Tasmota/sonoff/xdrv_04_light.ino

2216 lines
80 KiB
C++

/*
xdrv_04_light.ino - PWM, WS2812 and sonoff led support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_LIGHT
/*********************************************************************************************\
* PWM, WS2812, Sonoff B1, AiLight, Sonoff Led and BN-SZ01, H801, MagicHome and Arilux
*
* light_type Module Color ColorTemp Modules
* ---------- --------- ----- --------- ----------------------------
* 0 - no (Sonoff Basic)
* 1 PWM1 W no (Sonoff BN-SZ)
* 2 PWM2 CW yes (Sonoff Led)
* 3 PWM3 RGB no (H801, MagicHome and Arilux LC01)
* 4 PWM4 RGBW no (H801, MagicHome and Arilux)
* 5 PWM5 RGBCW yes (H801, Arilux LC11)
* 9 reserved no
* 10 reserved yes
* 11 +WS2812 RGB no (One WS2812 RGB or RGBW ledstrip)
* 12 AiLight RGBW no
* 13 Sonoff B1 RGBCW yes
*
* light_scheme WS2812 3+ Colors 1+2 Colors Effect
* ------------ ------ --------- ---------- -----------------
* 0 yes yes yes Color On/Off
* 1 yes yes yes Wakeup light
* 2 yes yes no Color cycle RGB
* 3 yes yes no Color cycle RBG
* 4 yes yes no Random RGB colors
* 5 yes no no Clock
* 6 yes no no Incandescent
* 7 yes no no RGB
* 8 yes no no Christmas
* 9 yes no no Hanukkah
* 10 yes no no Kwanzaa
* 11 yes no no Rainbow
* 12 yes no no Fire
*
\*********************************************************************************************/
/*********************************************************************************************\
*
* Light management has been refactored to provide a cleaner class-based interface.
* Also, now all values are stored as integer, no more floats that could generate
* rounding errors.
*
* Two singletons are now used to control the state of the light.
* - light_state (LightStateClass) stores the color / white temperature and
* brightness. Use this object to READ only.
* - light_controller (LightControllerClass) is used to change light state
* and adjust all Settings and levels accordingly.
* Always use this object to change light status.
*
* As there have been lots of changes in light control, here is a summary out
* the whole flow from setting colors to drving the PMW pins.
*
* 1. To change colors, always use 'light_controller' object.
* 'light_state' is only to be used to read current state.
* .a For color bulbs, set color via changeRGB() or changeHS() for Hue/Sat.
* Set the overall brightness changeBri(0..255) or changeDimmer(0..100%)
* RGB and Hue/Sat are always kept in sync. Internally, RGB are stored at
* full range (max brightness) so that when you reduce brightness and
* raise it back again, colors don't change due to rounding errors.
* .b For white bulbs with Cold/Warm colortone, use changeCW() or changeCT()
* to change color-tone. Set overall brightness separately.
* Color-tone temperature can range from 153 (Cold) to 500 (Warm).
* CW channels are stored at full brightness to avoid rounding errors.
* .c Alternatively, you can set all 5 channels at once with changeChannels(),
* in this case it will also set the corresponding brightness.
*
* 2.a After any change, the Settings object is updated so that changes
* survive a reboot and can be stored in flash - in saveSettings()
* .b Actual channel values are computed from RGB or CT combined with brightness.
* Range is still 0..255 (8 bits) - in getActualRGBCW()
* .c The 5 internal channels RGBWC are mapped to the actual channels supproted
* by the light_type: in calcLevels()
* 1 channel - 0:Brightness
* 2 channels - 0:Coldwhite 1:Warmwhite
* 3 channels - 0:Red 1:Green 2:Blue
* 4 chennels - 0:Red 1:Green 2:Blue 3:White
* 5 chennels - 0:Red 1:Green 2:Blue 3:ColdWhite 4:Warmwhite
*
* 3. In LightAnimate(), final PWM values are computed at next tick.
* .a If color did not change since last tick - ignore.
* .b Extend resolution from 8 bits to 10 bits, which makes a significant
* difference when applying gamma correction at low brightness.
* .c Apply Gamma Correction if LedTable==1 (by default).
* Gamma Correction uses an adaptative resolution table from 11 to 8 bits.
* .d For Warm/Cold-white channels, Gamma correction is calculated in combined mode.
* Ie. total white brightness (C+W) is used for Gamma correction and gives
* the overall light power required. Then this light power is split among
* Wamr/Cold channels.
* .e Gamma correction is still applied to 8 bits channels for compatibility
* with other non-PMW modules.
* .f Apply color balance correction from rgbwwTable[].
* Note: correction is done after Gamma correction, it is meant
* to adjust leds with different power
* .g If rgbwwTable[4] is zero, blend RGB with White and adjust the level of
* White channel according to rgbwwTable[3]
* .h Avoid PMW values between 1008 and 1022, issue #1146
* .i Scale ranges from 10 bits to 0..PWMRange (by default 1023) so no change
* by default.
* .j Apply port remapping from Option37
* .k Invert PWM value if port is of type PMWxi instead of PMWx
* .l Apply PWM value with analogWrite() - if pin is configured
*
\*********************************************************************************************/
#define XDRV_04 4
// #define DEBUG_LIGHT
enum LightSchemes { LS_POWER, LS_WAKEUP, LS_CYCLEUP, LS_CYCLEDN, LS_RANDOM, LS_MAX };
const uint8_t LIGHT_COLOR_SIZE = 25; // Char array scolor size
const char kLightCommands[] PROGMEM = "|" // No prefix
D_CMND_COLOR "|" D_CMND_COLORTEMPERATURE "|" D_CMND_DIMMER "|" D_CMND_DIMMER_RANGE "|" D_CMND_LEDTABLE "|" D_CMND_FADE "|"
D_CMND_RGBWWTABLE "|" D_CMND_SCHEME "|" D_CMND_SPEED "|" D_CMND_WAKEUP "|" D_CMND_WAKEUPDURATION "|"
D_CMND_WHITE "|" D_CMND_CHANNEL "|" D_CMND_HSBCOLOR "|UNDOCA" ;
void (* const LightCommand[])(void) PROGMEM = {
&CmndColor, &CmndColorTemperature, &CmndDimmer, &CmndDimmerRange, &CmndLedTable, &CmndFade,
&CmndRgbwwTable, &CmndScheme, &CmndSpeed, &CmndWakeup, &CmndWakeupDuration,
&CmndWhite, &CmndChannel, &CmndHsbColor, &CmndUndocA };
// Light color mode, either RGB alone, or white-CT alone, or both only available if ct_rgb_linked is false
enum LightColorModes {
LCM_RGB = 1, LCM_CT = 2, LCM_BOTH = 3 };
struct LRgbColor {
uint8_t R, G, B;
};
const uint8_t MAX_FIXED_COLOR = 12;
const LRgbColor kFixedColor[MAX_FIXED_COLOR] PROGMEM =
{ 255,0,0, 0,255,0, 0,0,255, 228,32,0, 0,228,32, 0,32,228, 188,64,0, 0,160,96, 160,32,240, 255,255,0, 255,0,170, 255,255,255 };
struct LWColor {
uint8_t W;
};
const uint8_t MAX_FIXED_WHITE = 4;
const LWColor kFixedWhite[MAX_FIXED_WHITE] PROGMEM = { 0, 255, 128, 32 };
struct LCwColor {
uint8_t C, W;
};
const uint8_t MAX_FIXED_COLD_WARM = 4;
const LCwColor kFixedColdWarm[MAX_FIXED_COLD_WARM] PROGMEM = { 0,0, 255,0, 0,255, 128,128 };
// New version of Gamma correction table, with adaptative resolution
// from 11 bits (lower values) to 8 bits (upper values).
// We're using the fact that lower values are small and can fit within 8 bits
// To save flash space, the array is only 8 bits uint
#ifdef XFUNC_PTR_IN_ROM
const uint8_t _ledTable[] PROGMEM = {
#else
const uint8_t _ledTable[] = {
#endif
// 11 bits resolution
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, // 11 bits, 0..2047
2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, // 11 bits, 0..2047
7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, // 11 bits, 0..2047
20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 33, 35, 37, 38, 40, 42, // 11 bits, 0..2047
// 10 bits resolution
22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, // 10 bits, 0..1023
41, 42, 44, 45, 47, 48, 50, 51, 53, 55, 56, 58, 60, 62, 64, 65, // 10 bits, 0..1023
67, 69, 71, 73, 75, 78, 80, 82, 84, 86, 89, 91, 93, 96, 98,101, // 10 bits, 0..1023
103,106,108,111,114,116,119,122,125,128,131,134,137,140,143,146, // 10 bits, 0..1023
// 9 bits resolution
75, 77, 78, 80, 82, 84, 85, 87, 89, 91, 93, 94, 96, 98,100,102, // 9 bits, 0..511
104,106,108,110,112,115,117,119,121,123,125,128,130,132,135,137, // 9 bits, 0..511
140,142,144,147,149,152,155,157,160,163,165,168,171,173,176,179, // 9 bits, 0..511
182,185,188,191,194,197,200,203,206,209,212,215,219,222,225,229, // 9 bits, 0..511
// 8 bits resolution
116,118,120,121,123,125,127,128,130,132,134,136,138,139,141,143, // 8 bits, 0..255
145,147,149,151,153,155,157,159,161,163,165,168,170,172,174,176, // 8 bits, 0..255
178,181,183,185,187,190,192,194,197,199,201,204,206,209,211,214, // 8 bits, 0..255
216,219,221,224,226,229,232,234,237,240,242,245,248,250,253,255 // 8 bits, 0..255
};
// For reference, below are the computed gamma tables, via ledGamma()
// for 8 bits output:
// 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
// 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
// 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3,
// 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
// 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
// 11, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17,
// 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26,
// 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37,
// 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51,
// 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69,
// 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87, 88, 90,
// 91, 93, 94, 96, 97, 99,100,102,103,105,106,108,110,111,113,115,
//116,118,120,121,123,125,127,128,130,132,134,136,138,139,141,143,
//145,147,149,151,153,155,157,159,161,163,165,168,170,172,174,176,
//178,181,183,185,187,190,192,194,197,199,201,204,206,209,211,214,
//216,219,221,224,226,229,232,234,237,240,242,245,248,250,253,255
//
// and for 10 bits output:
// 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
// 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4,
// 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 10,
// 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 18, 19, 19, 20, 21,
// 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39,
// 41, 42, 44, 45, 47, 48, 50, 51, 53, 55, 56, 58, 60, 62, 64, 65,
// 67, 69, 71, 73, 75, 78, 80, 82, 84, 86, 89, 91, 93, 96, 98,101,
//103,106,108,111,114,116,119,122,125,128,131,134,137,140,143,146,
//151,155,157,161,165,169,171,175,179,183,187,189,193,197,201,205,
//209,213,217,221,225,231,235,239,243,247,251,257,261,265,271,275,
//281,285,289,295,299,305,311,315,321,327,331,337,343,347,353,359,
//365,371,377,383,389,395,401,407,413,419,425,431,439,445,451,459,
//467,475,483,487,495,503,511,515,523,531,539,547,555,559,567,575,
//583,591,599,607,615,623,631,639,647,655,663,675,683,691,699,707,
//715,727,735,743,751,763,771,779,791,799,807,819,827,839,847,859,
//867,879,887,899,907,919,931,939,951,963,971,983,995,1003,1015,1023
struct LIGHT {
unsigned long strip_timer_counter = 0; // Bars and Gradient
power_t power = 0; // Power<x> for each channel if SetOption68, or boolean if single light
uint16_t wakeup_counter = 0;
uint8_t entry_color[LST_MAX];
uint8_t current_color[LST_MAX];
uint8_t new_color[LST_MAX];
uint8_t last_color[LST_MAX];
uint8_t color_remap[LST_MAX];
uint8_t wheel = 0;
uint8_t subtype = 0; // LST_ subtype
uint8_t device = 0;
uint8_t old_power = 1;
uint8_t wakeup_active = 0;
uint8_t wakeup_dimmer = 0;
uint8_t fixed_color_index = 1;
uint8_t pwm_offset = 0; // Offset in color buffer
uint8_t max_scheme = LS_MAX -1;
bool update = true;
bool pwm_multi_channels = false; // SetOption68, treat each PWM channel as an independant dimmer
} Light;
power_t LightPower(void)
{
return Light.power; // Make external
}
uint8_t LightDevice(void)
{
return Light.device; // Make external
}
static uint32_t min3(uint32_t a, uint32_t b, uint32_t c) {
return (a < b && a < c) ? a : (b < c) ? b : c;
}
//
// LightStateClass
// This class is an abstraction of the current light state.
