqtt_serial |= 0;
flag.device_index_enable |= MQTT_POWER_FORMAT;
flag3.time_append_timezone |= MQTT_APPEND_TIMEZONE;
flag3.button_switch_force_local |= MQTT_BUTTON_SWITCH_FORCE_LOCAL;
flag3.no_hold_retain |= MQTT_NO_HOLD_RETAIN;
flag3.use_underscore |= MQTT_INDEX_SEPARATOR;
flag3.grouptopic_mode |= MQTT_GROUPTOPIC_FORMAT;
SettingsUpdateText(SET_MQTT_HOST, MQTT_HOST);
Settings.mqtt_port = MQTT_PORT;
SettingsUpdateText(SET_MQTT_CLIENT, PSTR(MQTT_CLIENT_ID));
SettingsUpdateText(SET_MQTT_USER, PSTR(MQTT_USER));
SettingsUpdateText(SET_MQTT_PWD, PSTR(MQTT_PASS));
SettingsUpdateText(SET_MQTT_TOPIC, PSTR(MQTT_TOPIC));
SettingsUpdateText(SET_MQTT_BUTTON_TOPIC, PSTR(MQTT_BUTTON_TOPIC));
SettingsUpdateText(SET_MQTT_SWITCH_TOPIC, PSTR(MQTT_SWITCH_TOPIC));
SettingsUpdateText(SET_MQTT_GRP_TOPIC, PSTR(MQTT_GRPTOPIC));
SettingsUpdateText(SET_MQTT_FULLTOPIC, PSTR(MQTT_FULLTOPIC));
Settings.mqtt_retry = MQTT_RETRY_SECS;
SettingsUpdateText(SET_MQTTPREFIX1, PSTR(SUB_PREFIX));
SettingsUpdateText(SET_MQTTPREFIX2, PSTR(PUB_PREFIX));
SettingsUpdateText(SET_MQTTPREFIX3, PSTR(PUB_PREFIX2));
SettingsUpdateText(SET_STATE_TXT1, PSTR(MQTT_STATUS_OFF));
SettingsUpdateText(SET_STATE_TXT2, PSTR(MQTT_STATUS_ON));
SettingsUpdateText(SET_STATE_TXT3, PSTR(MQTT_CMND_TOGGLE));
SettingsUpdateText(SET_STATE_TXT4, PSTR(MQTT_CMND_HOLD));
memcpy_P(Settings.mqtt_fingerprint[0], default_fingerprint1, sizeof(default_fingerprint1));
memcpy_P(Settings.mqtt_fingerprint[1], default_fingerprint2, sizeof(default_fingerprint2));
Settings.tele_period = TELE_PERIOD;
Settings.mqttlog_level = MQTT_LOG_LEVEL;
// Energy
flag.no_power_on_check |= ENERGY_VOLTAGE_ALWAYS;
flag2.current_resolution |= 3;
// flag2.voltage_resolution |= 0;
// flag2.wattage_resolution |= 0;
flag2.energy_resolution |= ENERGY_RESOLUTION;
flag3.dds2382_model |= ENERGY_DDS2382_MODE;
flag3.hardware_energy_total |= ENERGY_HARDWARE_TOTALS;
Settings.param[P_MAX_POWER_RETRY] = MAX_POWER_RETRY;
// Settings.energy_power_delta[0] = 0;
// Settings.energy_power_delta[1] = 0;
// Settings.energy_power_delta[2] = 0;
Settings.energy_power_calibration = HLW_PREF_PULSE;
Settings.energy_voltage_calibration = HLW_UREF_PULSE;
Settings.energy_current_calibration = HLW_IREF_PULSE;
// Settings.energy_kWhtoday = 0;
// Settings.energy_kWhyesterday = 0;
// Settings.energy_kWhdoy = 0;
// Settings.energy_min_power = 0;
// Settings.energy_max_power = 0;
// Settings.energy_min_voltage = 0;
// Settings.energy_max_voltage = 0;
// Settings.energy_min_current = 0;
// Settings.energy_max_current = 0;
// Settings.energy_max_power_limit = 0; // MaxPowerLimit
Settings.energy_max_power_limit_hold = MAX_POWER_HOLD;
Settings.energy_max_power_limit_window = MAX_POWER_WINDOW;
// Settings.energy_max_power_safe_limit = 0; // MaxSafePowerLimit
Settings.energy_max_power_safe_limit_hold = SAFE_POWER_HOLD;
Settings.energy_max_power_safe_limit_window = SAFE_POWER_WINDOW;
