Tasmota/tasmota/xdrv_23_zigbee_2_devices.ino

1126 lines
40 KiB
C++

/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
#include <vector>
#ifndef ZIGBEE_SAVE_DELAY_SECONDS
#define ZIGBEE_SAVE_DELAY_SECONDS 2; // wait for 2s before saving Zigbee info
#endif
const uint16_t kZigbeeSaveDelaySeconds = ZIGBEE_SAVE_DELAY_SECONDS; // wait for x seconds
/*********************************************************************************************\
* Structures for device configuration
\*********************************************************************************************/
const size_t endpoints_max = 8; // we limit to 8 endpoints
typedef struct Z_Device {
uint64_t longaddr; // 0x00 means unspecified
char * manufacturerId;
char * modelId;
char * friendlyName;
uint8_t endpoints[endpoints_max]; // static array to limit memory consumption, list of endpoints until 0x00 or end of array
// json buffer used for attribute reporting
DynamicJsonBuffer *json_buffer;
JsonObject *json;
// sequence number for Zigbee frames
uint16_t shortaddr; // unique key if not null, or unspecified if null
uint8_t seqNumber;
// Light information for Hue integration integration, last known values
int8_t bulbtype; // number of channel for the bulb: 0-5, or 0xFF if no Hue integration
uint8_t power; // power state (boolean), MSB (0x80) stands for reachable
uint8_t colormode; // 0x00: Hue/Sat, 0x01: XY, 0x02: CT
uint8_t dimmer; // last Dimmer value: 0-254
uint8_t sat; // last Sat: 0..254
uint16_t ct; // last CT: 153-500
uint16_t hue; // last Hue: 0..359
uint16_t x, y; // last color [x,y]
} Z_Device;
/*********************************************************************************************\
* Structures for deferred callbacks
\*********************************************************************************************/
typedef int32_t (*Z_DeviceTimer)(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value);
// Category for Deferred actions, this allows to selectively remove active deferred or update them
typedef enum Z_Def_Category {
Z_CAT_NONE = 0, // no category, it will happen anyways
Z_CAT_READ_ATTR, // Attribute reporting, either READ_ATTRIBUTE or REPORT_ATTRIBUTE, we coalesce all attributes reported if we can
Z_CAT_VIRTUAL_ATTR, // Creation of a virtual attribute, typically after a time-out. Ex: Aqara presence sensor
Z_CAT_REACHABILITY, // timer set to measure reachability of device, i.e. if we don't get an answer after 1s, it is marked as unreachable (for Alexa)
Z_CAT_READ_0006, // Read 0x0006 cluster
Z_CAT_READ_0008, // Read 0x0008 cluster
Z_CAT_READ_0102, // Read 0x0300 cluster
Z_CAT_READ_0300, // Read 0x0300 cluster
} Z_Def_Category;
const uint32_t Z_CAT_REACHABILITY_TIMEOUT = 1000; // 1000 ms or 1s
typedef struct Z_Deferred {
// below are per device timers, used for example to query the new state of the device
uint32_t timer; // millis() when to fire the timer, 0 if no timer
uint16_t shortaddr; // identifier of the device
uint16_t groupaddr; // group address (if needed)
uint16_t cluster; // cluster to use for the timer
uint8_t endpoint; // endpoint to use for timer
uint8_t category; // which category of deferred is it
uint32_t value; // any raw value to use for the timer
Z_DeviceTimer func; // function to call when timer occurs
} Z_Deferred;
/*********************************************************************************************\
* Singleton for device configuration
\*********************************************************************************************/
// All devices are stored in a Vector
// Invariants:
// - shortaddr is unique if not null
// - longaddr is unique if not null
// - shortaddr and longaddr cannot be both null
class Z_Devices {
public:
Z_Devices() {};
// Probe the existence of device keys
// Results:
// - 0x0000 = not found
// - 0xFFFF = bad parameter
// - 0x<shortaddr> = the device's short address
uint16_t isKnownShortAddr(uint16_t shortaddr) const;
uint16_t isKnownLongAddr(uint64_t longaddr) const;
uint16_t isKnownIndex(uint32_t index) const;
uint16_t isKnownFriendlyName(const char * name) const;
uint64_t getDeviceLongAddr(uint16_t shortaddr) const;
uint8_t findFirstEndpoint(uint16_t shortaddr) const;
// Add new device, provide ShortAddr and optional longAddr
// If it is already registered, update information, otherwise create the entry
void updateDevice(uint16_t shortaddr, uint64_t longaddr = 0);
// Add an endpoint to a device
void addEndpoint(uint16_t shortaddr, uint8_t endpoint);
void clearEndpoints(uint16_t shortaddr);
void setManufId(uint16_t shortaddr, const char * str);
void setModelId(uint16_t shortaddr, const char * str);