// It allows for b/w, full colors, or white colortone
//
// This class has 2 independant slots
// 1/ Brightness 0.255, dimmer controls both RGB and WC (warm-cold)
// 1/ RGB and Hue/Sat - always kept in sync and stored at full brightness,
// i.e. R G or B are 255
// briRGB specifies the brightness for the RGB slot.
// If Brightness is 0, it is equivalent to Off (for compatibility)
// Dimmer is Brightness converted to range 0..100
// 2/ White with colortone - or CW (Cold / Warm)
// ct is 153..500 temperature (153=cold, 500=warm)
// briCT specifies the brightness for white channel
//
// Dimmer (0.100) is automatically derived from brightness
//
// INVARIANTS:
// 1. RGB components are always stored at full brightness and modulated with briRGB
// ((R == 255) || (G == 255) || (B == 255))
// 2. RGB and Hue/Sat are always kept in sync whether you use setRGB() or setHS()
// 3. Warm/Cold white channels are always stored at full brightness
// ((WW == 255) || (WC == 255))
// 4. WC/WW and CT are always kept in sync.
// Note: if you use setCT() then WC+WW == 255 (both channels are linked)
// but if you use setCW() both channels can be set independantly
// 5. If RGB or CT channels are deactivated, then corresponding brightness is zero
// if (colot_tone == LCM_RGB) then briCT = 0
// if (color_tone == LCM_CT) then briRGB = 0
// if (colot_tone == LCM_BOTH) then briRGB and briCT can have any values
//
// Note: If you want the actual RGB, you need to multiply with Bri, or use getActualRGBCW()
// Note: all values are stored as unsigned integer, no floats.
// Note: you can query vaules from this singleton. But to change values,
// use the LightController - changing this object will have no effect on actual light.
//
class LightStateClass {
private:
uint16_t _hue = 0; // 0..359
uint8_t _sat = 255; // 0..255
uint8_t _briRGB = 255; // 0..255
// dimmer is same as _bri but with a range of 0%-100%
uint8_t _r = 255; // 0..255
uint8_t _g = 255; // 0..255
uint8_t _b = 255; // 0..255
uint8_t _subtype = 0; // local copy of Light.subtype, if we need multiple lights
uint16_t _ct = 153; // 153..500, default to 153 (cold white)
uint8_t _wc = 255; // white cold channel
uint8_t _ww = 0; // white warm channel
uint8_t _briCT = 255;
uint8_t _color_mode = LCM_RGB; // RGB by default
public:
LightStateClass() {
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::Constructor RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _bri);
}
void setSubType(uint8_t sub_type) {
_subtype = sub_type; // set sub_type at initialization, shoudln't be changed afterwards
}
// This function is a bit hairy, it will try to match the rerquired
// colormode with the features of the device:
// LST_NONE: LCM_RGB
// LST_SINGLE: LCM_RGB
// LST_COLDWARM: LCM_CT
// LST_RGB: LCM_RGB
// LST_RGBW: LCM_RGB, LCM_CT or LCM_BOTH
// LST_RGBWC: LCM_RGB, LCM_CT or LCM_BOTH
uint8_t setColorMode(uint8_t cm) {
uint8_t prev_cm = _color_mode;
if (cm < LCM_RGB) { cm = LCM_RGB; }
if (cm > LCM_BOTH) { cm = LCM_BOTH; }
uint8_t maxbri = (_briRGB >= _briCT) ? _briRGB : _briCT;
switch (_subtype) {
case LST_COLDWARM:
_color_mode = LCM_CT;
break;
case LST_NONE:
case LST_SINGLE:
case LST_RGB:
default:
_color_mode = LCM_RGB;
break;
case LST_RGBW:
case LST_RGBWC:
_color_mode = cm;
break;
}
if (LCM_RGB == _color_mode) {
_briCT = 0;
if (0 == _briRGB) { _briRGB = maxbri; }
}
if (LCM_CT == _color_mode) {
_briRGB = 0;
if (0 == _briCT) { _briCT = maxbri; }
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setColorMode prev_cm (%d) req_cm (%d) new_cm (%d)", prev_cm, cm, _color_mode);
#endif
return prev_cm;
}
inline uint8_t getColorMode() {
return _color_mode;
}
void addRGBMode() {
setColorMode(_color_mode | LCM_RGB);
}
void addCTMode() {
setColorMode(_color_mode | LCM_CT);
}
// Get RGB color, always at full brightness (ie. one of the components is 255)
void getRGB(uint8_t *r, uint8_t *g, uint8_t *b) {
if (r) { *r = _r; }
if (g) { *g = _g; }
if (b) { *b = _b; }
}
// get full brightness values for warm and cold channels.
// either w=c=0 (off) or w+c >= 255
void getCW(uint8_t *rc, uint8_t *rw) {
if (rc) { *rc = _wc; }
if (rw) { *rw = _ww; }
}
// Get the actual values for each channel, ie multiply with brightness
void getActualRGBCW(uint8_t *r, uint8_t *g, uint8_t *b, uint8_t *c, uint8_t *w) {
bool rgb_channels_on = _color_mode & LCM_RGB;
bool ct_channels_on = _color_mode & LCM_CT;
if (r) { *r = rgb_channels_on ? changeUIntScale(_r, 0, 255, 0, _briRGB) : 0; }
if (g) { *g = rgb_channels_on ? changeUIntScale(_g, 0, 255, 0, _briRGB) : 0; }
if (b) { *b = rgb_channels_on ? changeUIntScale(_b, 0, 255, 0, _briRGB) : 0; }
if (c) { *c = ct_channels_on ? changeUIntScale(_wc, 0, 255, 0, _briCT) : 0; }
if (w) { *w = ct_channels_on ? changeUIntScale(_ww, 0, 255, 0, _briCT) : 0; }
}
uint8_t getChannels(uint8_t *channels) {
getActualRGBCW(&channels[0], &channels[1], &channels[2], &channels[3], &channels[4]);
}
void getHSB(uint16_t *hue, uint8_t *sat, uint8_t *bri) {
if (hue) { *hue = _hue; }
if (sat) { *sat = _sat; }
if (bri) { *bri = _briRGB; }
}
// getBri() is guaranteed to give the same result as setBri() - no rounding errors.
uint8_t getBri(void) {
// return the max of _briCT and _briRGB
return (_briRGB >= _briCT) ? _briRGB : _briCT;
}
// get the white Brightness
inline uint8_t getBriCT() {
return _briCT;
}
static inline uint8_t DimmerToBri(uint8_t dimmer) {
return changeUIntScale(dimmer, 0, 100, 0, 255); // 0..255
}
static uint8_t BriToDimmer(uint8_t bri) {
uint8_t dimmer = changeUIntScale(bri, 0, 255, 0, 100);
// if brightness is non zero, force dimmer to be non-zero too
if ((dimmer == 0) && (bri > 0)) { dimmer = 1; }
return dimmer;
}
uint8_t getDimmer() {
return BriToDimmer(getBri());
}
inline uint16_t getCT() {
return _ct; // 153..500
}
// get current color in XY format
void getXY(float *x, float *y) {
RgbToXy(_r, _g, _b, x, y);
}
// setters -- do not use directly, use the light_controller instead
// sets both master Bri and whiteBri
void setBri(uint8_t bri) {
setBriRGB(_color_mode & LCM_RGB ? bri : 0);
setBriCT(_color_mode & LCM_CT ? bri : 0);
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setBri RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB);
#endif
}
// changes the RGB brightness alone
uint8_t setBriRGB(uint8_t bri_rgb) {
uint8_t prev_bri = _briRGB;
_briRGB = bri_rgb;
if (bri_rgb > 0) { addRGBMode(); }
return prev_bri;
}
// changes the white brightness alone
uint8_t setBriCT(uint8_t bri_ct) {
uint8_t prev_bri = _briCT;
_briCT = bri_ct;
if (bri_ct > 0) { addCTMode(); }
return prev_bri;
}
inline uint8_t getBriRGB() {
return _briRGB;
}
void setDimmer(uint8_t dimmer) {
setBri(DimmerToBri(dimmer));
}
void setCT(uint16_t ct) {
if (0 == ct) {
// disable ct mode
setColorMode(LCM_RGB); // try deactivating CT mode, setColorMode() will check which is legal
} else {
ct = (ct < 153 ? 153 : (ct > 500 ? 500 : ct));
_ww = changeUIntScale(ct, 153, 500, 0, 255);
_wc = 255 - _ww;
_ct = ct;
addCTMode();
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setCT RGB raw (%d %d %d) HS (%d %d) briRGB (%d) briCT (%d) CT (%d)", _r, _g, _b, _hue, _sat, _briRGB, _briCT, _ct);
#endif
}
// Manually set Cold/Warm channels.
// There are two modes:
// 1. (free_range == false, default)
// In this mode there is only one virtual white channel with color temperature
// As a side effect, WC+WW = 255. It means also that the sum of light power
// from white LEDs is always equal to briCT. It is not possible here
// to set both white LEDs at full power, hence protecting power supplies
// from overlaoding.