// Settings.energy_max_energy = 0; // MaxEnergy
// Settings.energy_max_energy_start = 0; // MaxEnergyStart
// Settings.energy_kWhtotal = 0;
RtcSettings.energy_kWhtotal = 0;
// memset((char*)&Settings.energy_usage, 0x00, sizeof(Settings.energy_usage));
memset((char*)&RtcSettings.energy_usage, 0x00, sizeof(RtcSettings.energy_usage));
Settings.param[P_OVER_TEMP] = ENERGY_OVERTEMP;
// IRRemote
flag.ir_receive_decimal |= IR_DATA_RADIX;
flag3.receive_raw |= IR_ADD_RAW_DATA;
Settings.param[P_IR_UNKNOW_THRESHOLD] = IR_RCV_MIN_UNKNOWN_SIZE;
// RF Bridge
flag.rf_receive_decimal |= RF_DATA_RADIX;
// for (uint32_t i = 0; i < 17; i++) { Settings.rf_code[i][0] = 0; }
memcpy_P(Settings.rf_code[0], kDefaultRfCode, 9);
// Domoticz
Settings.domoticz_update_timer = DOMOTICZ_UPDATE_TIMER;
// for (uint32_t i = 0; i < MAX_DOMOTICZ_IDX; i++) {
// Settings.domoticz_relay_idx[i] = 0;
// Settings.domoticz_key_idx[i] = 0;
// Settings.domoticz_switch_idx[i] = 0;
// }
// for (uint32_t i = 0; i < MAX_DOMOTICZ_SNS_IDX; i++) {
// Settings.domoticz_sensor_idx[i] = 0;
// }
// Sensor
flag.temperature_conversion |= TEMP_CONVERSION;
flag.pressure_conversion |= PRESSURE_CONVERSION;
flag2.pressure_resolution |= PRESSURE_RESOLUTION;
flag2.humidity_resolution |= HUMIDITY_RESOLUTION;
flag2.temperature_resolution |= TEMP_RESOLUTION;
flag3.ds18x20_internal_pullup |= DS18X20_PULL_UP;
flag3.counter_reset_on_tele |= COUNTER_RESET;
// Settings.altitude = 0;
// Rules
// Settings.rule_enabled = 0;
// Settings.rule_once = 0;
// for (uint32_t i = 1; i < MAX_RULE_SETS; i++) { Settings.rules[i][0] = '\0'; }
flag2.calc_resolution |= CALC_RESOLUTION;
// Timer
flag3.timers_enable |= TIMERS_ENABLED;
// Home Assistant
flag.hass_light |= HASS_AS_LIGHT;
flag.hass_discovery |= HOME_ASSISTANT_DISCOVERY_ENABLE;
flag3.hass_tele_on_power |= TELE_ON_POWER;
// Knx
flag.knx_enabled |= KNX_ENABLED;
flag.knx_enable_enhancement |= KNX_ENHANCED;
// Light
flag.pwm_control |= LIGHT_MODE;
flag.ws_clock_reverse |= LIGHT_CLOCK_DIRECTION;
flag.light_signal |= LIGHT_PAIRS_CO2;
flag.not_power_linked |= LIGHT_POWER_CONTROL;
flag.decimal_text |= LIGHT_COLOR_RADIX;
flag3.pwm_multi_channels |= LIGHT_CHANNEL_MODE;
flag3.slider_dimmer_stay_on |= LIGHT_SLIDER_POWER;
flag4.alexa_ct_range |= LIGHT_ALEXA_CT_RANGE;
flag4.pwm_ct_mode |= LIGHT_PWM_CT_MODE;
flag4.white_blend_mode |= LIGHT_WHITE_BLEND_MODE;
flag4.virtual_ct |= LIGHT_VIRTUAL_CT;
flag4.virtual_ct_cw |= LIGHT_VIRTUAL_CT_CW;
Settings.pwm_frequency = PWM_FREQ;
Settings.pwm_range = PWM_RANGE;
for (uint32_t i = 0; i < MAX_PWMS; i++) {
Settings.light_color[i] = DEFAULT_LIGHT_COMPONENT;
// Settings.pwm_value[i] = 0;
}
Settings.light_correction = 1;
Settings.light_dimmer = DEFAULT_LIGHT_DIMMER;
// Settings.light_fade = 0;
Settings.light_speed = 1;
// Settings.light_scheme = 0;
Settings.light_width = 1;
// Settings.light_wakeup = 0;
Settings.light_pixels = WS2812_LEDS;
// Settings.light_rotation = 0;