void setFriendlyName(uint16_t shortaddr, const char * str);
const char * getFriendlyName(uint16_t shortaddr) const;
const char * getModelId(uint16_t shortaddr) const;
void setReachable(uint16_t shortaddr, bool reachable);
// get next sequence number for (increment at each all)
uint8_t getNextSeqNumber(uint16_t shortaddr);
// Dump json
String dumpLightState(uint16_t shortaddr) const;
String dump(uint32_t dump_mode, uint16_t status_shortaddr = 0) const;
int32_t deviceRestore(const JsonObject &json);
// Hue support
void setHueBulbtype(uint16_t shortaddr, int8_t bulbtype);
int8_t getHueBulbtype(uint16_t shortaddr) const ;
void updateHueState(uint16_t shortaddr,
const bool *power, const uint8_t *colormode,
const uint8_t *dimmer, const uint8_t *sat,
const uint16_t *ct, const uint16_t *hue,
const uint16_t *x, const uint16_t *y,
const bool *reachable);
bool getHueState(uint16_t shortaddr,
bool *power, uint8_t *colormode,
uint8_t *dimmer, uint8_t *sat,
uint16_t *ct, uint16_t *hue,
uint16_t *x, uint16_t *y,
bool *reachable) const ;
// Timers
void resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category);
void setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func);
void runTimer(void);
// Append or clear attributes Json structure
void jsonClear(uint16_t shortaddr);
void jsonAppend(uint16_t shortaddr, const JsonObject &values);
const JsonObject *jsonGet(uint16_t shortaddr);
void jsonPublishFlush(uint16_t shortaddr); // publish the json message and clear buffer
bool jsonIsConflict(uint16_t shortaddr, const JsonObject &values);
void jsonPublishNow(uint16_t shortaddr, JsonObject &values);
// Iterator
size_t devicesSize(void) const {
return _devices.size();
}
const Z_Device &devicesAt(size_t i) const {
return *(_devices.at(i));
}
// Remove device from list
bool removeDevice(uint16_t shortaddr);
// Mark data as 'dirty' and requiring to save in Flash
void dirty(void);
void clean(void); // avoid writing to flash the last changes
void shrinkToFit(uint16_t shortaddr);
// Find device by name, can be short_addr, long_addr, number_in_array or name
uint16_t parseDeviceParam(const char * param, bool short_must_be_known = false) const;
private:
std::vector<Z_Device*> _devices = {};
std::vector<Z_Deferred> _deferred = {}; // list of deferred calls
uint32_t _saveTimer = 0;
uint8_t _seqNumber = 0; // global seqNumber if device is unknown
template < typename T>
static bool findInVector(const std::vector<T> & vecOfElements, const T & element);
template < typename T>
static int32_t findEndpointInVector(const std::vector<T> & vecOfElements, uint8_t element);
Z_Device & getShortAddr(uint16_t shortaddr); // find Device from shortAddr, creates it if does not exist
const Z_Device & getShortAddrConst(uint16_t shortaddr) const ; // find Device from shortAddr, creates it if does not exist
Z_Device & getLongAddr(uint64_t longaddr); // find Device from shortAddr, creates it if does not exist
int32_t findShortAddr(uint16_t shortaddr) const;
int32_t findLongAddr(uint64_t longaddr) const;
int32_t findFriendlyName(const char * name) const;
// Create a new entry in the devices list - must be called if it is sure it does not already exist
Z_Device & createDeviceEntry(uint16_t shortaddr, uint64_t longaddr = 0);
void freeDeviceEntry(Z_Device *device);
void setStringAttribute(char*& attr, const char * str);
};
/*********************************************************************************************\
* Singleton variable
\*********************************************************************************************/
Z_Devices zigbee_devices = Z_Devices();
// Local coordinator information
uint64_t localIEEEAddr = 0;
/*********************************************************************************************\
* Implementation
\*********************************************************************************************/
// https://thispointer.com/c-how-to-find-an-element-in-vector-and-get-its-index/
template < typename T>
bool Z_Devices::findInVector(const std::vector<T> & vecOfElements, const T & element) {
// Find given element in vector
auto it = std::find(vecOfElements.begin(), vecOfElements.end(), element);
if (it != vecOfElements.end()) {
return true;
} else {
return false;
}
}
template < typename T>
int32_t Z_Devices::findEndpointInVector(const std::vector<T> & vecOfElements, uint8_t element) {
// Find given element in vector
int32_t found = 0;
for (auto &elem : vecOfElements) {
if (elem == element) { return found; }
found++;
}
return -1;
}
//
// Create a new Z_Device entry in _devices. Only to be called if you are sure that no
// entry with same shortaddr or longaddr exists.
