Tasmota/tasmota/tasmota_xnrg_energy/xnrg_12_solaxX1.ino

781 lines
36 KiB
C++

/*
xnrg_12_solaxX1.ino - Solax X1 inverter RS485 support for Tasmota
Copyright (C) 2021 by Pablo Zerón
Copyright (C) 2024 by Stefan Wershoven
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_SOLAX_X1
/*********************************************************************************************\
* Solax X1 Inverter
\*********************************************************************************************/
#define XNRG_12 12
#ifndef SOLAXX1_SPEED
#define SOLAXX1_SPEED 9600 // default solax rs485 speed
#endif
// #define SOLAXX1_READCONFIG // enable to read inverters config; disable to save codespace (3k1)
#define SOLAXX1_BUFFERSIZE 256
#define INVERTER_ADDRESS 0x0A
#define D_SOLAX_X1 "SolaxX1"
#include <TasmotaSerial.h>
TasmotaSerial *solaxX1Serial;
const char kSolaxMode[] PROGMEM =
D_GATEWAY "|" D_OFF "|" D_SOLAX_MODE_0 "|" D_SOLAX_MODE_1 "|" D_SOLAX_MODE_2 "|" D_SOLAX_MODE_3 "|" D_SOLAX_MODE_4 "|"
D_SOLAX_MODE_5 "|" D_SOLAX_MODE_6;
const char kSolaxError[] PROGMEM =
D_SOLAX_ERROR_0 "|" D_SOLAX_ERROR_1 "|" D_SOLAX_ERROR_2 "|" D_SOLAX_ERROR_3 "|" D_SOLAX_ERROR_4 "|" D_SOLAX_ERROR_5 "|"
D_SOLAX_ERROR_6 "|" D_SOLAX_ERROR_7 "|" D_SOLAX_ERROR_8;
#ifdef SOLAXX1_READCONFIG
const char kSolaxSafetyType[] PROGMEM =
"VDE 0126|VDE-AR-N 4105|AS 4777|G98|C10/11|ÖVE/ÖNORM E 8001|EN 50438 NL|EN 50438 DK|CEB|CEI021|NRS 097-2-1|VDE 0126 Greece/Iceland|"
"UTE C15-712|IEC 61727|G99|VDE 0126 Greece/Co|Guyana|C15-712 France/Iceland 50|C15-712 France/Iceland 60|New Zeeland|RD1699|Chile|"
"EN 50438 Ireland|Philippines|Czech PPDS|Czech 50438|EN 50549 EU|Denmark 2019 EU|RD 1699 Island|EN50549 Poland|MEA Thailand|"
"PEA Thailand|ACEA|AS 4777 2020 B|AS 4777 2020 C|Sri Lanka|BRAZIL 240|EN 50549 SK|EN 50549 EU|G98/NI|Denmark 2019 EU|RD 1699 Island";
#endif // SOLAXX1_READCONFIG
union {
uint32_t ErrMessage;
struct {
//BYTE0
uint8_t TzProtectFault:1;//0
uint8_t MainsLostFault:1;//1
uint8_t GridVoltFault:1;//2
uint8_t GridFreqFault:1;//3
uint8_t PLLLostFault:1;//4
uint8_t BusVoltFault:1;//5
uint8_t ErrBit06:1;//6
uint8_t OciFault:1;//7
//BYTE1
uint8_t Dci_OCP_Fault:1;//8
uint8_t ResidualCurrentFault:1;//9
uint8_t PvVoltFault:1;//10
uint8_t Ac10Mins_Voltage_Fault:1;//11
uint8_t IsolationFault:1;//12
uint8_t TemperatureOverFault:1;//13
uint8_t FanFault:1;//14
uint8_t ErrBit15:1;//15
//BYTE2
uint8_t SpiCommsFault:1;//16
uint8_t SciCommsFault:1;//17
uint8_t ErrBit18:1;//18
uint8_t InputConfigFault:1;//19
uint8_t EepromFault:1;//20
uint8_t RelayFault:1;//21
uint8_t SampleConsistenceFault:1;//22
uint8_t ResidualCurrent_DeviceFault:1;//23
//BYTE3
uint8_t ErrBit24:1;//24
uint8_t ErrBit25:1;//25
uint8_t ErrBit26:1;//26
uint8_t ErrBit27:1;//27
uint8_t ErrBit28:1;//28
uint8_t DCI_DeviceFault:1;//29
uint8_t OtherDeviceFault:1;//30
uint8_t ErrBit31:1;//31
};
} solaxX1_ErrCode;
struct SOLAXX1_LIVEDATA {
int16_t temperature = 0;
float energy_today = 0;
float energy_total = 0;
float dc1_voltage = 0;
float dc2_voltage = 0;
float dc1_current = 0;
float dc2_current = 0;
uint32_t runtime_total = 0;
float dc1_power = 0;
float dc2_power = 0;
int16_t runMode = 0;
uint32_t errorCode = 0;
uint8_t SerialNumber[16] = {0x00};
} solaxX1;
struct SOLAXX1_GLOBALDATA {
bool AddressAssigned = true;
uint8_t SendRetry_count = 20;
uint8_t QueryData_count = 0;
bool Command_QueryID = false;
bool Command_QueryConfig = false;
bool MeterMode = false;
float MeterPower = 5000;
float MeterImport;
float MeterExport;
} solaxX1_global;
struct SOLAXX1_SENDDATA {
uint8_t Header[2] = {0xAA, 0x55};
uint8_t Source[2] = {0x00, 0x00};
uint8_t Destination[2] = {0x00, 0x00};
uint8_t ControlCode[1] = {0x00};
uint8_t FunctionCode[1] = {0x00};
uint8_t DataLength[1] = {0x00};
uint8_t Payload[16] = {0x00};
} solaxX1_SendData;
/*********************************************************************************************/
void solaxX1_RS485Send(void) {
uint8_t message[30];
memcpy(message, solaxX1_SendData.Header, 2);
memcpy(message + 2, solaxX1_SendData.Source, 2);
memcpy(message + 4, solaxX1_SendData.Destination, 2);
memcpy(message + 6, solaxX1_SendData.ControlCode, 1);
memcpy(message + 7, solaxX1_SendData.FunctionCode, 1);
