Tasmota/tasmota/tasmota_xnrg_energy/xnrg_10_sdm630.ino

363 lines
12 KiB
C++

/*
xnrg_10_sdm630.ino - Eastron SDM630-Modbus energy meter support for Tasmota
Copyright (C) 2021 Gennaro Tortone and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_SDM630
/*********************************************************************************************\
* Eastron SDM630-Modbus energy meter
*
* Based on: https://github.com/reaper7/SDM_Energy_Meter
\*********************************************************************************************/
#define XNRG_10 10
// can be user defined in my_user_config.h
#ifndef SDM630_SPEED
#define SDM630_SPEED 9600 // default SDM630 Modbus address
#endif
// can be user defined in my_user_config.h
#ifndef SDM630_ADDR
#define SDM630_ADDR 1 // default SDM630 Modbus address
#endif
#include <TasmotaModbus.h>
TasmotaModbus *Sdm630Modbus;
#ifdef SDM630_HIGH_UPDATE_RATE
struct sSdm630RequestConfig{
uint16_t startAddress;
uint8_t registerToRead; // according to spec: max 80 register can be read a once
};
const struct sSdm630RequestConfig sdm630ReqConf[] {
{0x0000, 18*2}, // 0x0000 - 0x0025
{0x0046, 1*2}, // 0x0046
{0x0156, 8*2} // 0x0156 - 0x0165
};
struct SDM630 {
uint8_t read_state = 0;
uint8_t send_retry = 0;
} Sdm630;
/* convert data buffer to float value according to IEEE754 */
float convBufToFloat(uint8_t *buffer)
{
float value;
((uint8_t*)&value)[3] = buffer[0]; // Get float values
((uint8_t*)&value)[2] = buffer[1];
((uint8_t*)&value)[1] = buffer[2];
((uint8_t*)&value)[0] = buffer[3];
return value;
}
#else
const uint16_t sdm630_start_addresses[] {
// 3P4 3P3 1P2 Unit Description
0x0000, // + - + V Phase 1 line to neutral volts
0x0002, // + - - V Phase 2 line to neutral volts
0x0004, // + - - V Phase 3 line to neutral volts
0x0006, // + + + A Phase 1 current
0x0008, // + + - A Phase 2 current
0x000A, // + + - A Phase 3 current
0x000C, // + - + W Phase 1 power
0x000E, // + - + W Phase 2 power
0x0010, // + - - W Phase 3 power
0x0018, // + - + var Phase 1 volt amps reactive
0x001A, // + - - var Phase 2 volt amps reactive
0x001C, // + - - var Phase 3 volt amps reactive
0x001E, // + - + Phase 1 power factor
0x0020, // + - - Phase 2 power factor
0x0022, // + - - Phase 3 power factor
0x0046, // + + + Hz Frequency of supply voltages
0x0160, // + + + kWh Phase 1 export active energy
0x0162, // + + + kWh Phase 2 export active energy
0x0164, // + + + kWh Phase 3 export active energy
//#ifdef SDM630_IMPORT
0x015A, // + + + kWh Phase 1 import active energy
0x015C, // + + + kWh Phase 2 import active energy
0x015E, // + + + kWh Phase 3 import active energy
//#endif // SDM630_IMPORT
0x0156 // + + + kWh Total active energy
};
struct SDM630 {
uint8_t read_state = 0;
uint8_t send_retry = 0;
} Sdm630;
#endif
/*********************************************************************************************/
#ifdef SDM630_HIGH_UPDATE_RATE
uint8_t sdm630ReadBuffer[128]; // at least 5 + (2*max_RegisterToRead)
#endif
void SDM630Every250ms(void)
{
bool data_ready = Sdm630Modbus->ReceiveReady();