//
Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) {
if (!shortaddr && !longaddr) { return *(Z_Device*) nullptr; } // it is not legal to create an enrty with both short/long addr null
//Z_Device* device_alloc = (Z_Device*) malloc(sizeof(Z_Device));
Z_Device* device_alloc = new Z_Device{
longaddr,
nullptr, // ManufId
nullptr, // DeviceId
nullptr, // FriendlyName
{ 0, 0, 0, 0, 0, 0, 0, 0 }, // endpoints
nullptr, nullptr,
shortaddr,
0, // seqNumber
// Hue support
-1, // no Hue support
0x80, // power off + reachable
0, // colormode
0, // dimmer
0, // sat
200, // ct
0, // hue
0, 0, // x, y
};
device_alloc->json_buffer = new DynamicJsonBuffer(16);
_devices.push_back(device_alloc);
dirty();
return *(_devices.back());
}
void Z_Devices::freeDeviceEntry(Z_Device *device) {
if (device->manufacturerId) { free(device->manufacturerId); }
if (device->modelId) { free(device->modelId); }
if (device->friendlyName) { free(device->friendlyName); }
free(device);
}
//
// Scan all devices to find a corresponding shortaddr
// Looks info device.shortaddr entry
// In:
// shortaddr (non null)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findShortAddr(uint16_t shortaddr) const {
if (!shortaddr) { return -1; } // does not make sense to look for 0x0000 shortaddr (localhost)
int32_t found = 0;
if (shortaddr) {
for (auto &elem : _devices) {
if (elem->shortaddr == shortaddr) { return found; }
found++;
}
}
return -1;
}
//
// Scan all devices to find a corresponding longaddr
// Looks info device.longaddr entry
// In:
// longaddr (non null)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findLongAddr(uint64_t longaddr) const {
if (!longaddr) { return -1; }
int32_t found = 0;
if (longaddr) {
for (auto &elem : _devices) {
if (elem->longaddr == longaddr) { return found; }
found++;
}
}
return -1;
}
//
// Scan all devices to find a corresponding friendlyNme
// Looks info device.friendlyName entry
// In:
// friendlyName (null terminated, should not be empty)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findFriendlyName(const char * name) const {
if (!name) { return -1; } // if pointer is null
size_t name_len = strlen(name);
int32_t found = 0;
if (name_len) {
for (auto &elem : _devices) {
if (elem->friendlyName) {
if (strcmp(elem->friendlyName, name) == 0) { return found; }
}
found++;
}
}
return -1;
}
// Probe if device is already known but don't create any entry
uint16_t Z_Devices::isKnownShortAddr(uint16_t shortaddr) const {
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
return shortaddr;
} else {
return 0; // unknown
}
}
uint16_t Z_Devices::isKnownLongAddr(uint64_t longaddr) const {
int32_t found = findLongAddr(longaddr);
if (found >= 0) {
const Z_Device & device = devicesAt(found);
return device.shortaddr; // can be zero, if not yet registered
} else {
return 0;
}
}
uint16_t Z_Devices::isKnownIndex(uint32_t index) const {
if (index < devicesSize()) {
const Z_Device & device = devicesAt(index);
return device.shortaddr;
} else {
return 0;
}
}
uint16_t Z_Devices::isKnownFriendlyName(const char * name) const {
if ((!name) || (0 == strlen(name))) { return 0xFFFF; } // Error
int32_t found = findFriendlyName(name);
if (found >= 0) {
const Z_Device & device = devicesAt(found);
return device.shortaddr; // can be zero, if not yet registered
} else {
return 0;
}
}
uint64_t Z_Devices::getDeviceLongAddr(uint16_t shortaddr) const {
const Z_Device & device = getShortAddrConst(shortaddr);
return device.longaddr;
}
//
// We have a seen a shortaddr on the network, get the corresponding
//
Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) {
if (!shortaddr) { return *(Z_Device*) nullptr; } // this is not legal
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
return *(_devices[found]);
}
//Serial.printf("Device entry created for shortaddr = 0x%02X, found = %d\n", shortaddr, found);