memcpy(message + 8, solaxX1_SendData.DataLength, 1);
memcpy(message + 9, solaxX1_SendData.Payload, sizeof(solaxX1_SendData.Payload));
solaxX1_RS485SendRaw(message, 9 + solaxX1_SendData.DataLength[0], 0);
}
void solaxX1_RS485SendMeterFloat(float Value) {
uint8_t MeterResponse[7] = {0x01, 0x04, 0x04, 0x00};
for (uint8_t i = 0; i <= 3; i++) { // Store bytes in reverse order
MeterResponse[i + 3] = *((char*)(&Value) + 3 - i);
}
solaxX1_RS485SendRaw(MeterResponse, 7, 1);
}
void solaxX1_RS485SendMeterInt16(int16_t Value) {
uint8_t MeterResponse[5] = {0x01, 0x03, 0x02, 0x00};
MeterResponse[3] = highByte(Value);
MeterResponse[4] = lowByte(Value);
solaxX1_RS485SendRaw(MeterResponse, 5, 1);
}
void solaxX1_RS485SendMeterTotalInt(uint32_t Export, uint32_t Import) {
uint8_t MeterResponse[11] = {0x01, 0x03, 0x08, 0x00};
for (uint8_t i = 0; i <= 3; i++) { // Store bytes in reverse order
MeterResponse[i + 3] = *((char*)(&Export) + 3 - i);
}
for (uint8_t i = 0; i <= 3; i++) { // Store bytes in reverse order
MeterResponse[i + 7] = *((char*)(&Import) + 3 - i);
}
solaxX1_RS485SendRaw(MeterResponse, 11, 1);
}
void solaxX1_RS485SendRaw(uint8_t *SendBuffer, uint8_t DataLen, uint8_t CRCflag) {
uint16_t crc;
while (solaxX1Serial->available()) { // read serial if any old data is available
solaxX1Serial->read();
}
if (PinUsed(GPIO_SOLAXX1_RTS)) digitalWrite(Pin(GPIO_SOLAXX1_RTS), HIGH);
solaxX1Serial->flush();
solaxX1Serial->write(SendBuffer, DataLen);
if (CRCflag) {
crc = solaxX1_calculateCRC_MBUS(SendBuffer, DataLen); // Use CRC MBUS algorithm
solaxX1Serial->write(lowByte(crc));
solaxX1Serial->write(highByte(crc));
} else {
crc = solaxX1_calculateCRC(SendBuffer, DataLen); // Use CRC Solax algorithm
solaxX1Serial->write(highByte(crc));
solaxX1Serial->write(lowByte(crc));
}
solaxX1Serial->flush();
if (PinUsed(GPIO_SOLAXX1_RTS)) digitalWrite(Pin(GPIO_SOLAXX1_RTS), LOW);
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, SendBuffer, DataLen);
}
bool solaxX1_RS485Receive(uint8_t *ReadBuffer) {
uint8_t SerAvial;
uint8_t len = 0;
while (SerAvial = solaxX1Serial->available()) {
while (SerAvial--) {
ReadBuffer[len++] = (uint8_t)solaxX1Serial->read();
}
delay(10); // wait for more data because of slowness of the inverter
}
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, ReadBuffer, len);
// Check and set meter mode
solaxX1_SwitchMeterMode((ReadBuffer[0] == 0x01 || ReadBuffer[0] == 0x02) && (ReadBuffer[1] == 0x03 || ReadBuffer[1] == 0x04));
if (solaxX1_global.MeterMode) return false; // Ignore checksum in metermode
uint16_t crc = solaxX1_calculateCRC(ReadBuffer, len - 2); // calculate out crc bytes
return !(ReadBuffer[len - 1] == lowByte(crc) && ReadBuffer[len - 2] == highByte(crc));
}
uint16_t solaxX1_calculateCRC(uint8_t *bExternTxPackage, uint8_t bLen) {
uint8_t i;
uint16_t wChkSum = 0;
for (i = 0; i < bLen; i++) {
wChkSum += bExternTxPackage[i];
}
return wChkSum;
}
uint16_t solaxX1_calculateCRC_MBUS(uint8_t *frame, uint8_t Len) {
uint16_t crc = 0xFFFF;
for (uint32_t i = 0; i < Len; i++) {
crc ^= frame[i];
for (uint32_t j = 8; j; j--) {
if ((crc & 0x0001) != 0) { // If the LSB is set
crc >>= 1; // Shift right and XOR 0xA001
crc ^= 0xA001;
} else { // Else LSB is not set
crc >>= 1; // Just shift right
}
}
}
return crc;
}
void solaxX1_ExtractText(uint8_t *DataIn, uint8_t *DataOut, uint8_t Begin, uint8_t End) {
uint8_t i;
for (i = Begin; i <= End; i++) {
DataOut[i - Begin] = DataIn[i];
}
DataOut[End - Begin + 1] = 0;
}
void solaxX1_QueryOfflineInverters(void) {
solaxX1_SendData.Source[0] = 0x01;
solaxX1_SendData.Destination[0] = 0x00;
solaxX1_SendData.Destination[1] = 0x00;
solaxX1_SendData.ControlCode[0] = 0x10;
solaxX1_SendData.FunctionCode[0] = 0x00;
solaxX1_SendData.DataLength[0] = 0x00;
solaxX1_RS485Send();
}
void solaxX1_SendInverterAddress(void) {
solaxX1_SendData.Source[0] = 0x00;
solaxX1_SendData.Destination[0] = 0x00;
solaxX1_SendData.Destination[1] = 0x00;
solaxX1_SendData.ControlCode[0] = 0x10;
solaxX1_SendData.FunctionCode[0] = 0x01;
solaxX1_SendData.DataLength[0] = 0x0F;
solaxX1_SendData.Payload[14] = INVERTER_ADDRESS; // Inverter Address, It must be unique in case of more inverters in the same rs485 net.