// 2. (free_range == true)
// In this mode, values of WC and WW are free -- both channels can be set
// at full power.
// In this mode, we always scale both channels so that one at least is 255.
//
// We automatically adjust briCT to have the right values of channels
void setCW(uint8_t c, uint8_t w, bool free_range = false) {
uint16_t max = (w > c) ? w : c; // 0..255
uint16_t sum = c + w;
if (0 == max) {
_briCT = 0; // brightness set to null
setColorMode(LCM_RGB); // try deactivating CT mode, setColorMode() will check which is legal
} else {
if (!free_range) {
// we need to normalize to sum = 255
_ww = changeUIntScale(w, 0, sum, 0, 255);
_wc = 255 - _ww;
} else { // we normalize to max = 255
_ww = changeUIntScale(w, 0, max, 0, 255);
_wc = changeUIntScale(c, 0, max, 0, 255);
}
_ct = changeUIntScale(w, 0, sum, 153, 500);
addCTMode(); // activate CT mode if needed
if (_color_mode & LCM_CT) { _briCT = free_range ? max : (sum > 255 ? 255 : sum); }
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setCW CW (%d %d) CT (%d) briCT (%d)", c, w, _ct, _briCT);
#endif
}
// sets RGB and returns the Brightness. Bri is updated unless keep_bri is true
uint8_t setRGB(uint8_t r, uint8_t g, uint8_t b, bool keep_bri = false) {
uint16_t hue;
uint8_t sat;
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setRGB RGB input (%d %d %d)", r, g, b);
#endif
uint32_t max = (r > g && r > b) ? r : (g > b) ? g : b; // 0..255
if (0 == max) {
r = g = b = 255;
setColorMode(LCM_CT); // try deactivating RGB, setColorMode() will check if this is legal
} else {
if (255 > max) {
// we need to normalize rgb
r = changeUIntScale(r, 0, max, 0, 255);
g = changeUIntScale(g, 0, max, 0, 255);
b = changeUIntScale(b, 0, max, 0, 255);
}
addRGBMode();
}
if (!keep_bri) {
_briRGB = (_color_mode & LCM_RGB) ? max : 0;
}
RgbToHsb(r, g, b, &hue, &sat, nullptr);
_r = r;
_g = g;
_b = b;
_hue = hue;
_sat = sat;
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setRGB RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB);
#endif
return max;
}
void setHS(uint16_t hue, uint8_t sat) {
uint8_t r, g, b;
HsToRgb(hue, sat, &r, &g, &b);
_r = r;
_g = g;
_b = b;
_hue = hue;
_sat = sat;
addRGBMode();
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS HS (%d %d) rgb (%d %d %d)", hue, sat, r, g, b);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB);
#endif
}
// set all 5 channels at once.
// Channels are: R G B CW WW
// Brightness is automatically recalculated to adjust channels to the desired values
void setChannels(uint8_t *channels) {
setRGB(channels[0], channels[1], channels[2]);
setCW(channels[3], channels[4], true); // free range for WC and WW
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels (%d %d %d %d %d)",
channels[0], channels[1], channels[2], channels[3], channels[4]);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels CT (%d) briRGB (%d) briCT (%d)", _ct, _briRGB, _briCT);
#endif
}
// new version of RGB to HSB with only integer calculation
static void RgbToHsb(uint8_t r, uint8_t g, uint8_t b, uint16_t *r_hue, uint8_t *r_sat, uint8_t *r_bri);
static void HsToRgb(uint16_t hue, uint8_t sat, uint8_t *r_r, uint8_t *r_g, uint8_t *r_b);
static void RgbToXy(uint8_t i_r, uint8_t i_g, uint8_t i_b, float *r_x, float *r_y);
static void XyToRgb(float x, float y, uint8_t *rr, uint8_t *rg, uint8_t *rb);
};
/*********************************************************************************************\
* LightStateClass implementation
\*********************************************************************************************/
// new version with only integer computing
// brightness is not needed, it is controlled via Dimmer
void LightStateClass::RgbToHsb(uint8_t ir, uint8_t ig, uint8_t ib, uint16_t *r_hue, uint8_t *r_sat, uint8_t *r_bri) {
uint32_t r = ir;
uint32_t g = ig;
uint32_t b = ib;
uint32_t max = (r > g && r > b) ? r : (g > b) ? g : b; // 0..255
uint32_t min = (r < g && r < b) ? r : (g < b) ? g : b; // 0..255
uint32_t d = max - min; // 0..255
uint16_t hue = 0; // hue value in degrees ranges from 0 to 359
uint8_t sat = 0; // 0..255
uint8_t bri = max; // 0..255
if (d != 0) {
sat = changeUIntScale(d, 0, max, 0, 255);
if (r == max) {
hue = (g > b) ? changeUIntScale(g-b,0,d,0,60) : 360 - changeUIntScale(b-g,0,d,0,60);
} else if (g == max) {
hue = (b > r) ? 120 + changeUIntScale(b-r,0,d,0,60) : 120 - changeUIntScale(r-b,0,d,0,60);
} else {
hue = (r > g) ? 240 + changeUIntScale(r-g,0,d,0,60) : 240 - changeUIntScale(g-r,0,d,0,60);
}
hue = hue % 360; // 0..359
}
if (r_hue) *r_hue = hue;
if (r_sat) *r_sat = sat;
if (r_bri) *r_bri = bri;
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, "RgbToHsb rgb (%d %d %d) hsb (%d %d %d)", r, g, b, hue, sat, bri);
}
void LightStateClass::HsToRgb(uint16_t hue, uint8_t sat, uint8_t *r_r, uint8_t *r_g, uint8_t *r_b) {
uint32_t r = 255; // default to white
uint32_t g = 255;
uint32_t b = 255;
// we take brightness at 100%, brightness should be set separately
hue = hue % 360; // normalize to 0..359
if (sat > 0) {
uint32_t i = hue / 60; // quadrant 0..5
uint32_t f = hue % 60; // 0..59
uint32_t q = 255 - changeUIntScale(f, 0, 60, 0, sat); // 0..59
uint32_t p = 255 - sat;
uint32_t t = 255 - changeUIntScale(60 - f, 0, 60, 0, sat);
switch (i) {
case 0:
//r = 255;
g = t;
b = p;
break;
case 1:
r = q;
//g = 255;
b = p;
break;
case 2:
r = p;
//g = 255;
b = t;
break;
case 3:
r = p;
g = q;
//b = 255;
break;
case 4:
r = t;
g = p;
//b = 255;
break;
default:
//r = 255;
g = p;
b = q;
break;
}
}
if (r_r) *r_r = r;
if (r_g) *r_g = g;
if (r_b) *r_b = b;
}
#define POW FastPrecisePowf
void LightStateClass::RgbToXy(uint8_t i_r, uint8_t i_g, uint8_t i_b, float *r_x, float *r_y) {
float x = 0.31271f; // default medium white
float y = 0.32902f;
if (i_r + i_b + i_g > 0) {
float r = (float)i_r / 255.0f;
float g = (float)i_g / 255.0f;
float b = (float)i_b / 255.0f;
// https://gist.github.com/popcorn245/30afa0f98eea1c2fd34d
// Gamma correction
r = (r > 0.04045f) ? POW((r + 0.055f) / (1.0f + 0.055f), 2.4f) : (r / 12.92f);
g = (g > 0.04045f) ? POW((g + 0.055f) / (1.0f + 0.055f), 2.4f) : (g / 12.92f);
b = (b > 0.04045f) ? POW((b + 0.055f) / (1.0f + 0.055f), 2.4f) : (b / 12.92f);
// conversion to X, Y, Z
// Y is also the Luminance
float X = r * 0.649926f + g * 0.103455f + b * 0.197109f;
float Y = r * 0.234327f + g * 0.743075f + b * 0.022598f;
float Z = r * 0.000000f + g * 0.053077f + b * 1.035763f;
x = X / (X + Y + Z);
y = Y / (X + Y + Z);
// we keep the raw gamut, one nice thing could be to convert to a narrower gamut
}
if (r_x) *r_x = x;
if (r_y) *r_y = y;
}
void LightStateClass::XyToRgb(float x, float y, uint8_t *rr, uint8_t *rg, uint8_t *rb)
{
x = (x > 0.99f ? 0.99f : (x < 0.01f ? 0.01f : x));
y = (y > 0.99f ? 0.99f : (y < 0.01f ? 0.01f : y));
float z = 1.0f - x - y;
//float Y = 1.0f;
float X = x / y;
float Z = z / y;
// float r = X * 1.4628067f - 0.1840623f - Z * 0.2743606f;
// float g = -X * 0.5217933f + 1.4472381f + Z * 0.0677227f;
// float b = X * 0.0349342f - 0.0968930f + Z * 1.2884099f;
float r = X * 3.2406f - 1.5372f - Z * 0.4986f;
float g = -X * 0.9689f + 1.8758f + Z * 0.0415f;
float b = X * 0.0557f - 0.2040f + Z * 1.0570f;
float max = (r > g && r > b) ? r : (g > b) ? g : b;
r = r / max; // normalize to max == 1.0
g = g / max;
b = b / max;
r = (r <= 0.0031308f) ? 12.92f * r : 1.055f * POW(r, (1.0f / 2.4f)) - 0.055f;
g = (g <= 0.0031308f) ? 12.92f * g : 1.055f * POW(g, (1.0f / 2.4f)) - 0.055f;
b = (b <= 0.0031308f) ? 12.92f * b : 1.055f * POW(b, (1.0f / 2.4f)) - 0.055f;
//
// AddLog_P2(LOG_LEVEL_DEBUG_MORE, "XyToRgb XZ (%s %s) rgb (%s %s %s)",
// String(X,5).c_str(), String(Z,5).c_str(),
// String(r,5).c_str(), String(g,5).c_str(),String(b,5).c_str());
int32_t ir = r * 255.0f + 0.5f;
int32_t ig = g * 255.0f + 0.5f;
int32_t ib = b * 255.0f + 0.5f;
if (rr) { *rr = (ir > 255 ? 255: (ir < 0 ? 0 : ir)); }
if (rg) { *rg = (ig > 255 ? 255: (ig < 0 ? 0 : ig)); }
if (rb) { *rb = (ib > 255 ? 255: (ib < 0 ? 0 : ib)); }
}
class LightControllerClass {
private:
LightStateClass *_state;
// are RGB and CT linked, i.e. if we set CT then RGB channels are off
bool _ct_rgb_linked = true;
bool _pwm_multi_channels = false; // treat each channel as independant dimmer
public:
LightControllerClass(LightStateClass& state) {
_state = &state;
}
void setSubType(uint8_t sub_type) {
_state->setSubType(sub_type);
}
inline bool setCTRGBLinked(bool ct_rgb_linked) {
bool prev = _ct_rgb_linked;
if (_pwm_multi_channels) {
_ct_rgb_linked = false; // force to false if _pwm_multi_channels is set
} else {
_ct_rgb_linked = ct_rgb_linked;
}
return prev;
}
inline bool isCTRGBLinked() {
return _ct_rgb_linked;
}
inline bool setPWMMultiChannel(bool pwm_multi_channels) {
bool prev = _pwm_multi_channels;
_pwm_multi_channels = pwm_multi_channels;
if (pwm_multi_channels) setCTRGBLinked(false); // if pwm multi channel, then unlink RGB and CT
return prev;
}
inline bool isPWMMultiChannel(void) {
return _pwm_multi_channels;
}