return createDeviceEntry(shortaddr, 0);
}
// Same version but Const
const Z_Device & Z_Devices::getShortAddrConst(uint16_t shortaddr) const {
if (!shortaddr) { return *(Z_Device*) nullptr; } // this is not legal
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
return *(_devices[found]);
}
return *((Z_Device*)nullptr);
}
// find the Device object by its longaddr (unique key if not null)
Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) {
if (!longaddr) { return *(Z_Device*) nullptr; }
int32_t found = findLongAddr(longaddr);
if (found > 0) {
return *(_devices[found]);
}
return createDeviceEntry(0, longaddr);
}
// Remove device from list, return true if it was known, false if it was not recorded
bool Z_Devices::removeDevice(uint16_t shortaddr) {
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
freeDeviceEntry(_devices.at(found));
_devices.erase(_devices.begin() + found);
dirty();
return true;
}
return false;
}
//
// We have just seen a device on the network, update the info based on short/long addr
// In:
// shortaddr
// longaddr (both can't be null at the same time)
void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) {
int32_t s_found = findShortAddr(shortaddr); // is there already a shortaddr entry
int32_t l_found = findLongAddr(longaddr); // is there already a longaddr entry
if ((s_found >= 0) && (l_found >= 0)) { // both shortaddr and longaddr are already registered
if (s_found == l_found) {
} else { // they don't match
// the device with longaddr got a new shortaddr
_devices[l_found]->shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr
// erase the previous shortaddr
freeDeviceEntry(_devices.at(s_found));
_devices.erase(_devices.begin() + s_found);
dirty();
}
} else if (s_found >= 0) {
// shortaddr already exists but longaddr not
// add the longaddr to the entry
_devices[s_found]->longaddr = longaddr;
dirty();
} else if (l_found >= 0) {
// longaddr entry exists, update shortaddr
_devices[l_found]->shortaddr = shortaddr;
dirty();
} else {
// neither short/lonf addr are found.
if (shortaddr || longaddr) {
createDeviceEntry(shortaddr, longaddr);
}
}
}
//
// Clear all endpoints
//
void Z_Devices::clearEndpoints(uint16_t shortaddr) {
if (!shortaddr) { return; }
Z_Device &device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
for (uint32_t i = 0; i < endpoints_max; i++) {
device.endpoints[i] = 0;
// no dirty here because it doesn't make sense to store it, does it?
}
}
//
// Add an endpoint to a shortaddr
//
void Z_Devices::addEndpoint(uint16_t shortaddr, uint8_t endpoint) {
if (!shortaddr) { return; }
if (0x00 == endpoint) { return; }
Z_Device &device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
for (uint32_t i = 0; i < endpoints_max; i++) {
if (endpoint == device.endpoints[i]) {
return; // endpoint already there
}
if (0 == device.endpoints[i]) {
device.endpoints[i] = endpoint;
dirty();
return;
}
}
}
// Find the first endpoint of the device
uint8_t Z_Devices::findFirstEndpoint(uint16_t shortaddr) const {
int32_t found = findShortAddr(shortaddr);
if (found < 0) return 0; // avoid creating an entry if the device was never seen
const Z_Device &device = devicesAt(found);
return device.endpoints[0]; // returns 0x00 if no endpoint
}
void Z_Devices::setStringAttribute(char*& attr, const char * str) {
size_t str_len = str ? strlen(str) : 0; // len, handle both null ptr and zero length string
if ((nullptr == attr) && (0 == str_len)) { return; } // if both empty, don't do anything
if (attr) {
// we already have a value
if (strcmp(attr, str) != 0) {
// new value
free(attr); // free previous value
attr = nullptr;
} else {
return; // same value, don't change anything
}
}
if (str_len) {
attr = (char*) malloc(str_len + 1);
strlcpy(attr, str, str_len + 1);
}
dirty();
}
//
// Sets the ManufId for a device.
// No action taken if the device does not exist.