solaxX1_RS485Send();
}
void solaxX1_QueryLiveData(void) {
solaxX1_SendData.Source[0] = 0x01;
solaxX1_SendData.Destination[0] = 0x00;
solaxX1_SendData.Destination[1] = INVERTER_ADDRESS;
solaxX1_SendData.ControlCode[0] = 0x11;
solaxX1_SendData.FunctionCode[0] = 0x02;
solaxX1_SendData.DataLength[0] = 0x00;
solaxX1_RS485Send();
}
void solaxX1_QueryIDData(void) {
solaxX1_SendData.Source[0] = 0x01;
solaxX1_SendData.Destination[0] = 0x00;
solaxX1_SendData.Destination[1] = INVERTER_ADDRESS;
solaxX1_SendData.ControlCode[0] = 0x11;
solaxX1_SendData.FunctionCode[0] = 0x03;
solaxX1_SendData.DataLength[0] = 0x00;
solaxX1_RS485Send();
}
void solaxX1_QueryConfigData(void) {
solaxX1_SendData.Source[0] = 0x01;
solaxX1_SendData.Destination[0] = 0x00;
solaxX1_SendData.Destination[1] = INVERTER_ADDRESS;
solaxX1_SendData.ControlCode[0] = 0x11;
solaxX1_SendData.FunctionCode[0] = 0x04;
solaxX1_SendData.DataLength[0] = 0x00;
solaxX1_RS485Send();
}
uint8_t solaxX1_ParseErrorCode(uint32_t code) {
solaxX1_ErrCode.ErrMessage = code;
if (code == 0) return 0;
if (solaxX1_ErrCode.MainsLostFault) return 1;
if (solaxX1_ErrCode.GridVoltFault) return 2;
if (solaxX1_ErrCode.GridFreqFault) return 3;
if (solaxX1_ErrCode.PvVoltFault) return 4;
if (solaxX1_ErrCode.IsolationFault) return 5;
if (solaxX1_ErrCode.TemperatureOverFault) return 6;
if (solaxX1_ErrCode.FanFault) return 7;
if (solaxX1_ErrCode.OtherDeviceFault) return 8;
return 0;
}
void solaxX1_SwitchMeterMode(bool MeterMode) {
if (solaxX1_global.MeterMode == MeterMode) return;
solaxX1_global.MeterMode = MeterMode;
if (MeterMode) {
Energy->data_valid[0] = ENERGY_WATCHDOG;
solaxX1.runMode = -2;
solaxX1.temperature = solaxX1.dc1_voltage = solaxX1.dc1_current = solaxX1.dc1_power = solaxX1.dc2_voltage = solaxX1.dc2_current = solaxX1.dc2_power = 0;
} else {
solaxX1.runMode = -1;
}
}
/*********************************************************************************************/
void solaxX1_CyclicTask(void) { // Every 100/250 milliseconds
uint8_t DataRead[SOLAXX1_BUFFERSIZE] = {0};
uint8_t TempData[16] = {0};
char TempDataChar[32];
float TempFloat;
static uint32_t LastMeterTime;
static uint16_t MtrReg, MtrPwr32, MtrPwr16, MtrImp32, MtrExp32, MrtTot64, MtrRest;
if (solaxX1Serial->available()) {
if (solaxX1_RS485Receive(DataRead)) { // CRC or other error -> no further action
AddLog(LOG_LEVEL_ERROR, PSTR("SX1: (CRC) error in received data"));
return;
}
if (solaxX1_global.MeterMode) { // Metermode
AddLog(LOG_LEVEL_DEBUG, PSTR("SX1: Metermode %02X %02X xx %02X"), DataRead[0], DataRead[1], DataRead[3]);
LastMeterTime = TasmotaGlobal.uptime;
if (DataRead[0] != 0x01) return; // Respond only to requests for meter #1
switch (DataRead[3]) {
case 0x0B: // received "Register meter request"
//solaxX1_RS485SendMeterInt16(0); // Tell inverter to request int16 values
solaxX1_RS485SendMeterInt16(0xa8); // Tell inverter to request float32 values
MtrReg++;
break;
case 0x0C: // received "Power request (32 bit float)"
solaxX1_RS485SendMeterFloat(solaxX1_global.MeterPower);
MtrPwr32++;
break;
case 0x0E: // received "Power request (16 bit int)"
solaxX1_RS485SendMeterInt16((int16_t)solaxX1_global.MeterPower);
MtrPwr16++;
break;
case 0x48: // received "Import request (32 bit float)"
solaxX1_RS485SendMeterFloat(solaxX1_global.MeterImport);
MtrImp32++;
break;
case 0x4A: // received "Export request (32 bit float)"
solaxX1_RS485SendMeterFloat(solaxX1_global.MeterExport);
MtrExp32++;
break;
case 0x08: // received "Energy total request (2*32 bit uint)"
solaxX1_RS485SendMeterTotalInt((uint32_t)(solaxX1_global.MeterExport * 100.0), (uint32_t)(solaxX1_global.MeterImport * 100.0));
MrtTot64++;
break;
default:
MtrRest++;
}
AddLog(LOG_LEVEL_DEBUG, PSTR("SX1: MtrReg %d, MtrPwr32 %d, MtrPwr16 %d, MtrImp32 %d, MtrExp32 %d, MrtTot64 %d, MtrRest %d"), MtrReg, MtrPwr32, MtrPwr16, MtrImp32, MtrExp32, MrtTot64, MtrRest);
return;
}
if (DataRead[0] != 0xAA || DataRead[1] != 0x55) { // Check for header
AddLog(LOG_LEVEL_ERROR, PSTR("SX1: Header check failed: %02X %02X"), DataRead[0], DataRead[1]);
return;
}
solaxX1_global.SendRetry_count = 20; // Inverter is responding
if (DataRead[6] == 0x11 && DataRead[7] == 0x82) { // received "Response for query (live data)"
Energy->data_valid[0] = 0;
solaxX1.temperature = (DataRead[9] << 8) | DataRead[10]; // Temperature