#ifdef DEBUG_LIGHT
void debugLogs() {
uint8_t r,g,b,c,w;
_state->getActualRGBCW(&r,&g,&b,&c,&w);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs rgb (%d %d %d) cw (%d %d)",
r, g, b, c, w);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs lightCurrent (%d %d %d %d %d)",
Light.current_color[0], Light.current_color[1], Light.current_color[2],
Light.current_color[3], Light.current_color[4]);
}
#endif
void loadSettings() {
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::loadSettings Settings.light_color (%d %d %d %d %d - %d)",
Settings.light_color[0], Settings.light_color[1], Settings.light_color[2],
Settings.light_color[3], Settings.light_color[4], Settings.light_dimmer);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::loadSettings light_type/sub (%d %d)",
light_type, Light.subtype);
#endif
// first try setting CW, if zero, it select RGB mode
_state->setCW(Settings.light_color[3], Settings.light_color[4], true);
_state->setRGB(Settings.light_color[0], Settings.light_color[1], Settings.light_color[2]);
if (!_pwm_multi_channels) {
// only if non-multi channel
// We apply dimmer in priority to RGB
uint8_t bri = _state->DimmerToBri(Settings.light_dimmer);
if (Settings.light_color[0] + Settings.light_color[1] + Settings.light_color[2] > 0) {
_state->setColorMode(LCM_RGB);
_state->setBriRGB(bri);
} else {
_state->setBriCT(bri);
}
}
}
void changeCTB(uint16_t new_ct, uint8_t briCT) {
/* Color Temperature (https://developers.meethue.com/documentation/core-concepts)
*
* ct = 153 = 2000K = Warm = CCWW = 00FF
* ct = 500 = 6500K = Cold = CCWW = FF00
*/
// don't set CT if not supported
if ((LST_COLDWARM != Light.subtype) && (LST_RGBW > Light.subtype)) {
return;
}
_state->setCT(new_ct);
_state->setBriCT(briCT);
if (_ct_rgb_linked) { _state->setColorMode(LCM_CT); } // try to force CT
saveSettings();
calcLevels();
//debugLogs();
}
void changeDimmer(uint8_t dimmer) {
uint8_t bri = changeUIntScale(dimmer, 0, 100, 0, 255);
changeBri(bri);
}
void changeBri(uint8_t bri) {
_state->setBri(bri);
saveSettings();
calcLevels();
}
void changeRGB(uint8_t r, uint8_t g, uint8_t b, bool keep_bri = false) {
_state->setRGB(r, g, b, keep_bri);
if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force RGB
saveSettings();
calcLevels();
}
// calculate the levels for each channel
void calcLevels() {
uint8_t r,g,b,c,w,briRGB,briCT;
_state->getActualRGBCW(&r,&g,&b,&c,&w);
if (_pwm_multi_channels) { // if PWM multi channel, no more transformation required
Light.current_color[0] = r;
Light.current_color[1] = g;
Light.current_color[2] = b;
Light.current_color[3] = c;
Light.current_color[4] = w;
return;
}
briRGB = _state->getBriRGB();
briCT = _state->getBriCT();
Light.current_color[0] = Light.current_color[1] = Light.current_color[2] = 0;
Light.current_color[3] = Light.current_color[4] = 0;
switch (Light.subtype) {
case LST_NONE:
Light.current_color[0] = 255;
break;
case LST_SINGLE:
Light.current_color[0] = briRGB;
break;
case LST_COLDWARM:
Light.current_color[0] = c;
Light.current_color[1] = w;
break;
case LST_RGBW:
case LST_RGBWC:
if (LST_RGBWC == Light.subtype) {
Light.current_color[3] = c;
Light.current_color[4] = w;
} else {
Light.current_color[3] = briCT;
}
// continue
case LST_RGB:
Light.current_color[0] = r;
Light.current_color[1] = g;
Light.current_color[2] = b;
break;
}
}
void changeHSB(uint16_t hue, uint8_t sat, uint8_t briRGB) {
_state->setHS(hue, sat);
_state->setBriRGB(briRGB);
if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force RGB
saveSettings();
calcLevels();
}
// save the current light state to Settings.
void saveSettings() {
if (Light.pwm_multi_channels) {
// simply save each channel
_state->getActualRGBCW(&Settings.light_color[0], &Settings.light_color[1],
&Settings.light_color[2], &Settings.light_color[3],
&Settings.light_color[4]);
Settings.light_dimmer = 100; // arbitrary value, unused in this mode
} else {
uint8_t cm = _state->getColorMode();
memset(&Settings.light_color[0], 0, sizeof(Settings.light_color));
if (LCM_RGB & cm) { // can be either LCM_RGB or LCM_BOTH
_state->getRGB(&Settings.light_color[0], &Settings.light_color[1], &Settings.light_color[2]);
Settings.light_dimmer = _state->BriToDimmer(_state->getBriRGB());
// anyways we always store RGB with BrightnessRGB
if (LCM_BOTH == cm) {
// then store at actual brightness CW/WW if dual mode
_state->getActualRGBCW(nullptr, nullptr, nullptr, &Settings.light_color[3], &Settings.light_color[4]);
}
} else if (LCM_CT == cm) { // cm can only be LCM_CT
_state->getCW(&Settings.light_color[3], &Settings.light_color[4]);
Settings.light_dimmer = _state->BriToDimmer(_state->getBriCT());
}
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::saveSettings Settings.light_color (%d %d %d %d %d - %d)",
Settings.light_color[0], Settings.light_color[1], Settings.light_color[2],
Settings.light_color[3], Settings.light_color[4], Settings.light_dimmer);
#endif
}
// set all 5 channels at once.
// Channels are: R G B CW WW
// Brightness is automatically recalculated to adjust channels to the desired values
void changeChannels(uint8_t *channels) {
if (LST_COLDWARM == Light.subtype) {
// remap channels 0-1 to 3-4 if cold/warm
uint8_t remapped_channels[5] = {0,0,0,channels[0],channels[1]};
_state->setChannels(remapped_channels);
} else {
_state->setChannels(channels);
}
saveSettings();
calcLevels();
}
};
// the singletons for light state and Light Controller
LightStateClass light_state = LightStateClass();
LightControllerClass light_controller = LightControllerClass(light_state);
/*********************************************************************************************\
* Gamma correction
\*********************************************************************************************/
// Calculate the gamma corrected value for LEDS
// You can request 11, 10, 9 or 8 bits resolution via 'bits_out' parameter
uint16_t ledGamma(uint8_t v, uint16_t bits_out = 8) {
uint16_t result;
// bits_resolution: the resolution of _ledTable[v], between 8 and 11
uint32_t bits_resolution = 11 - (v / 64); // 8..11
int32_t bits_correction = bits_out - bits_resolution; // -3..3
#ifdef XFUNC_PTR_IN_ROM
uint32_t uncorrected_value = pgm_read_byte(_ledTable + v); // 0..255
#else
uint32_t uncorrected_value = _ledTable[v]; // 0..255
#endif
if (0 == bits_correction) {
// we already match the required resolution, no change
result = uncorrected_value;
} else if (bits_correction > 0) {
// the output resolution is higher than our value, we need to extrapolate
// we shift by bits_correction, and force last bits to 1
uint32_t bits_mask = (1 << bits_correction) - 1; // 1, 3, 7
result = (uncorrected_value << bits_correction) | bits_mask;
} else { // bits_correction < 0
// our resolution is too high, we need to remove bits
// we add 1, 3 or 7 to force rouding to the nearest high value
uint32_t bits_mask = (1 << -bits_correction) - 1; // 1, 3, 7
result = ((uncorrected_value + bits_mask) >> -bits_correction);
}
return result;
}
/********************************************************************************************/
void LightPwmOffset(uint32_t offset)
{
Light.pwm_offset = offset;
}
bool LightModuleInit(void)
{
light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0
if (Settings.flag.pwm_control) {
for (uint32_t i = 0; i < MAX_PWMS; i++) {
if (pin[GPIO_PWM1 +i] < 99) { light_type++; } // Use Dimmer/Color control for all PWM as SetOption15 = 1
}
}
light_flg = 0;
if (XlgtCall(FUNC_MODULE_INIT)) {
// serviced
}
else if (SONOFF_BN == my_module_type) { // PWM Single color led (White)
light_type = LT_PWM1;
}
else if (SONOFF_LED == my_module_type) { // PWM Dual color led (White warm and cold)
if (!my_module.io[4]) { // Fix Sonoff Led instabilities
pinMode(4, OUTPUT); // Stop floating outputs
digitalWrite(4, LOW);
}
if (!my_module.io[5]) {
pinMode(5, OUTPUT); // Stop floating outputs
digitalWrite(5, LOW);
}
if (!my_module.io[14]) {
pinMode(14, OUTPUT); // Stop floating outputs
digitalWrite(14, LOW);
}
light_type = LT_PWM2;
}
if (light_type > LT_BASIC) {
devices_present++;
}
// post-process for lights
if (Settings.flag3.pwm_multi_channels) {
uint32_t pwm_channels = (light_type & 7) > LST_MAX ? LST_MAX : (light_type & 7);
if (0 == pwm_channels) { pwm_channels = 1; }
devices_present += pwm_channels - 1; // add the pwm channels controls at the end
}
return (light_type > LT_BASIC);
}
void LightInit(void)
{
Light.device = devices_present;
Light.subtype = (light_type & 7) > LST_MAX ? LST_MAX : (light_type & 7); // Always 0 - LST_MAX (5)
Light.pwm_multi_channels = Settings.flag3.pwm_multi_channels;
if ((LST_SINGLE < Light.subtype) && Light.pwm_multi_channels) {
// we treat each PWM channel as an independant one, hence we switch to
light_controller.setPWMMultiChannel(true);
Light.device = devices_present - Light.subtype + 1; // adjust if we also have relays
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightInit Light.pwm_multi_channels=%d Light.subtype=%d Light.device=%d devices_present=%d",