// Inputs:
// - shortaddr: 16-bits short address of the device. No action taken if the device is unknown
// - str: string pointer, if nullptr it is considered as empty string
// Impact:
// - Any actual change in ManufId (i.e. setting a different value) triggers a `dirty()` and saving to Flash
//
void Z_Devices::setManufId(uint16_t shortaddr, const char * str) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
setStringAttribute(device.manufacturerId, str);
}
void Z_Devices::setModelId(uint16_t shortaddr, const char * str) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
setStringAttribute(device.modelId, str);
}
void Z_Devices::setFriendlyName(uint16_t shortaddr, const char * str) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
setStringAttribute(device.friendlyName, str);
}
const char * Z_Devices::getFriendlyName(uint16_t shortaddr) const {
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
const Z_Device & device = devicesAt(found);
return device.friendlyName;
}
return nullptr;
}
const char * Z_Devices::getModelId(uint16_t shortaddr) const {
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
const Z_Device & device = devicesAt(found);
return device.modelId;
}
return nullptr;
}
void Z_Devices::setReachable(uint16_t shortaddr, bool reachable) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
bitWrite(device.power, 7, reachable);
}
// get the next sequance number for the device, or use the global seq number if device is unknown
uint8_t Z_Devices::getNextSeqNumber(uint16_t shortaddr) {
int32_t short_found = findShortAddr(shortaddr);
if (short_found >= 0) {
Z_Device &device = getShortAddr(shortaddr);
device.seqNumber += 1;
return device.seqNumber;
} else {
_seqNumber += 1;
return _seqNumber;
}
}
// Hue support
void Z_Devices::setHueBulbtype(uint16_t shortaddr, int8_t bulbtype) {
Z_Device &device = getShortAddr(shortaddr);
if (bulbtype != device.bulbtype) {
device.bulbtype = bulbtype;
dirty();
}
}
int8_t Z_Devices::getHueBulbtype(uint16_t shortaddr) const {
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
return _devices[found]->bulbtype;
} else {
return -1; // Hue not activated
}
}
// Hue support
void Z_Devices::updateHueState(uint16_t shortaddr,
const bool *power, const uint8_t *colormode,
const uint8_t *dimmer, const uint8_t *sat,
const uint16_t *ct, const uint16_t *hue,
const uint16_t *x, const uint16_t *y,
const bool *reachable) {
Z_Device &device = getShortAddr(shortaddr);
if (power) { bitWrite(device.power, 0, *power); }
if (colormode){ device.colormode = *colormode; }
if (dimmer) { device.dimmer = *dimmer; }
if (sat) { device.sat = *sat; }
if (ct) { device.ct = *ct; }
if (hue) { device.hue = *hue; }
if (x) { device.x = *x; }
if (y) { device.y = *y; }
if (reachable){ bitWrite(device.power, 7, *reachable); }
}
// return true if ok
bool Z_Devices::getHueState(uint16_t shortaddr,
bool *power, uint8_t *colormode,
uint8_t *dimmer, uint8_t *sat,
uint16_t *ct, uint16_t *hue,
uint16_t *x, uint16_t *y,
bool *reachable) const {
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
const Z_Device &device = *(_devices[found]);
if (power) { *power = bitRead(device.power, 0); }
if (colormode){ *colormode = device.colormode; }
if (dimmer) { *dimmer = device.dimmer; }
if (sat) { *sat = device.sat; }
if (ct) { *ct = device.ct; }
if (hue) { *hue = device.hue; }
if (x) { *x = device.x; }
if (y) { *y = device.y; }
if (reachable){ *reachable = bitRead(device.power, 7); }
return true;
} else {
return false;
}
}
// Deferred actions
// Parse for a specific category, of all deferred for a device if category == 0xFF
void Z_Devices::resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category) {
// iterate the list of deferred, and remove any linked to the shortaddr
for (auto it = _deferred.begin(); it != _deferred.end(); it++) {
// Notice that the iterator is decremented after it is passed
// to erase() but before erase() is executed
// see https://www.techiedelight.com/remove-elements-vector-inside-loop-cpp/
if ((it->shortaddr == shortaddr) && (it->groupaddr == groupaddr)) {
if ((0xFF == category) || (it->category == category)) {
_deferred.erase(it--);
}
}
}
}
// Set timer for a specific device
void Z_Devices::setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
// First we remove any existing timer for same device in same category, except for category=0x00 (they need to happen anyway)
