Tasmota/tasmota/tasmota_xsns_sensor/xsns_63_aht1x.ino

231 lines
7.4 KiB
C++

/*
xsns_63_AHT1x.ino - AHT10 I2C temperature and humidity sensor support for Tasmota
Copyright (C) 2021 Martin Wagner
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#if defined(USE_AHT1x) || defined(USE_AHT2x) || defined(USE_AHT3x)
/*********************************************************************************************\
* AHT10/15/20 - Temperature and Humidity
*
* AHT1x I2C Address: 0x38, 0x39
* the driver supports two I2c adresses but only one Sensor allowed.
*
* Attention: the AHT10/15 Sensor is incompatible with other I2C devices on I2C bus.
*
* The Datasheet write:
* "Only a single AHT10 can be connected to the I2C bus and no other I2C
* devices can be connected".
*
* after lot of search and tests, now is confirmed that works only reliable with one sensor
* on I2C Bus
*
* 27.08.2020 support for AHT20 added. Now, the AHT20 should support standard I2C Protokoll
* and allows other I2C Devices on the bus but have only one I2C Address (0x38)
* 14.09.2021 support AHT20 without enabling AHT1x
*
* 26.10.2023 support for AHT30 added.
*
* AHT20 I2C Address: 0x38
* AHT30 I2C Address: 0x38
\*********************************************************************************************/
#define XSNS_63 63
#define XI2C_43 43 // See I2CDEVICES.md
#define AHT1X_ADDR1 0x38
#define AHT1X_ADDR2 0x39
#define AHT1X_MAX_SENSORS 2
#define AHT_HUMIDITY_CONST 100
#define AHT_TEMPERATURE_CONST 200
#define AHT_TEMPERATURE_OFFSET 50
#define KILOBYTE_CONST 1048576.0f
#define AHT1X_CMD_DELAY 20
#define AHT1X_RST_DELAY 10
#define AHT1X_MEAS_DELAY 80 // over 75ms in datasheet
#ifdef USE_AHT3x
#define AHTX_CMD 0xBE // Cmd for AHT3x
const char ahtTypes[] PROGMEM = "AHT3X|AHT3X";
#elif defined(USE_AHT2x)
#define AHTX_CMD 0xBE // Cmd for AHT2x
const char ahtTypes[] PROGMEM = "AHT2X|AHT2X";
#else
#define AHTX_CMD 0xE1 // Cmd for AHT1x
const char ahtTypes[] PROGMEM = "AHT1X|AHT1X";
#endif
uint8_t AHTSetCalCmd[3] = { AHTX_CMD, 0x08, 0x00 }; // load factory calibration coeff
uint8_t AHTSetCycleCmd[3] = { AHTX_CMD, 0x28, 0x00 }; // enable cycle mode
uint8_t AHTMeasureCmd[3] = { 0xAC, 0x33, 0x00 }; // start measurment command
uint8_t AHTResetCmd = 0xBA; // soft reset command
struct {
bool write_ok = false;
uint8_t addresses[2] = { AHT1X_ADDR1, AHT1X_ADDR2 };
uint8_t count = 0;
uint8_t Pcount = 0;
} aht1x;
struct {
float humidity = NAN;
float temperature = NAN;
uint8_t address; // bus address
char types[6]; // Sensor type name and address -
} aht1x_sensors[AHT1X_MAX_SENSORS];
bool AHT1XWrite(uint8_t aht1x_idx) {
TwoWire &wire = I2cGetWire();
wire.beginTransmission(aht1x_sensors[aht1x_idx].address);
wire.write(AHTMeasureCmd, 3);
if (wire.endTransmission() != 0)
return false;
delay(AHT1X_MEAS_DELAY);
return true;
}
bool AHT1XRead(uint8_t aht1x_idx) {
uint8_t data[6];
TwoWire &wire = I2cGetWire();
wire.requestFrom(aht1x_sensors[aht1x_idx].address, (uint8_t) 6);
for(uint8_t i = 0; wire.available() > 0; i++) {
data[i] = wire.read();
}
if (data[0] & 0x80)
return false; //device is busy