Light.pwm_multi_channels, Light.subtype, Light.device, devices_present);
#endif
light_controller.setSubType(Light.subtype);
light_controller.loadSettings();
if (LST_SINGLE == Light.subtype) {
Settings.light_color[0] = 255; // One channel only supports Dimmer but needs max color
}
if (light_type < LT_PWM6) { // PWM
for (uint32_t i = 0; i < light_type; i++) {
Settings.pwm_value[i] = 0; // Disable direct PWM control
if (pin[GPIO_PWM1 +i] < 99) {
pinMode(pin[GPIO_PWM1 +i], OUTPUT);
}
}
if (pin[GPIO_ARIRFRCV] < 99) {
if (pin[GPIO_ARIRFSEL] < 99) {
pinMode(pin[GPIO_ARIRFSEL], OUTPUT);
digitalWrite(pin[GPIO_ARIRFSEL], 1); // Turn off RF
}
}
}
uint32_t max_scheme = Light.max_scheme;
if (Light.subtype < LST_RGB) {
max_scheme = LS_POWER;
}
if ((LS_WAKEUP == Settings.light_scheme) || (Settings.light_scheme > max_scheme)) {
Settings.light_scheme = LS_POWER;
}
Light.power = 0;
Light.update = true;
Light.wakeup_active = 0;
LightUpdateColorMapping();
}
void LightUpdateColorMapping(void)
{
uint8_t param = Settings.param[P_RGB_REMAP] & 127;
if (param > 119){ param = 0; }
uint8_t tmp[] = {0,1,2,3,4};
Light.color_remap[0] = tmp[param / 24];
for (uint32_t i = param / 24; i<4; ++i){
tmp[i] = tmp[i+1];
}
param = param % 24;
Light.color_remap[1] = tmp[(param / 6)];
for (uint32_t i = param / 6; i<3; ++i){
tmp[i] = tmp[i+1];
}
param = param % 6;
Light.color_remap[2] = tmp[(param / 2)];
for (uint32_t i = param / 2; i<2; ++i){
tmp[i] = tmp[i+1];
}
param = param % 2;
Light.color_remap[3] = tmp[param];
Light.color_remap[4] = tmp[1-param];
// do not allow independant RGV and WC colors
bool ct_rgb_linked = !(Settings.param[P_RGB_REMAP] & 128);
light_controller.setCTRGBLinked(ct_rgb_linked);
Light.update = true;
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%d colors: %d %d %d %d %d") ,Settings.param[P_RGB_REMAP], Light.color_remap[0],Light.color_remap[1],Light.color_remap[2],Light.color_remap[3],Light.color_remap[4]);
}
void LightSetDimmer(uint8_t dimmer) {
light_controller.changeDimmer(dimmer);
}
// If SetOption68 is set, get the brightness for a specific device
uint8_t LightGetBri(uint8_t device) {
uint8_t bri = 254; // default value if relay
if (Light.pwm_multi_channels) {
if ((device >= Light.device) && (device < Light.device + LST_MAX) && (device <= devices_present)) {
bri = Light.current_color[device - Light.device];
}
} else if (device == Light.device) {
bri = light_state.getBri();
}
return bri;
}
// If SetOption68 is set, get the brightness for a specific device
void LightSetBri(uint8_t device, uint8_t bri) {
if (Light.pwm_multi_channels) {
if ((device >= Light.device) && (device < Light.device + LST_MAX) && (device <= devices_present)) {
Light.current_color[device - Light.device] = bri;
light_controller.changeChannels(Light.current_color);
}
} else if (device == Light.device) {
light_controller.changeBri(bri);
}
}
void LightSetColorTemp(uint16_t ct)
{
/* Color Temperature (https://developers.meethue.com/documentation/core-concepts)
*
* ct = 153 = 2000K = Warm = CCWW = 00FF
* ct = 500 = 6500K = Cold = CCWW = FF00
*/
// don't set CT if not supported
if ((LST_COLDWARM != Light.subtype) && (LST_RGBWC != Light.subtype)) {
return;
}
light_controller.changeCTB(ct, light_state.getBriCT());
}
uint16_t LightGetColorTemp(void)
{
// don't calculate CT for unsupported devices
if ((LST_COLDWARM != Light.subtype) && (LST_RGBWC != Light.subtype)) {
return 0;
}
return (light_state.getColorMode() & LCM_CT) ? light_state.getCT() : 0;
}
void LightSetSignal(uint16_t lo, uint16_t hi, uint16_t value)
{
/* lo - below lo is green
hi - above hi is red
*/
if (Settings.flag.light_signal) {
uint16_t signal = changeUIntScale(value, lo, hi, 0, 255); // 0..255
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Light signal %d"), signal);
light_controller.changeRGB(signal, 255 - signal, 0, true); // keep bri
Settings.light_scheme = 0;
if (0 == light_state.getBri()) {
light_controller.changeBri(50);
}
}
}
// convert channels to string, use Option 17 to foce decimal, unless force_hex
char* LightGetColor(char* scolor, boolean force_hex = false)
{
light_controller.calcLevels();
scolor[0] = '\0';
for (uint32_t i = 0; i < Light.subtype; i++) {
if (!force_hex && Settings.flag.decimal_text) {
snprintf_P(scolor, LIGHT_COLOR_SIZE, PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Light.current_color[i]);
} else {
snprintf_P(scolor, LIGHT_COLOR_SIZE, PSTR("%s%02X"), scolor, Light.current_color[i]);
}
}
return scolor;
}
void LightPowerOn(void)
{
if (light_state.getBri() && !(Light.power)) {
ExecuteCommandPower(Light.device, POWER_ON, SRC_LIGHT);
}
}
void LightState(uint8_t append)
{
char scolor[LIGHT_COLOR_SIZE];
char scommand[33];
if (append) {
ResponseAppend_P(PSTR(","));
} else {
Response_P(PSTR("{"));
}
if (!Light.pwm_multi_channels) {
GetPowerDevice(scommand, Light.device, sizeof(scommand), Settings.flag.device_index_enable);
ResponseAppend_P(PSTR("\"%s\":\"%s\",\"" D_CMND_DIMMER "\":%d"), scommand, GetStateText(Light.power), light_state.getDimmer());
if (Light.subtype > LST_SINGLE) {
ResponseAppend_P(PSTR(",\"" D_CMND_COLOR "\":\"%s\""), LightGetColor(scolor));
uint16_t hue;
uint8_t sat, bri;
light_state.getHSB(&hue, &sat, &bri);
sat = changeUIntScale(sat, 0, 255, 0, 100);
bri = changeUIntScale(bri, 0, 255, 0, 100);
ResponseAppend_P(PSTR(",\"" D_CMND_HSBCOLOR "\":\"%d,%d,%d\""), hue,sat,bri);
// Add status for each channel
ResponseAppend_P(PSTR(",\"" D_CMND_CHANNEL "\":[" ));
for (uint32_t i = 0; i < Light.subtype; i++) {
uint8_t channel_raw = Light.current_color[i];
uint8_t channel = changeUIntScale(channel_raw,0,255,0,100);
// if non null, force to be at least 1
if ((0 == channel) && (channel_raw > 0)) { channel = 1; }
ResponseAppend_P(PSTR("%s%d" ), (i > 0 ? "," : ""), channel);
}
ResponseAppend_P(PSTR("]"));
}
if ((LST_COLDWARM == Light.subtype) || (LST_RGBWC == Light.subtype)) {
ResponseAppend_P(PSTR(",\"" D_CMND_COLORTEMPERATURE "\":%d"), light_state.getCT());
}
if (append) {
if (Light.subtype >= LST_RGB) {
ResponseAppend_P(PSTR(",\"" D_CMND_SCHEME "\":%d"), Settings.light_scheme);
}
if (Light.max_scheme > LS_MAX) {
ResponseAppend_P(PSTR(",\"" D_CMND_WIDTH "\":%d"), Settings.light_width);
}
ResponseAppend_P(PSTR(",\"" D_CMND_FADE "\":\"%s\",\"" D_CMND_SPEED "\":%d,\"" D_CMND_LEDTABLE "\":\"%s\""),
GetStateText(Settings.light_fade), Settings.light_speed, GetStateText(Settings.light_correction));
}
} else { // Light.pwm_multi_channels
for (uint32_t i = 0; i < Light.subtype; i++) {
GetPowerDevice(scommand, Light.device + i, sizeof(scommand), 1);
uint32_t light_power_masked = Light.power & (1 << i); // the Light.power value for this device
light_power_masked = light_power_masked ? 1 : 0; // convert to on/off
ResponseAppend_P(PSTR("\"%s\":\"%s\",\"" D_CMND_CHANNEL "%d\":%d,"), scommand, GetStateText(light_power_masked), Light.device + i,
changeUIntScale(Light.current_color[i], 0, 255, 0, 100));
}
ResponseAppend_P(PSTR("\"" D_CMND_COLOR "\":\"%s\""), LightGetColor(scolor));
} // Light.pwm_multi_channels
if (!append) {
ResponseJsonEnd();
}
}
void LightPreparePower(void)
{
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG, "LightPreparePower power=%d Light.power=%d", power, Light.power);
#endif
// If multi-channels, then we only switch off channels with a value of zero
if (Light.pwm_multi_channels) {
// for (uint32_t i = 0; i < Light.subtype; i++) {
// // if channel is non-null, channel is supposed to be on, but it is off, do Power On
// if ((Light.current_color[i]) && (bitRead(Light.power, i)) && (0 == bitRead(power, i + Light.device - 1))) {
// ExecuteCommandPower(Light.device + i, POWER_ON_NO_STATE, SRC_LIGHT);
// //bitSet(Settings.power, i + Light.device - 1);
// #ifdef DEBUG_LIGHT
// AddLog_P2(LOG_LEVEL_DEBUG, "ExecuteCommandPower ON device=%d", Light.device + i);
// #endif
// }
// // if channel is zero and channel is on, set it off
// if ((0 == Light.current_color[i]) && bitRead(power, i + Light.device - 1)) {
// ExecuteCommandPower(Light.device + i, POWER_OFF_NO_STATE, SRC_LIGHT);
// //bitClear(Settings.power, i + Light.device - 1);
// #ifdef DEBUG_LIGHT
// AddLog_P2(LOG_LEVEL_DEBUG, "ExecuteCommandPower OFF device=%d", Light.device + i);
// #endif
// }
// #ifdef USE_DOMOTICZ
// DomoticzUpdatePowerState(Light.device + i);
// #endif // USE_DOMOTICZ
// }
} else {
if (light_state.getBri() && !(Light.power)) {
if (!Settings.flag.not_power_linked) {
ExecuteCommandPower(Light.device, POWER_ON_NO_STATE, SRC_LIGHT);
}
}
else if (!light_state.getBri() && Light.power) {
ExecuteCommandPower(Light.device, POWER_OFF_NO_STATE, SRC_LIGHT);
}
#ifdef USE_DOMOTICZ
DomoticzUpdatePowerState(Light.device);
#endif // USE_DOMOTICZ
}
if (Settings.flag3.hass_tele_on_power) { MqttPublishTeleState(); }
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG, "LightPreparePower End power=%d Light.power=%d", power, Light.power);
#endif