solaxX1.energy_today = ((DataRead[11] << 8) | DataRead[12]) * 0.1f; // Energy Today
solaxX1.dc1_voltage = ((DataRead[13] << 8) | DataRead[14]) * 0.1f; // PV1 Voltage
solaxX1.dc2_voltage = ((DataRead[15] << 8) | DataRead[16]) * 0.1f; // PV2 Voltage
solaxX1.dc1_current = ((DataRead[17] << 8) | DataRead[18]) * 0.1f; // PV1 Current
solaxX1.dc2_current = ((DataRead[19] << 8) | DataRead[20]) * 0.1f; // PV2 Current
Energy->current[0] = ((DataRead[21] << 8) | DataRead[22]) * 0.1f; // AC Current
Energy->voltage[0] = ((DataRead[23] << 8) | DataRead[24]) * 0.1f; // AC Voltage
Energy->frequency[0] = ((DataRead[25] << 8) | DataRead[26]) * 0.01f; // AC Frequency
Energy->active_power[0] = ((DataRead[27] << 8) | DataRead[28]); // AC Power
//temporal = (float)((DataRead[29] << 8) | DataRead[30]) * 0.1f; // Not Used
solaxX1.energy_total = ((DataRead[31] << 24) | (DataRead[32] << 16) | (DataRead[33] << 8) | DataRead[34]) * 0.1f; // Energy Total
uint32_t runtime_total = (DataRead[35] << 24) | (DataRead[36] << 16) | (DataRead[37] << 8) | DataRead[38]; // Work Time Total
if (runtime_total) solaxX1.runtime_total = runtime_total; // Work Time valid
solaxX1.runMode = (DataRead[39] << 8) | DataRead[40]; // Work mode
//temporal = (float)((DataRead[41] << 8) | DataRead[42]); // Grid voltage fault value 0.1V
//temporal = (float)((DataRead[43] << 8) | DataRead[44]); // Gird frequency fault value 0.01Hz
//temporal = (float)((DataRead[45] << 8) | DataRead[46]); // Dc injection fault value 1mA
//temporal = (float)((DataRead[47] << 8) | DataRead[48]); // Temperature fault value
//temporal = (float)((DataRead[49] << 8) | DataRead[50]); // Pv1 voltage fault value 0.1V
//temporal = (float)((DataRead[51] << 8) | DataRead[52]); // Pv2 voltage fault value 0.1V
//temporal = (float)((DataRead[53] << 8) | DataRead[54]); // GFC fault value
solaxX1.errorCode = (DataRead[58] << 24) | (DataRead[57] << 16) | (DataRead[56] << 8) | DataRead[55]; // Error Code
solaxX1.dc1_power = solaxX1.dc1_voltage * solaxX1.dc1_current;
solaxX1.dc2_power = solaxX1.dc2_voltage * solaxX1.dc2_current;
if (Settings->flag3.hardware_energy_total) { // SetOption72 - Enable hardware energy total counter as reference (#6561)
Energy->import_active[0] = solaxX1.energy_total;
EnergyUpdateTotal(); // 484.708 kWh
}
DEBUG_SENSOR_LOG(PSTR("SX1: received live data"));
return;
} // end received "Response for query (live data)"
if (DataRead[6] == 0x11 && DataRead[7] == 0x83) { // received "Response for query (ID data)"
solaxX1_ExtractText(DataRead, solaxX1.SerialNumber, 49, 62); // extract "real" serial number
if (solaxX1_global.Command_QueryID) {
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter phases: %d"),DataRead[9]); // number of phases
solaxX1_ExtractText(DataRead, TempData, 10, 15); // extract rated bus power (my be empty)
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter rated bus power: %s"),(char*)TempData);
solaxX1_ExtractText(DataRead, TempData, 16, 20); // extract firmware version
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter firmware version: %s"),(char*)TempData);
solaxX1_ExtractText(DataRead, TempData, 21, 34); // extract module name (my be empty)
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter module name: %s"),(char*)TempData);
solaxX1_ExtractText(DataRead, TempData, 35, 48); // extract factory name
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter factory name: %s"),(char*)TempData);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter serial number: %s"),(char*)solaxX1.SerialNumber);
solaxX1_ExtractText(DataRead, TempData, 63, 66); // extract rated bus voltage
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter rated bus voltage: %s"),(char*)TempData);
solaxX1_global.Command_QueryID = false;
} else {
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter serial number: %s"),(char*)solaxX1.SerialNumber);
}
DEBUG_SENSOR_LOG(PSTR("SX1: received ID data"));
return;
} // end received "Response for query (ID data)"
#ifdef SOLAXX1_READCONFIG
if (DataRead[6] == 0x11 && DataRead[7] == 0x84) { // received "Response for query (config data)"
if (solaxX1_global.Command_QueryConfig) {
// This values are displayed as they were received from the inverter. They are not interpreted in any way.
