Tasmota/tasmota/xdrv_52_3_berry_native.ino

535 lines
18 KiB
C++

/*
xdrv_52_3_berry_native.ino - Berry scripting language, native fucnctions
Copyright (C) 2021 Stephan Hadinger, Berry language by Guan Wenliang https://github.com/Skiars/berry
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_BERRY
#include <berry.h>
#include <Wire.h>
const char kTypeError[] PROGMEM = "type_error";
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* log(msg:string [,log_level:int]) ->nil
*
* import tasmota
*
* tasmota.getfreeheap() -> int
* tasmota.publish(topic:string, payload:string[, retain:bool]) -> nil
* tasmota.cmd(command:string) -> string
* tasmota.getoption(index:int) -> int
* tasmota.millis([delay:int]) -> int
* tasmota.timereached(timer:int) -> bool
* tasmota.yield() -> nil
*
\*********************************************************************************************/
extern "C" {
// Berry: `tasmota.publish(topic, payload [,retain]) -> nil``
//
int32_t l_publish(struct bvm *vm);
int32_t l_publish(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 2 && be_isstring(vm, 1) && be_isstring(vm, 2)) { // 2 mandatory string arguments
if (top == 2 || (top == 3 && be_isbool(vm, 3))) { // 3rd optional argument must be bool
const char * topic = be_tostring(vm, 1);
const char * payload = be_tostring(vm, 2);
bool retain = false;
if (top == 3) {
retain = be_tobool(vm, 3);
}
strlcpy(TasmotaGlobal.mqtt_data, payload, sizeof(TasmotaGlobal.mqtt_data));
MqttPublish(topic, retain);
be_return(vm); // Return
}
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `tasmota.cmd(command:string) -> string`
//
int32_t l_cmd(struct bvm *vm);
int32_t l_cmd(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 && be_isstring(vm, 1)) { // only 1 argument of type string accepted
const char * command = be_tostring(vm, 1);
ExecuteCommand(command, SRC_BERRY);
be_pushstring(vm, TasmotaGlobal.mqtt_data);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.millis([delay:int]) -> int
//
int32_t l_millis(struct bvm *vm);
int32_t l_millis(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 0 || (top == 1 && be_isint(vm, 1))) { // only 1 argument of type string accepted
uint32_t delay = 0;
if (top == 1) {
delay = be_toint(vm, 1);
}
uint32_t ret_millis = millis() + delay;
be_pushint(vm, ret_millis);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.getoption(index:int) -> int
//
int32_t l_getoption(struct bvm *vm);
int32_t l_getoption(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 && be_isint(vm, 1)) {
uint32_t opt = GetOption(be_toint(vm, 1));
be_pushint(vm, opt);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.timereached(timer:int) -> bool
//
int32_t l_timereached(struct bvm *vm);
int32_t l_timereached(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 && be_isint(vm, 1)) { // only 1 argument of type string accepted
uint32_t timer = be_toint(vm, 1);
bool reached = TimeReached(timer);
be_pushbool(vm, reached);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.delay(timer:int) -> nil
//
int32_t l_delay(struct bvm *vm);
int32_t l_delay(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 && be_isint(vm, 1)) { // only 1 argument of type string accepted
uint32_t timer = be_toint(vm, 1);
delay(timer);
be_return_nil(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `yield() -> nil`
// ESP object
int32_t l_yield(bvm *vm);
int32_t l_yield(bvm *vm) {
optimistic_yield(10);
be_return(vm);
}
// Berry: `save(file:string, f:closure) -> bool`
int32_t l_save(struct bvm *vm);
int32_t l_save(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top ==2 && be_isstring(vm, 1) && be_isclosure(vm, 2)) { // only 1 argument of type string accepted
const char *fname = be_tostring(vm, 1);
int32_t ret = be_savecode(vm, fname);
be_pushint(vm, ret);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmnd(bvm *vm);
int32_t l_respCmnd(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1) {
const char *msg = be_tostring(vm, 1);
Response_P("%s", msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmndStr(bvm *vm);
int32_t l_respCmndStr(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1) {
const char *msg = be_tostring(vm, 1);
ResponseCmndChar(msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmndDone(bvm *vm);
int32_t l_respCmndDone(bvm *vm) {
ResponseCmndDone();
be_return_nil(vm);
}
int32_t l_respCmndError(bvm *vm);
int32_t l_respCmndError(bvm *vm) {
ResponseCmndError();
be_return_nil(vm);
}
int32_t l_respCmndFailed(bvm *vm);