Settings.ws_width[WS_SECOND] = 1;
Settings.ws_color[WS_SECOND][WS_RED] = 255;
// Settings.ws_color[WS_SECOND][WS_GREEN] = 0;
Settings.ws_color[WS_SECOND][WS_BLUE] = 255;
Settings.ws_width[WS_MINUTE] = 3;
// Settings.ws_color[WS_MINUTE][WS_RED] = 0;
Settings.ws_color[WS_MINUTE][WS_GREEN] = 255;
// Settings.ws_color[WS_MINUTE][WS_BLUE] = 0;
Settings.ws_width[WS_HOUR] = 5;
Settings.ws_color[WS_HOUR][WS_RED] = 255;
// Settings.ws_color[WS_HOUR][WS_GREEN] = 0;
// Settings.ws_color[WS_HOUR][WS_BLUE] = 0;
Settings.dimmer_hw_max = DEFAULT_DIMMER_MAX;
Settings.dimmer_hw_min = DEFAULT_DIMMER_MIN;
Settings.dimmer_step = DEFAULT_DIMMER_STEP;
// Display
// Settings.display_model = 0;
Settings.display_mode = 1;
Settings.display_refresh = 2;
Settings.display_rows = 2;
Settings.display_cols[0] = 16;
Settings.display_cols[1] = 8;
Settings.display_dimmer = 1;
Settings.display_size = 1;
Settings.display_font = 1;
// Settings.display_rotate = 0;
Settings.display_address[0] = MTX_ADDRESS1;
Settings.display_address[1] = MTX_ADDRESS2;
Settings.display_address[2] = MTX_ADDRESS3;
Settings.display_address[3] = MTX_ADDRESS4;
Settings.display_address[4] = MTX_ADDRESS5;
Settings.display_address[5] = MTX_ADDRESS6;
Settings.display_address[6] = MTX_ADDRESS7;
Settings.display_address[7] = MTX_ADDRESS8;
// Time
if (((APP_TIMEZONE > -14) && (APP_TIMEZONE < 15)) || (99 == APP_TIMEZONE)) {
Settings.timezone = APP_TIMEZONE;
Settings.timezone_minutes = 0;
} else {
Settings.timezone = APP_TIMEZONE / 60;
Settings.timezone_minutes = abs(APP_TIMEZONE % 60);
}
SettingsUpdateText(SET_NTPSERVER1, PSTR(NTP_SERVER1));
SettingsUpdateText(SET_NTPSERVER2, PSTR(NTP_SERVER2));
SettingsUpdateText(SET_NTPSERVER3, PSTR(NTP_SERVER3));
for (uint32_t i = 0; i < MAX_NTP_SERVERS; i++) {
SettingsUpdateText(SET_NTPSERVER1 +i, ReplaceCommaWithDot(SettingsText(SET_NTPSERVER1 +i)));
}
Settings.latitude = (int)((double)LATITUDE * 1000000);
Settings.longitude = (int)((double)LONGITUDE * 1000000);
SettingsResetStd();
SettingsResetDst();
Settings.button_debounce = KEY_DEBOUNCE_TIME;
Settings.switch_debounce = SWITCH_DEBOUNCE_TIME;
for (uint32_t j = 0; j < 5; j++) {
Settings.rgbwwTable[j] = 255;
}
Settings.novasds_startingoffset = STARTING_OFFSET;
SettingsDefaultWebColor();
memset(&Settings.monitors, 0xFF, 20); // Enable all possible monitors, displays and sensors
SettingsEnableAllI2cDrivers();
// Tuya
flag3.tuya_apply_o20 |= TUYA_SETOPTION_20;
flag3.tuya_serial_mqtt_publish |= MQTT_TUYA_RECEIVED;
flag3.buzzer_enable |= BUZZER_ENABLE;
flag3.shutter_mode |= SHUTTER_SUPPORT;
flag3.pcf8574_ports_inverted |= PCF8574_INVERT_PORTS;
flag4.zigbee_use_names |= ZIGBEE_FRIENDLY_NAMES;
flag4.remove_zbreceived |= ZIGBEE_RMV_ZBRECEIVED;
flag4.zb_index_ep |= ZIGBEE_INDEX_EP;
flag4.mqtt_tls |= MQTT_TLS_ENABLED;
flag4.mqtt_no_retain |= MQTT_NO_RETAIN;
#ifdef USER_TEMPLATE
String user_template = USER_TEMPLATE;
JsonTemplate((char*)user_template.c_str());