TempFloat = ((DataRead[9] << 8) | DataRead[10]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVpvStart: %1_f V (Inverter launch voltage threshold)"), &TempFloat);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wTimeStart: %d sec (launch wait time)"), (DataRead[11] << 8) | DataRead[12]);
TempFloat = ((DataRead[13] << 8) | DataRead[14]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMinProtect: %1_f V (allowed minimum grid voltage)"), &TempFloat);
TempFloat = ((DataRead[15] << 8) | DataRead[16]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMaxProtect: %1_f V (allowed maximum grid voltage)"), &TempFloat);
TempFloat = ((DataRead[17] << 8) | DataRead[18]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMinProtect: %2_f Hz (allowed minimum grid frequency)"), &TempFloat);
TempFloat = ((DataRead[19] << 8) | DataRead[20]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMaxProtect: %2_f Hz (allowed maximum grid frequency)"), &TempFloat);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wDciLimits: %d mA (DC component limits)"), (DataRead[21] << 8) | DataRead[22]);
TempFloat = ((DataRead[23] << 8) | DataRead[24]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wGrid10MinAvgProtect: %1_f V (10 minutes over voltage protect)"), &TempFloat);
TempFloat = ((DataRead[25] << 8) | DataRead[26]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMinSlowProtect: %1_f V (grid undervoltage protect value)"), &TempFloat);
TempFloat = ((DataRead[27] << 8) | DataRead[28]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMaxSlowProtect: %1_f V (grid overvoltage protect value)"), &TempFloat);
TempFloat = ((DataRead[29] << 8) | DataRead[30]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMinSlowProtect: %2_f Hz (grid underfrequency protect value)"), &TempFloat);
TempFloat = ((DataRead[31] << 8) | DataRead[32]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMaxSlowProtect: %2_f Hz (grid overfrequency protect value)"), &TempFloat);
GetTextIndexed(TempDataChar, sizeof(TempDataChar), (DataRead[33] << 8) | DataRead[34], kSolaxSafetyType);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wSafety: %d ≙ %s"), (DataRead[33] << 8) | DataRead[34], TempDataChar);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerfactor_mode: %d"), DataRead[35]);
TempFloat = DataRead[36] * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerfactor_data: %2_f"), &TempFloat);
TempFloat = DataRead[37] * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wUpperLimit: %2_f (overexcite limits)"), &TempFloat);
TempFloat = DataRead[38] * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wLowerLimit: %2_f (underexcite limits)"), &TempFloat);
TempFloat = DataRead[39] * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerLow: %2_f (power ratio change upper limits)"), &TempFloat);
TempFloat = DataRead[40] * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerUp: %2_f (power ratio change lower limits)"), &TempFloat);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Qpower_set: %d"), (DataRead[41] << 8) | DataRead[42]);
TempFloat = ((DataRead[43] << 8) | DataRead[44]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFreqSetPoint: %2_f Hz (Over Frequency drop output setpoint)"), &TempFloat);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFreqDroopRate: %d %% (drop output slope)"), (DataRead[45] << 8) | DataRead[46]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: QuVupRate: %d %% (Q(U) curve up set point)"), (DataRead[47] << 8) | DataRead[48]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: QuVlowRate: %d %% (Q(U) curve low set point)"), (DataRead[49] << 8) | DataRead[50]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WPowerLimitsPercent: %d %%"), (DataRead[51] << 8) | DataRead[52]);
TempFloat = ((DataRead[53] << 8) | DataRead[54]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WWgra: %2_f %%"), &TempFloat);
TempFloat = ((DataRead[55] << 8) | DataRead[56]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wWv2: %1_f V"), &TempFloat);
TempFloat = ((DataRead[57] << 8) | DataRead[58]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wWv3: %1_f V"), &TempFloat);