if (category) { // if category == 0, we leave all previous
resetTimersForDevice(shortaddr, groupaddr, category); // remove any cluster
}
// Now create the new timer
Z_Deferred deferred = { wait_ms + millis(), // timer
shortaddr,
groupaddr,
cluster,
endpoint,
category,
value,
func };
_deferred.push_back(deferred);
}
// Run timer at each tick
void Z_Devices::runTimer(void) {
// visit all timers
for (auto it = _deferred.begin(); it != _deferred.end(); it++) {
Z_Deferred &defer = *it;
uint32_t timer = defer.timer;
if (TimeReached(timer)) {
(*defer.func)(defer.shortaddr, defer.groupaddr, defer.cluster, defer.endpoint, defer.value);
_deferred.erase(it--); // remove from list
}
}
// check if we need to save to Flash
if ((_saveTimer) && TimeReached(_saveTimer)) {
saveZigbeeDevices();
_saveTimer = 0;
}
}
// Clear the JSON buffer for coalesced and deferred attributes
void Z_Devices::jsonClear(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
device.json = nullptr;
device.json_buffer->clear();
}
// Copy JSON from one object to another, this helps preserving the order of attributes
void CopyJsonVariant(JsonObject &to, const String &key, const JsonVariant &val) {
// first remove the potentially existing key in the target JSON, so new adds will be at the end of the list
to.remove(key); // force remove to have metadata like LinkQuality at the end
if (val.is<char*>()) {
String sval = val.as<String>(); // force a copy of the String value, avoiding crash
to.set(key, sval);
} else if (val.is<JsonArray>()) {
JsonArray &nested_arr = to.createNestedArray(key);
CopyJsonArray(nested_arr, val.as<JsonArray>()); // deep copy
} else if (val.is<JsonObject>()) {
JsonObject &nested_obj = to.createNestedObject(key);
CopyJsonObject(nested_obj, val.as<JsonObject>()); // deep copy
} else {
to.set(key, val); // general case for non array, object or string
}
}
// Shallow copy of array, we skip any sub-array or sub-object. It may be added in the future
void CopyJsonArray(JsonArray &to, const JsonArray &arr) {
for (auto v : arr) {
if (v.is<char*>()) {
String sval = v.as<String>(); // force a copy of the String value
to.add(sval);
} else if (v.is<JsonArray>()) {
} else if (v.is<JsonObject>()) {
} else {
to.add(v);
}
}
}
// Deep copy of object
void CopyJsonObject(JsonObject &to, const JsonObject &from) {
for (auto kv : from) {
String key_string = kv.key;
JsonVariant &val = kv.value;
CopyJsonVariant(to, key_string, val);
}
}
// does the new payload conflicts with the existing payload, i.e. values would be overwritten
// true - one attribute (except LinkQuality) woudl be lost, there is conflict
// false - new attributes can be safely added
bool Z_Devices::jsonIsConflict(uint16_t shortaddr, const JsonObject &values) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return false; } // don't crash if not found
if (&values == nullptr) { return false; }
if (nullptr == device.json) {
return false; // if no previous value, no conflict
}
// compare groups
// Special case for group addresses. Group attribute is only present if the target
// address is a group address, so just comparing attributes will not work.
// Eg: if the first packet has no group attribute, and the second does, conflict would not be detected
// Here we explicitly compute the group address of both messages, and compare them. No group means group=0x0000
// (we use the property of an missing attribute returning 0)
// (note: we use .get() here which is case-sensitive. We know however that the attribute was set with the exact syntax D_CMND_ZIGBEE_GROUP, so we don't need a case-insensitive get())
uint16_t group1 = device.json->get<unsigned int>(D_CMND_ZIGBEE_GROUP);
uint16_t group2 = values.get<unsigned int>(D_CMND_ZIGBEE_GROUP);
if (group1 != group2) {
return true; // if group addresses differ, then conflict
}
// parse all other parameters
for (auto kv : values) {
String key_string = kv.key;
if (0 == strcasecmp_P(kv.key, PSTR(D_CMND_ZIGBEE_GROUP))) {
// ignore group, it was handled already
} else if (0 == strcasecmp_P(kv.key, PSTR(D_CMND_ZIGBEE_ENDPOINT))) {
// attribute "Endpoint" or "Group"
if (device.json->containsKey(kv.key)) {
if (kv.value.as<unsigned int>() != device.json->get<unsigned int>(kv.key)) {
return true;
}
}
} else if (strcasecmp_P(kv.key, PSTR(D_CMND_ZIGBEE_LINKQUALITY))) { // exception = ignore duplicates for LinkQuality
if (device.json->containsKey(kv.key)) {
return true; // conflict!