#endif
Settings.flag = flag;
Settings.flag2 = flag2;
Settings.flag3 = flag3;
Settings.flag4 = flag4;
}
/********************************************************************************************/
void SettingsResetStd(void) {
Settings.tflag[0].hemis = TIME_STD_HEMISPHERE;
Settings.tflag[0].week = TIME_STD_WEEK;
Settings.tflag[0].dow = TIME_STD_DAY;
Settings.tflag[0].month = TIME_STD_MONTH;
Settings.tflag[0].hour = TIME_STD_HOUR;
Settings.toffset[0] = TIME_STD_OFFSET;
}
void SettingsResetDst(void) {
Settings.tflag[1].hemis = TIME_DST_HEMISPHERE;
Settings.tflag[1].week = TIME_DST_WEEK;
Settings.tflag[1].dow = TIME_DST_DAY;
Settings.tflag[1].month = TIME_DST_MONTH;
Settings.tflag[1].hour = TIME_DST_HOUR;
Settings.toffset[1] = TIME_DST_OFFSET;
}
void SettingsDefaultWebColor(void) {
char scolor[10];
for (uint32_t i = 0; i < COL_LAST; i++) {
WebHexCode(i, GetTextIndexed(scolor, sizeof(scolor), i, kWebColors));
}
}
void SettingsEnableAllI2cDrivers(void) {
Settings.i2c_drivers[0] = 0xFFFFFFFF;
Settings.i2c_drivers[1] = 0xFFFFFFFF;
Settings.i2c_drivers[2] = 0xFFFFFFFF;
}
/********************************************************************************************/
void SettingsDelta(void) {
if (Settings.version != VERSION) { // Fix version dependent changes
#ifdef ESP8266
#ifndef UPGRADE_V8_MIN
// Although no direct upgrade is supported try to make a viable environment
if (Settings.version < 0x08000000) {
// Save SSIDs and Passwords
char temp31[strlen(Settings.ex_sta_ssid[0]) +1];
strncpy(temp31, Settings.ex_sta_ssid[0], sizeof(temp31));
char temp32[strlen(Settings.ex_sta_ssid[1]) +1];
strncpy(temp32, Settings.ex_sta_ssid[1], sizeof(temp32));
char temp41[strlen(Settings.ex_sta_pwd[0]) +1];
strncpy(temp41, Settings.ex_sta_pwd[0], sizeof(temp41));
char temp42[strlen(Settings.ex_sta_pwd[1]) +1];
strncpy(temp42, Settings.ex_sta_pwd[1], sizeof(temp42));
char temp7[strlen(Settings.ex_mqtt_host) +1];
strncpy(temp7, Settings.ex_mqtt_host, sizeof(temp7));
char temp9[strlen(Settings.ex_mqtt_user) +1];
strncpy(temp9, Settings.ex_mqtt_user, sizeof(temp9));
char temp10[strlen(Settings.ex_mqtt_pwd) +1];
strncpy(temp10, Settings.ex_mqtt_pwd, sizeof(temp10));
char temp11[strlen(Settings.ex_mqtt_topic) +1];
strncpy(temp11, Settings.ex_mqtt_topic, sizeof(temp11));
SettingsDefault();
// Restore current SSIDs and Passwords
SettingsUpdateText(SET_STASSID1, temp31);
SettingsUpdateText(SET_STASSID2, temp32);
SettingsUpdateText(SET_STAPWD1, temp41);
SettingsUpdateText(SET_STAPWD2, temp42);
#if defined(USE_MQTT_TLS) && defined(USE_MQTT_AWS_IOT)
if (!strlen(Settings.ex_mqtt_user)) {
SettingsUpdateText(SET_MQTT_HOST, temp7);
SettingsUpdateText(SET_MQTT_USER, temp9);
} else {
char aws_mqtt_host[66];
snprintf_P(aws_mqtt_host, sizeof(aws_mqtt_host), PSTR("%s%s"), temp9, temp7);
SettingsUpdateText(SET_MQTT_HOST, aws_mqtt_host);
SettingsUpdateText(SET_MQTT_USER, "");
}