TempFloat = ((DataRead[59] << 8) | DataRead[60]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wWv4: %1_f V"), &TempFloat);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wQurangeV1: %d %%"), (DataRead[61] << 8) | DataRead[62]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wQurangeV4: %d %%"), (DataRead[63] << 8) | DataRead[64]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: BVoltPowerLimit: %d"), (DataRead[65] << 8) | DataRead[66]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WPowerManagerEnable: %d"), (DataRead[67] << 8) | DataRead[68]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WGlobalSeachMPPTStrartFlg: %d"), (DataRead[69] << 8) | DataRead[70]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFrqProtectRestrictive: %d"), (DataRead[71] << 8) | DataRead[72]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WQuDelayTimer: %d sec"), (DataRead[73] << 8) | DataRead[74]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFreqActivePowerDelayTimer: %d ms"), (DataRead[75] << 8) | DataRead[76]);
solaxX1_global.Command_QueryConfig = false;
}
DEBUG_SENSOR_LOG(PSTR("SX1: received config data"));
return;
} // end received "Response for query (config data)"
#endif // SOLAXX1_READCONFIG
if (DataRead[6] == 0x10 && DataRead[7] == 0x80) { // received "register request"
solaxX1_global.QueryData_count = 5; // give time for next query
solaxX1_ExtractText(DataRead, solaxX1_SendData.Payload, 9, 22); // store serial number for register
DEBUG_SENSOR_LOG(PSTR("SX1: received register request and send register address"));
solaxX1_SendInverterAddress(); // "send register address"
return;
}
if (DataRead[6] == 0x10 && DataRead[7] == 0x81 && DataRead[9] == 0x06) { // received "address confirm (ACK)"
solaxX1_global.QueryData_count = 5; // give time for next query
solaxX1_global.AddressAssigned = true;
DEBUG_SENSOR_LOG(PSTR("SX1: received \"address confirm (ACK)\""));
return;
}
} // end solaxX1Serial->available()
if(solaxX1_global.MeterMode) {
if (TasmotaGlobal.uptime > LastMeterTime + 20) solaxX1_SwitchMeterMode(false); // Switch back to normal mode, when no Meter request is received for 20 sec.
return;
}
// DEBUG_SENSOR_LOG(PSTR("SX1: solaxX1_global.AddressAssigned: %d, solaxX1_global.QueryData_count: %d, solaxX1_global.SendRetry_count: %d"), solaxX1_global.AddressAssigned, solaxX1_global.QueryData_count, solaxX1_global.SendRetry_count);
if (solaxX1_global.AddressAssigned) {
if (!solaxX1_global.QueryData_count) { // normal periodically query
solaxX1_global.QueryData_count = 3;
if (!solaxX1.SerialNumber[0] || solaxX1_global.Command_QueryID) { // ID query
DEBUG_SENSOR_LOG(PSTR("SX1: Send ID query"));
solaxX1_QueryIDData();
} else if (solaxX1_global.Command_QueryConfig) { // Config query
DEBUG_SENSOR_LOG(PSTR("SX1: Send config query"));
solaxX1_QueryConfigData();
} else { // live query
DEBUG_SENSOR_LOG(PSTR("SX1: Send live query"));
solaxX1_QueryLiveData();
}
} // end normal periodically query
solaxX1_global.QueryData_count--;
if (!solaxX1_global.SendRetry_count) { // Inverter went "off"
solaxX1_global.SendRetry_count = 20;
DEBUG_SENSOR_LOG(PSTR("SX1: Inverter went \"off\""));
Energy->data_valid[0] = ENERGY_WATCHDOG;
solaxX1.temperature = solaxX1.dc1_voltage = solaxX1.dc1_current = solaxX1.dc1_power = solaxX1.dc2_voltage = solaxX1.dc2_current = solaxX1.dc2_power = 0;
solaxX1.runMode = -1; // off(line)
solaxX1_global.AddressAssigned = false;
} // end Inverter went "off"
} else { // sent query for inverters in offline status
if (!solaxX1_global.SendRetry_count) {
solaxX1_global.Command_QueryConfig = solaxX1_global.Command_QueryID = false; // Clear commands to be sure
solaxX1_global.SendRetry_count = 20;
DEBUG_SENSOR_LOG(PSTR("SX1: Sent query for inverters in offline state"));
solaxX1_QueryOfflineInverters();
}
}
solaxX1_global.SendRetry_count--;
return;
} // end solaxX1_CyclicTask
void solaxX1_EverySecond(void) {
if (Settings->flag3.hardware_energy_total) return; // SetOption72 - Enable hardware energy total counter as reference (#6561)
if (Energy->data_valid[0]) return;
Energy->kWhtoday_delta[0] += Energy->active_power[0] * 1000 / 36;
EnergyUpdateToday();
} // end solaxX1_EverySecond
void solaxX1_SnsInit(void) {
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Init - RX-pin: %d, TX-pin: %d, RTS-pin: %d"), Pin(GPIO_SOLAXX1_RX), Pin(GPIO_SOLAXX1_TX), Pin(GPIO_SOLAXX1_RTS));