int32_t l_respCmndFailed(bvm *vm) {
ResponseCmndFailed();
be_return_nil(vm);
}
// update XdrvMailbox.command with actual command
int32_t l_resolveCmnd(bvm *vm);
int32_t l_resolveCmnd(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 && be_isstring(vm, 1)) {
const char *msg = be_tostring(vm, 1);
strlcpy(XdrvMailbox.command, msg, CMDSZ);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
static void map_insert_int(bvm *vm, const char *key, int value)
{
be_pushstring(vm, key);
be_pushint(vm, value);
be_data_insert(vm, -3);
be_pop(vm, 2);
}
static void map_insert_bool(bvm *vm, const char *key, bool value)
{
be_pushstring(vm, key);
be_pushbool(vm, value);
be_data_insert(vm, -3);
be_pop(vm, 2);
}
static void map_insert_str(bvm *vm, const char *key, const char *value)
{
be_pushstring(vm, key);
be_pushstring(vm, value);
be_data_insert(vm, -3);
be_pop(vm, 2);
}
// get light
int32_t l_getlight(bvm *vm);
int32_t l_getlight(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 0 || (top == 1 && be_isint(vm, 1))) {
int32_t light_num = 0;
if (top > 0) {
light_num = be_toint(vm, 1);
}
bool data_present = false; // do we have relevant data
be_newobject(vm, "map");
// check if the light exist
// TasmotaGlobal.devices_present
// Light.device
// Light.subtype
// Light.pwm_multi_channels
// light_controller.isCTRGBLinked()
if (Light.device > 0) {
// we have a light
uint8_t channels[LST_MAX];
uint8_t channelsb[LST_MAX];
char rgbcw[12] = {0};
char rgbcwb[12] = {0};
light_state.getChannelsRaw(channels);
light_state.getChannels(channelsb);
// map_insert_int(vm, "_devices_present", TasmotaGlobal.devices_present);
// map_insert_int(vm, "_light_device", Light.device);
// map_insert_int(vm, "_light_subtype", Light.subtype);
// map_insert_int(vm, "_light_multi", Light.pwm_multi_channels);
// map_insert_int(vm, "_light_linked", light_controller.isCTRGBLinked());
if (!Light.pwm_multi_channels) {
uint32_t subtype = Light.subtype; // virtual sub-type, for SO37 128
uint32_t chanidx = 0; // channel offset, for SO37 128
if (light_controller.isCTRGBLinked() && (light_num == 0)) {
data_present = true; // valid combination
}
if (!light_controller.isCTRGBLinked()) {
if (light_num == 0) {
data_present = true; // valid combination
if (subtype > LST_RGB) { subtype = LST_RGB; } // limit to RGB
}
if ((light_num == 1) && subtype > LST_RGB) {
data_present = true; // valid combination
subtype = subtype - LST_RGB;
chanidx = 3; // skip first 3 channels
}
}
if (data_present) {
// see ResponseLightState()
map_insert_bool(vm, "power", (bool)(Light.power & 1));
map_insert_int(vm, "bri", light_state.getBri());
if (subtype >= LST_RGB) {
uint16_t hue;
uint8_t sat, bri;
light_state.getHSB(&hue, &sat, &bri);
map_insert_int(vm, "hue", hue);
map_insert_int(vm, "sat", sat);
}
if ((LST_COLDWARM == subtype) || (LST_RGBW <= subtype)) {
map_insert_int(vm, "ct", light_state.getCT());
}
if (subtype > LST_NONE) {
for (uint32_t i=0; i < subtype; i++) {
snprintf_P(rgbcw, sizeof(rgbcw), PSTR("%s%02X"), rgbcw, channels[i+chanidx]);
snprintf_P(rgbcwb, sizeof(rgbcwb), PSTR("%s%02X"), rgbcwb, channelsb[i+chanidx]);
}
map_insert_str(vm, "channels", rgbcw);
map_insert_str(vm, "channelsb", rgbcwb);
// map_insert_bool(vm, "gamma", Settings.light_correction);
}
}
} else { // Light.pwm_multi_channels
if ((light_num >= 0) && (light_num < LST_MAX)) {
data_present = true;
map_insert_bool(vm, "power", Light.power & (1 << light_num));
map_insert_int(vm, "bri", Light.current_color[light_num]);
snprintf_P(rgbcw, sizeof(rgbcw), PSTR("%02X"), channels[light_num]);
snprintf_P(rgbcwb, sizeof(rgbcwb), PSTR("%02X"), channelsb[light_num]);
map_insert_str(vm, "channels", rgbcw);
map_insert_str(vm, "channelsb", rgbcwb);
}
}
be_pop(vm, 1);
if (data_present) {
be_return(vm); // Return
} else {
be_return_nil(vm); // no data, return nil instead of empty map
}
} else {
be_return_nil(vm);
}
}
be_raise(vm, kTypeError, nullptr);
}
}
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* import wire
*
* wire.getfreeheap() -> int
*
\*********************************************************************************************/
extern "C" {
// Berry: `begintransmission(address:int) -> nil`
int32_t b_wire_begintransmission(struct bvm *vm);
int32_t b_wire_begintransmission(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 && be_isint(vm, 1)) { // only 1 argument of type string accepted
int32_t address = be_toint(vm, 1);
Wire.beginTransmission(address);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `endtransmission([stop:bool]) -> nil`