}
}
}
return false;
}
void Z_Devices::jsonAppend(uint16_t shortaddr, const JsonObject &values) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
if (&values == nullptr) { return; }
if (nullptr == device.json) {
device.json = &(device.json_buffer->createObject());
}
// Prepend Device, will be removed later if redundant
char sa[8];
snprintf_P(sa, sizeof(sa), PSTR("0x%04X"), shortaddr);
device.json->set(F(D_JSON_ZIGBEE_DEVICE), sa);
// Prepend Friendly Name if it has one
const char * fname = zigbee_devices.getFriendlyName(shortaddr);
if (fname) {
device.json->set(F(D_JSON_ZIGBEE_NAME), (char*) fname); // (char*) forces ArduinoJson to make a copy of the cstring
}
// copy all values from 'values' to 'json'
CopyJsonObject(*device.json, values);
}
const JsonObject *Z_Devices::jsonGet(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return nullptr; } // don't crash if not found
return device.json;
}
void Z_Devices::jsonPublishFlush(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
JsonObject * json = device.json;
if (json == nullptr) { return; } // abort if nothing in buffer
const char * fname = zigbee_devices.getFriendlyName(shortaddr);
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
// Remove redundant "Name" or "Device"
if (use_fname) {
json->remove(F(D_JSON_ZIGBEE_NAME));
} else {
json->remove(F(D_JSON_ZIGBEE_DEVICE));
}
String msg = "";
json->printTo(msg);
zigbee_devices.jsonClear(shortaddr);
if (use_fname) {
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":{\"%s\":%s}}"), fname, msg.c_str());
} else {
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":{\"0x%04X\":%s}}"), shortaddr, msg.c_str());
}
if (Settings.flag4.zigbee_distinct_topics) {
char subtopic[16];
snprintf_P(subtopic, sizeof(subtopic), PSTR("%04X/" D_RSLT_SENSOR), shortaddr);
MqttPublishPrefixTopic_P(TELE, subtopic, Settings.flag.mqtt_sensor_retain);
} else {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
}
XdrvRulesProcess();
}
void Z_Devices::jsonPublishNow(uint16_t shortaddr, JsonObject & values) {
jsonPublishFlush(shortaddr); // flush any previous buffer
jsonAppend(shortaddr, values);
jsonPublishFlush(shortaddr); // publish now
}
void Z_Devices::dirty(void) {
_saveTimer = kZigbeeSaveDelaySeconds * 1000 + millis();
}
void Z_Devices::clean(void) {
_saveTimer = 0;
}
// Parse the command parameters for either:
// - a short address starting with "0x", example: 0x1234
// - a long address starting with "0x", example: 0x7CB03EBB0A0292DD
// - a number 0..99, the index number in ZigbeeStatus
// - a friendly name, between quotes, example: "Room_Temp"
uint16_t Z_Devices::parseDeviceParam(const char * param, bool short_must_be_known) const {
if (nullptr == param) { return 0; }
size_t param_len = strlen(param);
char dataBuf[param_len + 1];
strcpy(dataBuf, param);
RemoveSpace(dataBuf);
uint16_t shortaddr = 0;
if (strlen(dataBuf) < 4) {
// simple number 0..99
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 99)) {
shortaddr = zigbee_devices.isKnownIndex(XdrvMailbox.payload - 1);
}
} else if ((dataBuf[0] == '0') && (dataBuf[1] == 'x')) {
// starts with 0x
if (strlen(dataBuf) < 18) {
// expect a short address
shortaddr = strtoull(dataBuf, nullptr, 0);
if (short_must_be_known) {
shortaddr = zigbee_devices.isKnownShortAddr(shortaddr);
}
// else we don't check if it's already registered to force unregistered devices
} else {
// expect a long address
uint64_t longaddr = strtoull(dataBuf, nullptr, 0);
shortaddr = zigbee_devices.isKnownLongAddr(longaddr);
}
} else {
// expect a Friendly Name
shortaddr = zigbee_devices.isKnownFriendlyName(dataBuf);
}
return shortaddr;
}
// Display the tracked status for a light
String Z_Devices::dumpLightState(uint16_t shortaddr) const {
DynamicJsonBuffer jsonBuffer;
JsonObject& json = jsonBuffer.createObject();
char hex[8];
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
const Z_Device & device = devicesAt(found);
const char * fname = getFriendlyName(shortaddr);
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
JsonObject& dev = use_fname ? json.createNestedObject((char*) fname) // casting (char*) forces a copy
: json.createNestedObject(hex);
if (use_fname) {
dev[F(D_JSON_ZIGBEE_DEVICE)] = hex;
} else if (fname) {
dev[F(D_JSON_ZIGBEE_NAME)] = (char*) fname;
}
// expose the last known status of the bulb, for Hue integration
dev[F(D_JSON_ZIGBEE_LIGHT)] = device.bulbtype; // sign extend, 0xFF changed as -1
if (0 <= device.bulbtype) {
// bulbtype is defined
dev[F("Power")] = bitRead(device.power, 0);