solaxX1Serial = new TasmotaSerial(Pin(GPIO_SOLAXX1_RX), Pin(GPIO_SOLAXX1_TX), 1, 1, SOLAXX1_BUFFERSIZE);
if (solaxX1Serial->begin(SOLAXX1_SPEED)) {
if (solaxX1Serial->hardwareSerial()) { ClaimSerial(); }
#ifdef ESP32
AddLog(LOG_LEVEL_DEBUG, PSTR("SX1: Serial UART%d"), solaxX1Serial->getUart());
#endif
if (PinUsed(GPIO_SOLAXX1_RTS)) pinMode(Pin(GPIO_SOLAXX1_RTS), OUTPUT);
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void solaxX1_DrvInit(void) {
if (PinUsed(GPIO_SOLAXX1_RX) && PinUsed(GPIO_SOLAXX1_TX)) {
TasmotaGlobal.energy_driver = XNRG_12;
Energy->type_dc = true; // Handle like DC, because U*I from inverter is not valid for apparent power; U*I could be lower than active power
Energy->frequency[0] = 0; // Set value, to make frequency present in output
}
}
bool SolaxX1_cmd(void) {
if (Energy->command_code != CMND_ENERGYCONFIG) return false; // Process unchanged data
if (!strncasecmp(XdrvMailbox.data, "MeterPower", 10)) {
solaxX1_global.MeterPower = CharToFloat(&XdrvMailbox.data[11]);
ResponseCmndFloat(solaxX1_global.MeterPower, 1);
AddLog(LOG_LEVEL_DEBUG, PSTR("SX1: MeterPower: %3_f"), &solaxX1_global.MeterPower);
return false;
} else if (!strncasecmp(XdrvMailbox.data, "MeterImport", 11)) {
solaxX1_global.MeterImport = CharToFloat(&XdrvMailbox.data[12]);
ResponseCmndFloat(solaxX1_global.MeterImport, 8);
AddLog(LOG_LEVEL_DEBUG, PSTR("SX1: MeterImport: %3_f"), &solaxX1_global.MeterImport);
return false;
} else if (!strncasecmp(XdrvMailbox.data, "MeterExport", 11)) {
solaxX1_global.MeterExport = CharToFloat(&XdrvMailbox.data[12]);
ResponseCmndFloat(solaxX1_global.MeterExport, 8);
AddLog(LOG_LEVEL_DEBUG, PSTR("SX1: MeterExport: %3_f"), &solaxX1_global.MeterExport);
return false;
}
if (!solaxX1_global.AddressAssigned) {
AddLog(LOG_LEVEL_INFO, PSTR("SX1: No inverter registered"));
return false;
}
if (!strcasecmp(XdrvMailbox.data, "ReadIDinfo")) {
solaxX1_global.Command_QueryID = true;
return true;
} else if (!strcasecmp(XdrvMailbox.data, "ReadConfig")) {
#ifdef SOLAXX1_READCONFIG
solaxX1_global.Command_QueryConfig = true;
return true;
#else
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Command not available. Please set compiler directive '#define SOLAXX1_READCONFIG'."));
return false;
#endif // SOLAXX1_READCONFIG
}
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Unknown command: \"%s\""),XdrvMailbox.data);
return false;
}
#ifdef USE_WEBSERVER
const char HTTP_SNS_solaxX1_Num[] PROGMEM = "{s}" D_SOLAX_X1 " %s{m}</td><td style='text-align:%s'>%s{m}{m}%s{e}";
const char HTTP_SNS_solaxX1_Str[] PROGMEM = "{s}" D_SOLAX_X1 " %s</td><td style='text-align:right'>%s{e}";
const char HTTP_SNS_solaxX1_Mtr[] PROGMEM = "{s}" D_GATEWAY " %s{m}</td><td style='text-align:%s'>%s{m}{m}%s{e}";
#endif // USE_WEBSERVER
void solaxX1_Show(uint32_t function) {
char solar_power[33];
dtostrfd(solaxX1.dc1_power + solaxX1.dc2_power, Settings->flag2.wattage_resolution, solar_power);
char pv1_voltage[33];
dtostrfd(solaxX1.dc1_voltage, Settings->flag2.voltage_resolution, pv1_voltage);
char pv1_current[33];
dtostrfd(solaxX1.dc1_current, Settings->flag2.current_resolution, pv1_current);
char pv1_power[33];
dtostrfd(solaxX1.dc1_power, Settings->flag2.wattage_resolution, pv1_power);
#ifdef SOLAXX1_PV2
char pv2_voltage[33];
dtostrfd(solaxX1.dc2_voltage, Settings->flag2.voltage_resolution, pv2_voltage);
char pv2_current[33];
dtostrfd(solaxX1.dc2_current, Settings->flag2.current_resolution, pv2_current);
char pv2_power[33];
dtostrfd(solaxX1.dc2_power, Settings->flag2.wattage_resolution, pv2_power);
#endif
char inverter_today[33];
dtostrfd(solaxX1.energy_today, Settings->flag2.energy_resolution, inverter_today);
char inverter_total[33];
dtostrfd(solaxX1.energy_total, Settings->flag2.energy_resolution, inverter_total);
char status[33];
GetTextIndexed(status, sizeof(status), solaxX1.runMode + 2, kSolaxMode);
switch (function) {
case FUNC_JSON_APPEND:
ResponseAppend_P(PSTR(",\"" D_JSON_SOLAR_POWER "\":%s,\"" D_JSON_PV1_VOLTAGE "\":%s,\"" D_JSON_PV1_CURRENT "\":%s,\"" D_JSON_PV1_POWER "\":%s"),
solar_power, pv1_voltage, pv1_current, pv1_power);
#ifdef SOLAXX1_PV2
ResponseAppend_P(PSTR(",\"" D_JSON_PV2_VOLTAGE "\":%s,\"" D_JSON_PV2_CURRENT "\":%s,\"" D_JSON_PV2_POWER "\":%s"),
pv2_voltage, pv2_current, pv2_power);
#endif