if (data_ready) {
#ifdef SDM630_HIGH_UPDATE_RATE
uint8_t* buffer = &sdm630ReadBuffer[0];
uint32_t error = Sdm630Modbus->ReceiveBuffer(buffer, sdm630ReqConf[Sdm630.read_state].registerToRead);
#else
uint8_t buffer[14]; // At least 5 + (2 * 2) = 9
uint32_t error = Sdm630Modbus->ReceiveBuffer(buffer, 2);
#endif
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, Sdm630Modbus->ReceiveCount());
if (error) {
AddLog(LOG_LEVEL_DEBUG, PSTR("SDM: SDM630 error %d"), error);
} else {
Energy->data_valid[0] = 0;
Energy->data_valid[1] = 0;
Energy->data_valid[2] = 0;
#ifndef SDM630_HIGH_UPDATE_RATE
// 0 1 2 3 4 5 6 7 8
// SA FC BC Fh Fl Sh Sl Cl Ch
// 01 04 04 43 66 33 34 1B 38 = 230.2 Volt
float value;
((uint8_t*)&value)[3] = buffer[3]; // Get float values
((uint8_t*)&value)[2] = buffer[4];
((uint8_t*)&value)[1] = buffer[5];
((uint8_t*)&value)[0] = buffer[6];
#endif
switch(Sdm630.read_state) {
#ifdef SDM630_HIGH_UPDATE_RATE
case 0: // start address 0x0000 // 3P4 3P3 1P2 Unit Description
Energy->voltage[0] = convBufToFloat(&buffer[3]); // + - + V Phase 1 line to neutral volts
Energy->voltage[1] = convBufToFloat(&buffer[7]); // + - - V Phase 2 line to neutral volts
Energy->voltage[2] = convBufToFloat(&buffer[11]); // + - - V Phase 3 line to neutral volts
//0x0006
Energy->current[0] = convBufToFloat(&buffer[15]); // + + + A Phase 1 current
Energy->current[1] = convBufToFloat(&buffer[19]); // + + - A Phase 2 current
Energy->current[2] = convBufToFloat(&buffer[23]); // + + - A Phase 3 current
//0x000C
Energy->active_power[0] = convBufToFloat(&buffer[27]); // + - + W Phase 1 power
Energy->active_power[1] = convBufToFloat(&buffer[31]); // + - - W Phase 2 power
Energy->active_power[2] = convBufToFloat(&buffer[35]); // + - - W Phase 3 power
//0x0012
Energy->apparent_power[0] = convBufToFloat(&buffer[39]); // + - + VA Phase 1 volt amps
Energy->apparent_power[1] = convBufToFloat(&buffer[43]); // + - - VA Phase 2 volt amps
Energy->apparent_power[2] = convBufToFloat(&buffer[47]); // + - - VA Phase 3 volt amps
//0x0018
Energy->reactive_power[0] = convBufToFloat(&buffer[51]); // + - + var Phase 1 volt amps reactive
Energy->reactive_power[1] = convBufToFloat(&buffer[55]); // + - - var Phase 2 volt amps reactive
Energy->reactive_power[2] = convBufToFloat(&buffer[59]); // + - - var Phase 3 volt amps reactive
//0x001E
Energy->power_factor[0] = convBufToFloat(&buffer[63]); // + - + Phase 1 power factor
Energy->power_factor[1] = convBufToFloat(&buffer[67]); // + - - Phase 2 power factor
Energy->power_factor[2] = convBufToFloat(&buffer[71]); // + - - Phase 3 power factor
break;
case 1: // start address 0x0046
Energy->frequency[0] = convBufToFloat(&buffer[3]); // + + + Hz Frequency of supply voltages
break;
case 2: // start address 0x0156
// 0x0156 // + + + kWh Total active energy
// 0x0158 // + + + kvarh Total reactive energy
#ifdef SDM630_IMPORT
//0x015A
Energy->import_active[0] = convBufToFloat(&buffer[11]); // + + + kWh Phase 1 import active energy
Energy->import_active[1] = convBufToFloat(&buffer[15]); // + + + kWh Phase 2 import active energy