Light.power = power >> (Light.device - 1); // reset next state
LightState(0);
}
void LightFade(void)
{
if (0 == Settings.light_fade) {
for (uint32_t i = 0; i < Light.subtype; i++) {
Light.new_color[i] = Light.current_color[i];
}
} else {
uint8_t shift = Settings.light_speed;
if (Settings.light_speed > 6) {
shift = (Light.strip_timer_counter % (Settings.light_speed -6)) ? 0 : 8;
}
if (shift) {
for (uint32_t i = 0; i < Light.subtype; i++) {
if (Light.new_color[i] != Light.current_color[i]) {
if (Light.new_color[i] < Light.current_color[i]) {
Light.new_color[i] += ((Light.current_color[i] - Light.new_color[i]) >> shift) +1;
}
if (Light.new_color[i] > Light.current_color[i]) {
Light.new_color[i] -= ((Light.new_color[i] - Light.current_color[i]) >> shift) +1;
}
}
}
}
}
}
void LightWheel(uint8_t wheel_pos)
{
wheel_pos = 255 - wheel_pos;
if (wheel_pos < 85) {
Light.entry_color[0] = 255 - wheel_pos * 3;
Light.entry_color[1] = 0;
Light.entry_color[2] = wheel_pos * 3;
} else if (wheel_pos < 170) {
wheel_pos -= 85;
Light.entry_color[0] = 0;
Light.entry_color[1] = wheel_pos * 3;
Light.entry_color[2] = 255 - wheel_pos * 3;
} else {
wheel_pos -= 170;
Light.entry_color[0] = wheel_pos * 3;
Light.entry_color[1] = 255 - wheel_pos * 3;
Light.entry_color[2] = 0;
}
Light.entry_color[3] = 0;
Light.entry_color[4] = 0;
float dimmer = 100 / (float)Settings.light_dimmer;
for (uint32_t i = 0; i < LST_RGB; i++) {
float temp = (float)Light.entry_color[i] / dimmer + 0.5f;
Light.entry_color[i] = (uint8_t)temp;
}
}
void LightCycleColor(int8_t direction)
{
if (Light.strip_timer_counter % (Settings.light_speed * 2)) {
return;
}
Light.wheel += direction;
LightWheel(Light.wheel);
memcpy(Light.new_color, Light.entry_color, sizeof(Light.new_color));
}
void LightRandomColor(void)
{
bool update = false;
for (uint32_t i = 0; i < LST_RGB; i++) {
if (Light.new_color[i] != Light.current_color[i]) {
update = true;
}
}
if (!update) {
Light.wheel = random(255);
LightWheel(Light.wheel);
memcpy(Light.current_color, Light.entry_color, sizeof(Light.current_color));
}
LightFade();
}
void LightSetPower(void)
{
// Light.power = XdrvMailbox.index;
Light.old_power = Light.power;
//Light.power = bitRead(XdrvMailbox.index, Light.device -1);
uint32_t mask = 1; // default mask
if (Light.pwm_multi_channels) {
mask = (1 << Light.subtype) - 1; // wider mask
}
uint32_t shift = Light.device - 1;
// If PWM multi_channels
// Ex: 3 Relays and 4 PWM - devices_present = 7, Light.device = 4, Light.subtype = 4
// Result: mask = 0b00001111 = 0x0F, shift = 3.
// Power bits we consider are: 0b01111000 = 0x78
// If regular situation: devices_present == Light.subtype
Light.power = (XdrvMailbox.index & (mask << shift)) >> shift;
if (Light.wakeup_active) {
Light.wakeup_active--;
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightSetPower XdrvMailbox.index=%d Light.old_power=%d Light.power=%d mask=%d shift=%d",
XdrvMailbox.index, Light.old_power, Light.power, mask, shift);
#endif
if (Light.power != Light.old_power) {
Light.update = true;
}
LightAnimate();
}
void LightAnimate(void)
{
uint8_t cur_col[LST_MAX];
uint16_t light_still_on = 0;
Light.strip_timer_counter++;
if (!Light.power) { // Power Off
sleep = Settings.sleep;
Light.strip_timer_counter = 0;
for (uint32_t i = 0; i < Light.subtype; i++) {
light_still_on += Light.new_color[i];
}
if (light_still_on && Settings.light_fade && (Settings.light_scheme < LS_MAX)) {
uint8_t speed = Settings.light_speed;
if (speed > 6) {
speed = 6;
}
for (uint32_t i = 0; i < Light.subtype; i++) {
if (Light.new_color[i] > 0) {
Light.new_color[i] -= (Light.new_color[i] >> speed) +1;
}
}
} else {
for (uint32_t i = 0; i < Light.subtype; i++) {
Light.new_color[i] = 0;
}
}
}
else {
#ifdef PWM_LIGHTSCHEME0_IGNORE_SLEEP
sleep = (LS_POWER == Settings.light_scheme) ? Settings.sleep : 0; // If no animation then use sleep as is
#else
sleep = 0;
#endif // PWM_LIGHTSCHEME0_IGNORE_SLEEP
switch (Settings.light_scheme) {
case LS_POWER:
light_controller.calcLevels();
LightFade();
break;
case LS_WAKEUP:
if (2 == Light.wakeup_active) {
Light.wakeup_active = 1;
for (uint32_t i = 0; i < Light.subtype; i++) {
Light.new_color[i] = 0;
}
Light.wakeup_counter = 0;
Light.wakeup_dimmer = 0;
}
Light.wakeup_counter++;
if (Light.wakeup_counter > ((Settings.light_wakeup * STATES) / Settings.light_dimmer)) {
Light.wakeup_counter = 0;
Light.wakeup_dimmer++;
if (Light.wakeup_dimmer <= Settings.light_dimmer) {
light_state.setDimmer(Light.wakeup_dimmer);
light_controller.calcLevels();
for (uint32_t i = 0; i < Light.subtype; i++) {
Light.new_color[i] = Light.current_color[i];
}
} else {
Response_P(PSTR("{\"" D_CMND_WAKEUP "\":\"" D_JSON_DONE "\"}"));
MqttPublishPrefixTopic_P(TELE, PSTR(D_CMND_WAKEUP));
Light.wakeup_active = 0;
Settings.light_scheme = LS_POWER;
}
}
break;
case LS_CYCLEUP:
LightCycleColor(1);
break;
case LS_CYCLEDN:
LightCycleColor(-1);
break;
case LS_RANDOM:
LightRandomColor();
break;
default:
XlgtCall(FUNC_SET_SCHEME);
}
}
if ((Settings.light_scheme < LS_MAX) || !Light.power) {
// If SetOption68, multi_channels
if (Light.pwm_multi_channels) {
// if multi-channels, specifically apply the Light.power bits
for (uint32_t i = 0; i < LST_MAX; i++) {
if (0 == bitRead(Light.power,i)) { // if power down bit is zero
Light.new_color[i] = 0; // shut down this channel
}
}
// #ifdef DEBUG_LIGHT
// AddLog_P2(LOG_LEVEL_DEBUG_MORE, "Animate>> Light.power=%d Light.new_color=[%d,%d,%d,%d,%d]",
// Light.power, Light.new_color[0], Light.new_color[1], Light.new_color[2],
// Light.new_color[3], Light.new_color[4]);
// #endif
}
if (memcmp(Light.last_color, Light.new_color, Light.subtype)) {
Light.update = true;
}
if (Light.update) {
uint16_t cur_col_10bits[LST_MAX]; // 10 bits version of cur_col for PWM
Light.update = false;
// first set 8 and 10 bits channels
for (uint32_t i = 0; i < LST_MAX; i++) {
cur_col[i] = Light.last_color[i] = Light.new_color[i];
// Extend from 8 to 10 bits if no correction (in case no gamma correction is required)
cur_col_10bits[i] = changeUIntScale(cur_col[i], 0, 255, 0, 1023);
}
if (Light.pwm_multi_channels) {
calcGammaMultiChannels(cur_col, cur_col_10bits);
} else {
calcGammaBulbs(cur_col, cur_col_10bits);
if (PHILIPS == my_module_type) {
calcGammaCTPwm(cur_col, cur_col_10bits);
}
// Now see if we need to mix RGB and True White
// Valid only for LST_RGBW, LST_RGBWC, rgbwwTable[4] is zero, and white is zero (see doc)
if ((LST_RGBW <= Light.subtype) && (0 == Settings.rgbwwTable[4]) && (0 == cur_col[3]+cur_col[4])) {
uint32_t min_rgb_10 = min3(cur_col_10bits[0], cur_col_10bits[1], cur_col_10bits[2]);
uint8_t min_rgb = min3(cur_col[0], cur_col[1], cur_col[2]);
for (uint32_t i=0; i<3; i++) {
// substract white and adjust according to rgbwwTable
cur_col_10bits[i] = changeUIntScale(cur_col_10bits[i] - min_rgb_10, 0, 255, 0, Settings.rgbwwTable[i]);
cur_col[i] = changeUIntScale(cur_col[i] - min_rgb, 0, 255, 0, Settings.rgbwwTable[i]);
}
// compute the adjusted white levels for 10 and 8 bits
uint32_t white_10 = changeUIntScale(min_rgb_10, 0, 255, 0, Settings.rgbwwTable[3]); // set white power down corrected with rgbwwTable[3]
uint32_t white = changeUIntScale(min_rgb, 0, 255, 0, Settings.rgbwwTable[3]); // set white power down corrected with rgbwwTable[3]
if (LST_RGBW == Light.subtype) {
// we simply set the white channel
cur_col_10bits[3] = white_10;
cur_col[3] = white;
} else { // LST_RGBWC
// we distribute white between cold and warm according to CT value
uint32_t ct = light_state.getCT();
cur_col_10bits[4] = changeUIntScale(ct, 153, 500, 0, white_10);
cur_col_10bits[3] = white_10 - cur_col_10bits[4];
cur_col[4] = changeUIntScale(ct, 153, 500, 0, white);
cur_col[3] = white - cur_col[4];
}
}
}
// final adjusments for PMW, post-gamma correction
for (uint32_t i = 0; i < LST_MAX; i++) {
#if defined(ARDUINO_ESP8266_RELEASE_2_3_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_0) || defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2)
// Fix unwanted blinking and PWM watchdog errors for values close to pwm_range (H801, Arilux and BN-SZ01)
// but keep value 1023 if full range (PWM will be deactivated in this case)
if ((cur_col_10bits[i] > 1008) && (cur_col_10bits[i] < 1023)) {
cur_col_10bits[i] = 1008;
}
#endif
// scale from 0..1023 to 0..pwm_range, but keep any non-zero value to at least 1
cur_col_10bits[i] = (cur_col_10bits[i] > 0) ? changeUIntScale(cur_col_10bits[i], 1, 1023, 1, Settings.pwm_range) : 0;
}
// apply port remapping on both 8 bits and 10 bits versions
uint8_t orig_col[LST_MAX];
uint16_t orig_col_10bits[LST_MAX];
memcpy(orig_col, cur_col, sizeof(orig_col));
memcpy(orig_col_10bits, cur_col_10bits, sizeof(orig_col_10bits));
for (uint32_t i = 0; i < LST_MAX; i++) {
cur_col[i] = orig_col[Light.color_remap[i]];
cur_col_10bits[i] = orig_col_10bits[Light.color_remap[i]];
}
// now apply the actual PWM values, adjusted and remapped 10-bits range
if (light_type < LT_PWM6) { // only for direct PWM lights, not for Tuya, Armtronix...