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE "\":%d,\"" D_JSON_RUNTIME "\":%d,\"" D_JSON_STATUS "\":\"%s\",\"" D_JSON_ERROR "\":%d"),
solaxX1.temperature, solaxX1.runtime_total, status, solaxX1.errorCode);
#ifdef USE_DOMOTICZ
// Avoid bad temperature report at beginning of the day (spikes of 1200 celsius degrees)
if (0 == TasmotaGlobal.tele_period && solaxX1.temperature < 100) { DomoticzSensor(DZ_TEMP, solaxX1.temperature); }
#endif // USE_DOMOTICZ
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_COL_SENSOR: {
String table_align = Settings->flag5.gui_table_align?"right":"left";
if (solaxX1_global.MeterMode) {
char TempDataChar[33];
WSContentSend_P(PSTR("<tr><td colspan=5 style='font-size:2px'><hr size=1/>{e}"));
dtostrfd(solaxX1_global.MeterPower, Settings->flag2.wattage_resolution, TempDataChar);
WSContentSend_PD(HTTP_SNS_solaxX1_Mtr, D_POWERUSAGE, table_align.c_str(), TempDataChar, D_UNIT_WATT);
dtostrfd(solaxX1_global.MeterImport, Settings->flag2.energy_resolution, TempDataChar);
WSContentSend_PD(HTTP_SNS_solaxX1_Mtr, "Import", table_align.c_str(), TempDataChar, D_UNIT_KILOWATTHOUR);
dtostrfd(solaxX1_global.MeterExport, Settings->flag2.energy_resolution, TempDataChar);
WSContentSend_PD(HTTP_SNS_solaxX1_Mtr, "Export", table_align.c_str(), TempDataChar, D_UNIT_KILOWATTHOUR);
return;
}
static uint32_t LastOnlineTime;
if (solaxX1.runMode != -1) LastOnlineTime = TasmotaGlobal.uptime;
if (TasmotaGlobal.uptime < LastOnlineTime + 300) { // Hide numeric live data, when inverter is offline for more than 5 min
#ifdef SOLAXX1_PV2
WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_SOLAR_POWER, table_align.c_str(), solar_power, D_UNIT_WATT);
#endif
WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV1_VOLTAGE, table_align.c_str(), pv1_voltage, D_UNIT_VOLT);
WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV1_CURRENT, table_align.c_str(), pv1_current, D_UNIT_AMPERE);
WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV1_POWER, table_align.c_str(), pv1_power, D_UNIT_WATT);
#ifdef SOLAXX1_PV2
WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV2_VOLTAGE, table_align.c_str(), pv2_voltage, D_UNIT_VOLT);
WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV2_CURRENT, table_align.c_str(), pv2_current, D_UNIT_AMPERE);
WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_PV2_POWER, table_align.c_str(), pv2_power, D_UNIT_WATT);
#endif
if (!Settings->flag3.hardware_energy_total) { // SetOption72 - Enable hardware energy total counter as reference (#6561)
WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_ENERGY_TODAY, table_align.c_str(), inverter_today, D_UNIT_KILOWATTHOUR);
WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_ENERGY_TOTAL, table_align.c_str(), inverter_total, D_UNIT_KILOWATTHOUR);
}
char SXTemperature[16];
dtostrfd(solaxX1.temperature, Settings->flag2.temperature_resolution, SXTemperature);
WSContentSend_PD(HTTP_SNS_solaxX1_Num, D_TEMPERATURE, table_align.c_str(), SXTemperature, D_UNIT_DEGREE D_UNIT_CELSIUS);
}
WSContentSend_P(HTTP_SNS_solaxX1_Num, D_UPTIME, table_align.c_str(), String(solaxX1.runtime_total).c_str(), D_UNIT_HOUR);
break; }
case FUNC_WEB_SENSOR:
if (solaxX1_global.MeterMode) return;
char errorCodeString[33];
WSContentSend_P(HTTP_SNS_solaxX1_Str, D_STATUS, status);
WSContentSend_P(HTTP_SNS_solaxX1_Str, D_ERROR, GetTextIndexed(errorCodeString, sizeof(errorCodeString), solaxX1_ParseErrorCode(solaxX1.errorCode), kSolaxError));
if (solaxX1.SerialNumber[0]) WSContentSend_P(HTTP_SNS_solaxX1_Str, "Inverter SN", solaxX1.SerialNumber);
break;
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg12(uint32_t function) {
bool result = false;
switch (function) {
case FUNC_EVERY_100_MSECOND:
if (solaxX1_global.MeterMode) solaxX1_CyclicTask();
break;
case FUNC_EVERY_250_MSECOND:
if (!solaxX1_global.MeterMode) solaxX1_CyclicTask();
break;
case FUNC_EVERY_SECOND:
solaxX1_EverySecond();
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_COL_SENSOR:
case FUNC_WEB_SENSOR:
#endif // USE_WEBSERVER
case FUNC_JSON_APPEND:
solaxX1_Show(function);
break;
case FUNC_INIT:
solaxX1_SnsInit();
break;
case FUNC_PRE_INIT:
solaxX1_DrvInit();
break;
case FUNC_COMMAND:
result = SolaxX1_cmd();
break;
}
return result;
}
#endif // USE_SOLAX_X1_NRG
#endif // USE_ENERGY_SENSOR