aht1x_sensors[aht1x_idx].humidity = (((data[1] << 12)| (data[2] << 4) | data[3] >> 4) * AHT_HUMIDITY_CONST / KILOBYTE_CONST);
aht1x_sensors[aht1x_idx].temperature = ((AHT_TEMPERATURE_CONST * (((data[3] & 0x0F) << 16) | (data[4] << 8) | data[5]) / KILOBYTE_CONST) - AHT_TEMPERATURE_OFFSET);
return (!isnan(aht1x_sensors[aht1x_idx].temperature) && !isnan(aht1x_sensors[aht1x_idx].humidity) && (aht1x_sensors[aht1x_idx].humidity != 0));
}
/********************************************************************************************/
// Polling the device without delays
// Incompatible with other devices on I2C bus
void AHT1XPoll(void) { // We have 100ms for read. Sensor needs 80-95 ms
aht1x.Pcount++;
switch (aht1x.Pcount) {
case 10:
aht1x.write_ok = AHT1XWrite(0);
break;
case 11:
if (aht1x.write_ok) AHT1XRead(0);
aht1x.Pcount = 0;
break;
}
}
unsigned char AHT1XReadStatus(uint8_t aht1x_address) {
uint8_t result = 0;
// Need for AHT20?
//Wire.beginTransmission(aht1x_address);
//Wire.write(0x71);
//if (Wire.endTransmission() != 0) return false;
TwoWire &wire = I2cGetWire();
wire.requestFrom(aht1x_address, (uint8_t) 1);
result = wire.read();
return result;
}
void AHT1XReset(uint8_t aht1x_address) {
TwoWire &wire = I2cGetWire();
wire.beginTransmission(aht1x_address);
wire.write(AHTResetCmd);
wire.endTransmission();
delay(AHT1X_RST_DELAY);
}
/********************************************************************************************/
bool AHT1XInit(uint8_t aht1x_address) {
TwoWire &wire = I2cGetWire();
wire.beginTransmission(aht1x_address);
wire.write(AHTSetCalCmd, 3);
if (wire.endTransmission() != 0)
return false;
delay(AHT1X_CMD_DELAY);
if(AHT1XReadStatus(aht1x_address) & 0x08) // Sensor calibrated?
return true;
return false;
}
void AHT1XDetect(void) {
for (uint8_t i = 0; i < AHT1X_MAX_SENSORS; i++) {
if (!I2cSetDevice(aht1x.addresses[i])) {continue;}
if (AHT1XInit(aht1x.addresses[i])) {
aht1x_sensors[aht1x.count].address = aht1x.addresses[i];
GetTextIndexed(aht1x_sensors[aht1x.count].types, sizeof(aht1x_sensors[aht1x.count].types), i, ahtTypes);
I2cSetActiveFound(aht1x_sensors[aht1x.count].address, aht1x_sensors[aht1x.count].types);
aht1x.count++;
break; // Only one Sensor allowed at the moment (I2C Sensor-Bug)
}
}
}
void AHT1XShow(bool json) {
for (uint32_t i = 0; i < aht1x.count; i++) {
float tem = ConvertTemp(aht1x_sensors[i].temperature);
float hum = ConvertHumidity(aht1x_sensors[i].humidity);
char types[11]; // AHT1X-0x38
strlcpy(types, aht1x_sensors[i].types, sizeof(types));
if (aht1x.count > 1) {
snprintf_P(types, sizeof(types), PSTR("%s%c%02X"), aht1x_sensors[i].types, IndexSeparator(), aht1x_sensors[i].address); // "X-0xXX"
}
TempHumDewShow(json, ((0 == TasmotaGlobal.tele_period) && (0 == i)), types, tem, hum);
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns63(uint32_t function)
{
if (!I2cEnabled(XI2C_43)) { return false; }
bool result = false;
if (FUNC_INIT == function) {
AHT1XDetect();
}
else if (aht1x.count) {
switch (function) {
case FUNC_EVERY_SECOND:
AHT1XPoll();
break;
case FUNC_JSON_APPEND:
AHT1XShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
AHT1XShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_AHT1X
#endif // USE_I2C