for (uint32_t i = 0; i < (Light.subtype - Light.pwm_offset); i++) {
if (pin[GPIO_PWM1 +i] < 99) {
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION "Cur_Col%d 10 bits %d, Pwm%d %d"), i, cur_col_10bits[i], i+1, cur_col[i]);
analogWrite(pin[GPIO_PWM1 +i], bitRead(pwm_inverted, i) ? Settings.pwm_range - cur_col_10bits[(i + Light.pwm_offset)] : cur_col_10bits[(i + Light.pwm_offset)]);
}
}
}
char *tmp_data = XdrvMailbox.data;
uint16_t tmp_data_len = XdrvMailbox.data_len;
XdrvMailbox.data = (char*)cur_col;
XdrvMailbox.data_len = sizeof(cur_col);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "R%d G%d B%d, C%d W%d"),
cur_col[0], cur_col[1], cur_col[2], cur_col[3], cur_col[4]);
if (XlgtCall(FUNC_SET_CHANNELS)) {
// Serviced
}
else if (XdrvCall(FUNC_SET_CHANNELS)) {
// Serviced
}
XdrvMailbox.data = tmp_data;
XdrvMailbox.data_len = tmp_data_len;
}
}
}
// Do specific computation is SetOption73 is on, Color Temp is a separate PWM channel
void calcGammaCTPwm(uint8_t cur_col[5], uint16_t cur_col_10bits[5]) {
// Xiaomi Philips bulbs follow a different scheme:
uint8_t cold, warm; // channel 1 is the color tone, mapped to cold channel (0..255)
light_state.getCW(&cold, &warm);
// channels for white are always the last two channels
uint32_t cw1 = Light.subtype - 1; // address for the ColorTone PWM
uint32_t cw0 = Light.subtype - 2; // address for the White Brightness PWM
// overall brightness
uint16_t pxBri = cur_col[cw0] + cur_col[cw1];
if (pxBri > 255) { pxBri = 255; }
cur_col[cw1] = changeUIntScale(cold, 0, cold + warm, 0, 255); //
cur_col_10bits[cw1] = changeUIntScale(cur_col[cw1], 0, 255, 0, 1023);
// channel 0=intensity, channel1=temperature
if (Settings.light_correction) { // gamma correction
cur_col[cw0] = ledGamma(pxBri);
cur_col_10bits[cw0] = ledGamma(pxBri, 10); // 10 bits gamma correction
} else {
cur_col[cw0] = pxBri;
cur_col_10bits[cw0] = changeUIntScale(pxBri, 0, 255, 0, 1023); // no gamma, extend to 10 bits
}
}
// Just apply basic Gamma to each channel
void calcGammaMultiChannels(uint8_t cur_col[5], uint16_t cur_col_10bits[5]) {
// Apply gamma correction for 8 and 10 bits resolutions, if needed
if (Settings.light_correction) {
for (uint32_t i = 0; i < LST_MAX; i++) {
cur_col_10bits[i] = ledGamma(cur_col[i], 10);
cur_col[i] = ledGamma(cur_col[i]);
}
}
}
void calcGammaBulbs(uint8_t cur_col[5], uint16_t cur_col_10bits[5]) {
// Apply gamma correction for 8 and 10 bits resolutions, if needed
if (Settings.light_correction) {
// First apply combined correction to the overall white power
if ((LST_COLDWARM == Light.subtype) || (LST_RGBWC == Light.subtype)) {
uint8_t w_idx[2] = {0, 1}; // if LST_COLDWARM, channels 0 and 1
if (LST_RGBWC == Light.subtype) { // if LST_RGBWC, channels 3 and 4
w_idx[0] = 3;
w_idx[1] = 4;
}
uint16_t white_bri = cur_col[w_idx[0]] + cur_col[w_idx[1]];
// if sum of both channels is > 255, then channels are probablu uncorrelated
if (white_bri <= 255) {
// we calculate the gamma corrected sum of CW + WW
uint16_t white_bri_10bits = ledGamma(white_bri, 10);
uint8_t white_bri_8bits = ledGamma(white_bri);
// then we split the total energy among the cold and warm leds
cur_col_10bits[w_idx[0]] = changeUIntScale(cur_col[w_idx[0]], 0, white_bri, 0, white_bri_10bits);
cur_col_10bits[w_idx[1]] = changeUIntScale(cur_col[w_idx[1]], 0, white_bri, 0, white_bri_10bits);
cur_col[w_idx[0]] = changeUIntScale(cur_col[w_idx[0]], 0, white_bri, 0, white_bri_8bits);
cur_col[w_idx[1]] = changeUIntScale(cur_col[w_idx[1]], 0, white_bri, 0, white_bri_8bits);
} else {
cur_col_10bits[w_idx[0]] = ledGamma(cur_col[w_idx[0]], 10);
cur_col_10bits[w_idx[1]] = ledGamma(cur_col[w_idx[1]], 10);
cur_col[w_idx[0]] = ledGamma(cur_col[w_idx[0]]);
cur_col[w_idx[1]] = ledGamma(cur_col[w_idx[1]]);
}
}
// then apply gamma correction to RGB channels
if (LST_RGB <= Light.subtype) {
for (uint32_t i = 0; i < 3; i++) {
cur_col_10bits[i] = ledGamma(cur_col[i], 10);
cur_col[i] = ledGamma(cur_col[i]);
}
}
// If RGBW or Single channel, also adjust White channel
if ((LST_COLDWARM != Light.subtype) && (LST_RGBWC != Light.subtype)) {
cur_col_10bits[3] = ledGamma(cur_col[3], 10);
cur_col[3] = ledGamma(cur_col[3]);
}
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
bool LightColorEntry(char *buffer, uint32_t buffer_length)
{
char scolor[10];
char *p;
char *str;
uint32_t entry_type = 0; // Invalid
uint8_t value = Light.fixed_color_index;
if (buffer[0] == '#') { // Optional hexadecimal entry
buffer++;
buffer_length--;
}
if (Light.subtype >= LST_RGB) {
char option = (1 == buffer_length) ? buffer[0] : '\0';
if (('+' == option) && (Light.fixed_color_index < MAX_FIXED_COLOR)) {
value++;
}
else if (('-' == option) && (Light.fixed_color_index > 1)) {
value--;
} else {
value = atoi(buffer);
}
}
memset(&Light.entry_color, 0x00, sizeof(Light.entry_color));
if (strstr(buffer, ",") != nullptr) { // Decimal entry
int8_t i = 0;
for (str = strtok_r(buffer, ",", &p); str && i < 6; str = strtok_r(nullptr, ",", &p)) {
if (i < LST_MAX) {
Light.entry_color[i++] = atoi(str);
}
}
entry_type = 2; // Decimal
}
else if (((2 * Light.subtype) == buffer_length) || (buffer_length > 3)) { // Hexadecimal entry
for (uint32_t i = 0; i < tmin((uint)(buffer_length / 2), sizeof(Light.entry_color)); i++) {
strlcpy(scolor, buffer + (i *2), 3);
Light.entry_color[i] = (uint8_t)strtol(scolor, &p, 16);
}
entry_type = 1; // Hexadecimal
}
else if ((Light.subtype >= LST_RGB) && (value > 0) && (value <= MAX_FIXED_COLOR)) {
Light.fixed_color_index = value;
memcpy_P(&Light.entry_color, &kFixedColor[value -1], 3);
entry_type = 1; // Hexadecimal
}
else if ((value > 199) && (value <= 199 + MAX_FIXED_COLD_WARM)) {
if (LST_RGBW == Light.subtype) {
memcpy_P(&Light.entry_color[3], &kFixedWhite[value -200], 1);
entry_type = 1; // Hexadecimal
}
else if (LST_COLDWARM == Light.subtype) {
memcpy_P(&Light.entry_color, &kFixedColdWarm[value -200], 2);
entry_type = 1; // Hexadecimal
}
else if (LST_RGBWC == Light.subtype) {
memcpy_P(&Light.entry_color[3], &kFixedColdWarm[value -200], 2);
entry_type = 1; // Hexadecimal
}
}
if (entry_type) {
Settings.flag.decimal_text = entry_type -1;
}
return (entry_type);
}
/********************************************************************************************/
void CmndSupportColor(void)
{
bool valid_entry = false;
bool coldim = false;
if (XdrvMailbox.data_len > 0) {
valid_entry = LightColorEntry(XdrvMailbox.data, XdrvMailbox.data_len);
if (valid_entry) {
if (XdrvMailbox.index <= 2) { // Color(1), 2
uint32_t old_bri = light_state.getBri();
// change all channels to specified values
light_controller.changeChannels(Light.entry_color);
if (2 == XdrvMailbox.index) {
// If Color2, set back old brightness
light_controller.changeBri(old_bri);
}
Settings.light_scheme = 0;
coldim = true;
} else { // Color3, 4, 5 and 6
for (uint32_t i = 0; i < LST_RGB; i++) {
Settings.ws_color[XdrvMailbox.index -3][i] = Light.entry_color[i];
}
}
}
}
char scolor[LIGHT_COLOR_SIZE];
if (!valid_entry && (XdrvMailbox.index <= 2)) {
ResponseCmndChar(LightGetColor(scolor));
}
if (XdrvMailbox.index >= 3) {
scolor[0] = '\0';
for (uint32_t i = 0; i < LST_RGB; i++) {
if (Settings.flag.decimal_text) {
snprintf_P(scolor, sizeof(scolor), PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Settings.ws_color[XdrvMailbox.index -3][i]);
} else {
snprintf_P(scolor, sizeof(scolor), PSTR("%s%02X"), scolor, Settings.ws_color[XdrvMailbox.index -3][i]);
}
}
ResponseCmndIdxChar(scolor);
}
if (coldim) {
LightPreparePower();
}
}
void CmndColor(void)
{
if ((Light.subtype > LST_SINGLE) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= 6)) {
CmndSupportColor();
}
}
void CmndWhite(void)
{
if ((Light.subtype == LST_RGBW) && (XdrvMailbox.index == 1)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
uint32_t whiteBri = changeUIntScale(XdrvMailbox.payload,0,100,0,255);
char scolor[LIGHT_COLOR_SIZE];
snprintf_P(scolor, sizeof(scolor), PSTR("0,0,0,%d"), whiteBri);
light_state.setBri(whiteBri); // save target Bri, will be confirmed below
XdrvMailbox.data = scolor;
XdrvMailbox.data_len = strlen(scolor);
} else {