#else // No USE_MQTT_TLS and USE_MQTT_AWS_IOT
SettingsUpdateText(SET_MQTT_HOST, temp7);
SettingsUpdateText(SET_MQTT_USER, temp9);
#endif // USE_MQTT_TLS and USE_MQTT_AWS_IOT
SettingsUpdateText(SET_MQTT_PWD, temp10);
SettingsUpdateText(SET_MQTT_TOPIC, temp11);
}
#endif // UPGRADE_V8_MIN
if (Settings.version < 0x08020003) {
SettingsUpdateText(SET_TEMPLATE_NAME, Settings.user_template_name);
Settings.zb_channel = 0; // set channel to zero to force reinit of zigbee parameters
}
#endif // ESP8266
if (Settings.version < 0x08020004) {
Settings.flag3.mqtt_buttons = 0; // SetOption73 (0) - Decouple button from relay and send just mqtt topic
#ifdef ESP8266
Settings.config_version = 0; // ESP8266 (Has been 0 for long time)
#endif // ESP8266
#ifdef ESP32
Settings.config_version = 1; // ESP32
#endif // ESP32
}
if (Settings.version < 0x08020006) {
#ifdef ESP32
Settings.module = WEMOS;
ModuleDefault(WEMOS);
#endif // ESP32
// make sure the empty rules have two consecutive NULLs, to be compatible with compressed rules
if (Settings.rules[0][0] == 0) { Settings.rules[0][1] = 0; }
if (Settings.rules[1][0] == 0) { Settings.rules[1][1] = 0; }
if (Settings.rules[2][0] == 0) { Settings.rules[2][1] = 0; }
}
if (Settings.version < 0x08030002) {
SettingsUpdateText(SET_DEVICENAME, SettingsText(SET_FRIENDLYNAME1));
Settings.ledpwm_off = 0;
Settings.ledpwm_on = 255;
Settings.ledpwm_mask = 0;
}
if (Settings.version < 0x08030104) {
Settings.flag4.network_wifi = 1;
Settings.flag4.network_ethernet = 1;
}
#ifdef ESP32
if (Settings.version < 0x08030105) {
Settings.eth_type = ETH_TYPE;
Settings.eth_clk_mode = ETH_CLKMODE;
Settings.eth_address = ETH_ADDRESS;
}
#endif // ESP32
if (Settings.version < 0x08030106) {
Settings.fallback_module = FALLBACK_MODULE;
}
if (Settings.version < 0x08040003) {
Settings.energy_power_delta[0] = Settings.hass_new_discovery; // replaced ex2_energy_power_delta on 8.5.0.1
Settings.energy_power_delta[1] = 0;
Settings.energy_power_delta[2] = 0;
}
#ifdef ESP8266
if (Settings.version < 0x09000002) {
char parameters[32];
snprintf_P(parameters, sizeof(parameters), PSTR("%d,%d,%d,%d,%d"),
Settings.ex_adc_param_type, Settings.ex_adc_param1, Settings.ex_adc_param2, Settings.ex_adc_param3, Settings.ex_adc_param4);
SettingsUpdateText(SET_ADC_PARAM1, parameters);
}
#endif // ESP8266
if (Settings.version < 0x09010000) {
Settings.dimmer_step = DEFAULT_DIMMER_STEP;
}
if (Settings.version < 0x09020003) {
Settings.flag3.use_wifi_rescan = true; // As a result of #10395
}
if (Settings.version < 0x09020006) {
for (uint32_t i = 0; i < MAX_SWITCHES_SET; i++) {
Settings.switchmode[i] = (i < 8) ? Settings.ex_switchmode[i] : SWITCH_MODE;
}
for (uint32_t i = 0; i < MAX_INTERLOCKS_SET; i++) {
Settings.interlock[i] = (i < 4) ? Settings.ex_interlock[i] : 0;
}
}
if (Settings.version < 0x09020007) {
*(uint32_t *)&Settings.device_group_tie = 0x04030201;
}
Settings.version = VERSION;
SettingsSave(1);
}
}