dev[F("Reachable")] = bitRead(device.power, 7);
if (1 <= device.bulbtype) {
dev[F("Dimmer")] = device.dimmer;
}
if (2 <= device.bulbtype) {
dev[F("Colormode")] = device.colormode;
}
if ((2 == device.bulbtype) || (5 == device.bulbtype)) {
dev[F("CT")] = device.ct;
}
if (3 <= device.bulbtype) {
dev[F("Sat")] = device.sat;
dev[F("Hue")] = device.hue;
dev[F("X")] = device.x;
dev[F("Y")] = device.y;
}
}
}
String payload = "";
payload.reserve(200);
json.printTo(payload);
return payload;
}
// Dump the internal memory of Zigbee devices
// Mode = 1: simple dump of devices addresses
// Mode = 2: simple dump of devices addresses and names
// Mode = 3: Mode 2 + also dump the endpoints, profiles and clusters
String Z_Devices::dump(uint32_t dump_mode, uint16_t status_shortaddr) const {
DynamicJsonBuffer jsonBuffer;
JsonArray& json = jsonBuffer.createArray();
JsonArray& devices = json;
for (std::vector<Z_Device*>::const_iterator it = _devices.begin(); it != _devices.end(); ++it) {
const Z_Device &device = **it;
uint16_t shortaddr = device.shortaddr;
char hex[22];
// ignore non-current device, if specified device is non-zero
if ((status_shortaddr) && (status_shortaddr != shortaddr)) { continue; }
JsonObject& dev = devices.createNestedObject();
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
dev[F(D_JSON_ZIGBEE_DEVICE)] = hex;
if (device.friendlyName > 0) {
dev[F(D_JSON_ZIGBEE_NAME)] = (char*) device.friendlyName;
}
if (2 <= dump_mode) {
hex[0] = '0'; // prefix with '0x'
hex[1] = 'x';
Uint64toHex(device.longaddr, &hex[2], 64);
dev[F("IEEEAddr")] = hex;
if (device.modelId) {
dev[F(D_JSON_MODEL D_JSON_ID)] = device.modelId;
}
if (device.bulbtype >= 0) {
dev[F(D_JSON_ZIGBEE_LIGHT)] = device.bulbtype; // sign extend, 0xFF changed as -1
}
if (device.manufacturerId) {
dev[F("Manufacturer")] = device.manufacturerId;
}
JsonArray& dev_endpoints = dev.createNestedArray(F("Endpoints"));
for (uint32_t i = 0; i < endpoints_max; i++) {
uint8_t endpoint = device.endpoints[i];
if (0x00 == endpoint) { break; }
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
dev_endpoints.add(hex);
}
}
}
String payload = "";
payload.reserve(200);
json.printTo(payload);
return payload;
}
// Restore a single device configuration based on json export
// Input: json element as expported by `ZbStatus2``
// Mandatory attribue: `Device`
//
// Returns:
// 0 : Ok
// <0 : Error
//
// Ex: {"Device":"0x5ADF","Name":"IKEA_Light","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]}
int32_t Z_Devices::deviceRestore(const JsonObject &json) {
// params
uint16_t device = 0x0000; // 0x0000 is coordinator so considered invalid
uint64_t ieeeaddr = 0x0000000000000000LL; // 0 means unknown
const char * modelid = nullptr;
const char * manufid = nullptr;
const char * friendlyname = nullptr;
int8_t bulbtype = 0xFF;
size_t endpoints_len = 0;
// read mandatory "Device"
const JsonVariant &val_device = getCaseInsensitive(json, PSTR("Device"));
if (nullptr != &val_device) {
device = strToUInt(val_device);
} else {
return -1; // missing "Device" attribute
}
// read "IEEEAddr" 64 bits in format "0x0000000000000000"
const JsonVariant &val_ieeeaddr = getCaseInsensitive(json, PSTR("IEEEAddr"));
if (nullptr != &val_ieeeaddr) {
ieeeaddr = strtoull(val_ieeeaddr.as<const char*>(), nullptr, 0);
}
// read "Name"
friendlyname = getCaseInsensitiveConstCharNull(json, PSTR("Name"));
// read "ModelId"
modelid = getCaseInsensitiveConstCharNull(json, PSTR("ModelId"));
// read "Manufacturer"
manufid = getCaseInsensitiveConstCharNull(json, PSTR("Manufacturer"));
// read "Light"
const JsonVariant &val_bulbtype = getCaseInsensitive(json, PSTR(D_JSON_ZIGBEE_LIGHT));
if (nullptr != &val_bulbtype) { bulbtype = strToUInt(val_bulbtype);; }
// update internal device information
updateDevice(device, ieeeaddr);
if (modelid) { setModelId(device, modelid); }
if (manufid) { setManufId(device, manufid); }
if (friendlyname) { setFriendlyName(device, friendlyname); }
if (&val_bulbtype) { setHueBulbtype(device, bulbtype); }
// read "Endpoints"
const JsonVariant &val_endpoints = getCaseInsensitive(json, PSTR("Endpoints"));
if ((nullptr != &val_endpoints) && (val_endpoints.is<JsonArray>())) {
const JsonArray &arr_ep = val_endpoints.as<const JsonArray&>();
endpoints_len = arr_ep.size();
clearEndpoints(device); // clear even if array is empty
if (endpoints_len) {
for (auto ep_elt : arr_ep) {
uint8_t ep = strToUInt(ep_elt);
if (ep) {
addEndpoint(device, ep);
}
}
}
}
return 0;
}
#endif // USE_ZIGBEE