XdrvMailbox.data_len = 0;
}
CmndSupportColor();
}
}
void CmndChannel(void)
{
if ((XdrvMailbox.index >= Light.device) && (XdrvMailbox.index < Light.device + Light.subtype )) {
bool coldim = false;
// Set "Channel" directly - this allows Color and Direct PWM control to coexist
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
Light.current_color[XdrvMailbox.index - Light.device] = changeUIntScale(XdrvMailbox.payload,0,100,0,255);
if (Light.pwm_multi_channels) {
// if (!Settings.flag.not_power_linked) { // SetOption20
// Light.power = Light.power | (1 << (XdrvMailbox.index - Light.device)); // ask to turn on channel
// }
} else {
// if we change channels 1,2,3 then turn off CT mode (unless non-linked)
if ((XdrvMailbox.index <= 3) && (light_controller.isCTRGBLinked())) {
Light.current_color[3] = Light.current_color[4] = 0;
}
}
light_controller.changeChannels(Light.current_color);
coldim = true;
}
ResponseCmndIdxNumber(changeUIntScale(Light.current_color[XdrvMailbox.index -1],0,255,0,100));
if (coldim) {
LightPreparePower();
}
}
}
void CmndHsbColor(void)
{
if (Light.subtype >= LST_RGB) {
bool validHSB = (XdrvMailbox.data_len > 0);
if (validHSB) {
uint16_t HSB[3];
if (strstr(XdrvMailbox.data, ",") != nullptr) { // Command with 3 comma separated parameters, Hue (0<H<360), Saturation (0<S<100) AND Brightness (0<B<100)
for (uint32_t i = 0; i < 3; i++) {
char *substr;
if (0 == i) {
substr = strtok(XdrvMailbox.data, ",");
} else {
substr = strtok(nullptr, ",");
}
if (substr != nullptr) {
HSB[i] = atoi(substr);
if (0 < i) {
HSB[i] = changeUIntScale(HSB[i], 0, 100, 0, 255); // change sat and bri to 0..255
}
} else {
validHSB = false;
}
}
} else { // Command with only 1 parameter, Hue (0<H<360), Saturation (0<S<100) OR Brightness (0<B<100)
uint16_t c_hue;
uint8_t c_sat;
light_state.getHSB(&c_hue, &c_sat, nullptr);
HSB[0] = c_hue;
HSB[1] = c_sat;
HSB[2] = light_state.getBri();
if (1 == XdrvMailbox.index) {
HSB[0] = XdrvMailbox.payload;
} else if ((XdrvMailbox.index > 1) && (XdrvMailbox.index < 4)) {
HSB[XdrvMailbox.index-1] = changeUIntScale(XdrvMailbox.payload,0,100,0,255);
} else {
validHSB = false;
}
}
if (validHSB) {
light_controller.changeHSB(HSB[0], HSB[1], HSB[2]);
LightPreparePower();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_CMND_COLOR));
}
} else {
LightState(0);
}
}
}
void CmndScheme(void)
{
if (Light.subtype >= LST_RGB) {
uint32_t max_scheme = Light.max_scheme;
if (1 == XdrvMailbox.data_len) {
if (('+' == XdrvMailbox.data[0]) && (Settings.light_scheme < max_scheme)) {
XdrvMailbox.payload = Settings.light_scheme + ((0 == Settings.light_scheme) ? 2 : 1); // Skip wakeup
}
else if (('-' == XdrvMailbox.data[0]) && (Settings.light_scheme > 0)) {
XdrvMailbox.payload = Settings.light_scheme - ((2 == Settings.light_scheme) ? 2 : 1); // Skip wakeup
}
}
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= max_scheme)) {
Settings.light_scheme = XdrvMailbox.payload;
if (LS_WAKEUP == Settings.light_scheme) {
Light.wakeup_active = 3;
}
LightPowerOn();
Light.strip_timer_counter = 0;
// Publish state message for Hass
if (Settings.flag3.hass_tele_on_power) { MqttPublishTeleState(); }
}
ResponseCmndNumber(Settings.light_scheme);
}
}
void CmndWakeup(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
Settings.light_dimmer = XdrvMailbox.payload;
}
Light.wakeup_active = 3;
Settings.light_scheme = LS_WAKEUP;
LightPowerOn();
ResponseCmndChar(D_JSON_STARTED);
}
void CmndColorTemperature(void)
{
if ((LST_COLDWARM == Light.subtype) || (LST_RGBWC == Light.subtype)) { // ColorTemp
uint32_t ct = light_state.getCT();
if (1 == XdrvMailbox.data_len) {
if ('+' == XdrvMailbox.data[0]) {
XdrvMailbox.payload = (ct > (500-34)) ? 500 : ct + 34;
}
else if ('-' == XdrvMailbox.data[0]) {
XdrvMailbox.payload = (ct < (153+34)) ? 153 : ct - 34;
}
}
if ((XdrvMailbox.payload >= 153) && (XdrvMailbox.payload <= 500)) { // https://developers.meethue.com/documentation/core-concepts
light_controller.changeCTB(XdrvMailbox.payload, light_state.getBri());
LightPreparePower();
} else {
ResponseCmndNumber(ct);
}
}
}
void CmndDimmer(void)
{
uint32_t dimmer = light_state.getDimmer();
if (1 == XdrvMailbox.data_len) {
if ('+' == XdrvMailbox.data[0]) {
XdrvMailbox.payload = (dimmer > 89) ? 100 : dimmer + 10;
}
else if ('-' == XdrvMailbox.data[0]) {
XdrvMailbox.payload = (dimmer < 11) ? 1 : dimmer - 10;
}
}
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
light_controller.changeDimmer(XdrvMailbox.payload);
Light.update = true;
LightPreparePower();
} else {
ResponseCmndNumber(Settings.light_dimmer);
}
}
void CmndDimmerRange(void)
{
if (XdrvMailbox.data_len > 0) {
char *p;
uint8_t i = 0;
uint16_t parm[2];
parm[0] = Settings.dimmer_hw_min;
parm[1] = Settings.dimmer_hw_max;
for (char *str = strtok_r(XdrvMailbox.data, ", ", &p); str && i < 2; str = strtok_r(nullptr, ", ", &p)) {
parm[i] = strtoul(str, nullptr, 0);
i++;
}
if (parm[0] < parm[1]) {
Settings.dimmer_hw_min = parm[0];
Settings.dimmer_hw_max = parm[1];
} else {
Settings.dimmer_hw_min = parm[1];
Settings.dimmer_hw_max = parm[0];
}
restart_flag = 2;
}
Response_P(PSTR("{\"" D_CMND_DIMMER_RANGE "\":{\"Min\":%d,\"Max\":%d}}"), Settings.dimmer_hw_min, Settings.dimmer_hw_max);
}
void CmndLedTable(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 2)) {
switch (XdrvMailbox.payload) {
case 0: // Off
case 1: // On
Settings.light_correction = XdrvMailbox.payload;
break;
case 2: // Toggle
Settings.light_correction ^= 1;
break;
}
Light.update = true;
}
ResponseCmndStateText(Settings.light_correction);
}
void CmndRgbwwTable(void)
{
if ((XdrvMailbox.data_len > 0)) {
if (strstr(XdrvMailbox.data, ",") != nullptr) { // Command with up to 5 comma separated parameters
for (uint32_t i = 0; i < LST_RGBWC; i++) {
char *substr;
if (0 == i) {
substr = strtok(XdrvMailbox.data, ",");
} else {
substr = strtok(nullptr, ",");
}
if (substr != nullptr) {
Settings.rgbwwTable[i] = atoi(substr);
}
}
}
Light.update = true;
}
char scolor[LIGHT_COLOR_SIZE];
scolor[0] = '\0';
for (uint32_t i = 0; i < LST_RGBWC; i++) {
snprintf_P(scolor, sizeof(scolor), PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Settings.rgbwwTable[i]);
}
ResponseCmndIdxChar(scolor);
}
void CmndFade(void)
{
switch (XdrvMailbox.payload) {
case 0: // Off
case 1: // On
Settings.light_fade = XdrvMailbox.payload;
break;
case 2: // Toggle
Settings.light_fade ^= 1;
break;
}
ResponseCmndStateText(Settings.light_fade);
}
void CmndSpeed(void)
{ // 1 - fast, 20 - very slow
if (1 == XdrvMailbox.data_len) {
if (('+' == XdrvMailbox.data[0]) && (Settings.light_speed > 1)) {
XdrvMailbox.payload = Settings.light_speed -1;
}
else if (('-' == XdrvMailbox.data[0]) && (Settings.light_speed < STATES)) {
XdrvMailbox.payload = Settings.light_speed +1;
}
}
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= STATES)) {
Settings.light_speed = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings.light_speed);
}
void CmndWakeupDuration(void)
{
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 3001)) {
Settings.light_wakeup = XdrvMailbox.payload;
Light.wakeup_active = 0;
}
ResponseCmndNumber(Settings.light_wakeup);
}
void CmndUndocA(void)
{ // Theos legacy status
char scolor[LIGHT_COLOR_SIZE];
LightGetColor(scolor, true); // force hex whatever Option 17
scolor[6] = '\0'; // RGB only
Response_P(PSTR("%s,%d,%d,%d,%d,%d"), scolor, Settings.light_fade, Settings.light_correction, Settings.light_scheme, Settings.light_speed, Settings.light_width);
MqttPublishPrefixTopic_P(STAT, XdrvMailbox.topic);
mqtt_data[0] = '\0';
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv04(uint8_t function)
{
bool result = false;
if (FUNC_MODULE_INIT == function) {
return LightModuleInit();
}
else if (light_type) {
switch (function) {
case FUNC_SERIAL:
result = XlgtCall(FUNC_SERIAL);
break;
case FUNC_EVERY_50_MSECOND:
LightAnimate();
break;
case FUNC_SET_POWER:
LightSetPower();
break;
case FUNC_COMMAND:
result = DecodeCommand(kLightCommands, LightCommand);
if (!result) {
result = XlgtCall(FUNC_COMMAND);
}
break;
case FUNC_PRE_INIT:
LightInit();
break;
}
}
return result;
}
#endif // USE_LIGHT