int32_t b_wire_endtransmission(struct bvm *vm);
int32_t b_wire_endtransmission(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 0 || (top == 1 && be_isbool(vm, 1))) { // only 1 argument of type string accepted
bool stop = true;
if (top == 1) {
stop = be_tobool(vm, 1);
}
uint32_t ret = Wire.endTransmission(stop);
be_pushint(vm, ret);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `requestfrom(address:int, quantity:int [stop:bool = true]) -> nil`
int32_t b_wire_requestfrom(struct bvm *vm);
int32_t b_wire_requestfrom(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if ( (top == 2 || (top == 3 && be_isbool(vm, 3)))
&& be_isint(vm, 1) && be_isint(vm, 2) ) {
int32_t address = be_toint(vm, 1);
int32_t quantity = be_toint(vm, 2);
bool stop = true;
if (top == 3) {
stop = be_tobool(vm, 3);
}
Wire.requestFrom((uint16_t)address, (uint8_t)quantity, stop);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `available() -> bool`
int32_t b_wire_available(struct bvm *vm);
int32_t b_wire_available(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 0) {
size_t available = Wire.available();
be_pushint(vm, available);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `write(value:int | s:string) -> nil`
int32_t b_wire_write(struct bvm *vm);
int32_t b_wire_write(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 && (be_isint(vm, 1) || be_isstring(vm, 1))) {
if (be_isint(vm, 1)) {
int32_t value = be_toint(vm, 1);
Wire.write(value);
} else if (be_isstring(vm, 1)) {
const char * s = be_tostring(vm, 1);
Wire.write(s);
} else {
be_return_nil(vm);
}
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `read() -> int`
int32_t b_wire_read(struct bvm *vm);
int32_t b_wire_read(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 0) {
int32_t value = Wire.read();
be_pushint(vm, value);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
int32_t b_wire_scan(struct bvm *vm);
int32_t b_wire_scan(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 0) {
be_newobject(vm, "list");
for (uint8_t address = 1; address <= 127; address++) {
Wire.beginTransmission(address);
int32_t error = Wire.endTransmission();
if (0 == error) {
be_pushint(vm, address);
be_data_push(vm, -2);
be_pop(vm, 1);
}
}
be_pop(vm, 1);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `validwrite(address:int, reg:int, val:int, size:int) -> bool or nil`
int32_t b_wire_validwrite(struct bvm *vm);
int32_t b_wire_validwrite(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 4 && be_isint(vm, 1) && be_isint(vm, 2) && be_isint(vm, 3) && be_isint(vm, 4)) {
uint8_t addr = be_toint(vm, 1);
uint8_t reg = be_toint(vm, 2);
uint8_t val = be_toint(vm, 3);
uint8_t size = be_toint(vm, 4);
bool ok = I2cWrite(addr, reg, val, size);
be_pushbool(vm, ok);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `validread(address:int, reg:int, size:int) -> int or nil`
int32_t b_wire_validread(struct bvm *vm);
int32_t b_wire_validread(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 3 && be_isint(vm, 1) && be_isint(vm, 2) && be_isint(vm, 3)) {
uint8_t addr = be_toint(vm, 1);
uint8_t reg = be_toint(vm, 2);
uint8_t size = be_toint(vm, 3);
bool ok = I2cValidRead(addr, reg, size);
if (ok) {
be_pushint(vm, i2c_buffer);
} else {
be_pushnil(vm);
}
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
}
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* log(msg:string [,log_level:int]) ->nil
*
\*********************************************************************************************/
extern "C" {
// Berry: `log(msg:string [,log_level:int]) ->nil`
// Logs the string at LOG_LEVEL_INFO (loglevel=2)
int32_t l_logInfo(struct bvm *vm);
int32_t l_logInfo(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 1 && be_isstring(vm, 1)) { // only 1 argument of type string accepted
const char * msg = be_tostring(vm, 1);
uint32_t log_level = LOG_LEVEL_INFO;
if (top >= 2 && be_isint(vm, 2)) {
log_level = be_toint(vm, 2);
if (log_level > LOG_LEVEL_DEBUG_MORE) { log_level = LOG_LEVEL_DEBUG_MORE; }
}
AddLog(log_level, PSTR("%s"), msg);
be_return(vm); // Return
}
be_return_nil(vm); // Return nil when something goes wrong
}
// Berry: `getFreeHeap() -> int`
// ESP object
int32_t l_getFreeHeap(bvm *vm);
int32_t l_getFreeHeap(bvm *vm) {
be_pushint(vm, ESP.getFreeHeap());
be_return(vm);
}
}
// called as a replacement to Berry `print()`
void berry_log(const char * berry_buf);
void berry_log(const char * berry_buf) {
AddLog(LOG_LEVEL_INFO, PSTR("%s"), berry_buf);
}
#endif // USE_BERRY