Energy->import_active[2] = convBufToFloat(&buffer[19]); // + + + kWh Phase 3 import active energy
#endif
//0x0160
Energy->export_active[0] = convBufToFloat(&buffer[23]); // + + + kWh Phase 1 export active energy
Energy->export_active[1] = convBufToFloat(&buffer[27]); // + + + kWh Phase 2 export active energy
Energy->export_active[2] = convBufToFloat(&buffer[31]); // + + + kWh Phase 3 export active energy
EnergyUpdateTotal();
break;
#else //old sdm630 implementation
case 0:
Energy->voltage[0] = value;
break;
case 1:
Energy->voltage[1] = value;
break;
case 2:
Energy->voltage[2] = value;
break;
case 3:
Energy->current[0] = value;
break;
case 4:
Energy->current[1] = value;
break;
case 5:
Energy->current[2] = value;
break;
case 6:
Energy->active_power[0] = value;
break;
case 7:
Energy->active_power[1] = value;
break;
case 8:
Energy->active_power[2] = value;
break;
case 9:
Energy->reactive_power[0] = value;
break;
case 10:
Energy->reactive_power[1] = value;
break;
case 11:
Energy->reactive_power[2] = value;
break;
case 12:
Energy->power_factor[0] = value;
break;
case 13:
Energy->power_factor[1] = value;
break;
case 14:
Energy->power_factor[2] = value;
break;
case 15:
Energy->frequency[0] = value;
break;
case 16:
Energy->export_active[0] = value;
break;
case 17:
Energy->export_active[1] = value;
break;
case 18:
Energy->export_active[2] = value;
break;
case 19:
Energy->import_active[0] = value;
break;
case 20:
Energy->import_active[1] = value;
break;
case 21:
Energy->import_active[2] = value;
break;
case 22:
// Energy->import_active[0] = value;
EnergyUpdateTotal();
break;
#endif
}
Sdm630.read_state++;
#ifdef SDM630_HIGH_UPDATE_RATE
if ( nitems(sdm630ReqConf) == Sdm630.read_state) {
#else
if (sizeof(sdm630_start_addresses)/2 == Sdm630.read_state) {
#endif
Sdm630.read_state = 0;
}
}
} // end data ready
if (0 == Sdm630.send_retry || data_ready) {
Sdm630.send_retry = 5;
#ifdef SDM630_HIGH_UPDATE_RATE
Sdm630Modbus->Send(SDM630_ADDR, 0x04, sdm630ReqConf[Sdm630.read_state].startAddress, sdm630ReqConf[Sdm630.read_state].registerToRead);
#else
Sdm630Modbus->Send(SDM630_ADDR, 0x04, sdm630_start_addresses[Sdm630.read_state], 2);
#endif
} else {
Sdm630.send_retry--;
}
}
void Sdm630SnsInit(void)
{
Sdm630Modbus = new TasmotaModbus(Pin(GPIO_SDM630_RX), Pin(GPIO_SDM630_TX), Pin(GPIO_NRG_MBS_TX_ENA));
uint8_t result = Sdm630Modbus->Begin(SDM630_SPEED);
if (result) {
if (2 == result) { ClaimSerial(); }
Energy->phase_count = 3;
Energy->frequency_common = true; // Use common frequency
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void Sdm630DrvInit(void)
{
if (PinUsed(GPIO_SDM630_RX) && PinUsed(GPIO_SDM630_TX)) {
TasmotaGlobal.energy_driver = XNRG_10;
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg10(uint32_t function)
{
bool result = false;
switch (function) {
case FUNC_EVERY_250_MSECOND:
SDM630Every250ms();
break;
case FUNC_INIT:
Sdm630SnsInit();
break;
case FUNC_PRE_INIT:
Sdm630DrvInit();
break;
}
return result;
}
#endif // USE_SDM630
#endif // USE_ENERGY_SENSOR