Tasmota/tasmota/tasmota_xnrg_energy/xnrg_19_cse7761.ino

696 lines
33 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
xnrg_19_cse7761.ino - CSE7761 energy sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_CSE7761
/*********************************************************************************************\
* CSE7761 - Energy (Sonoff Dual R3 Pow)
*
* Without zero-cross detection
* {"NAME":"Sonoff Dual R3","GPIO":[32,0,0,0,0,0,0,0,0,576,225,0,0,0,0,0,0,0,0,0,0,7296,7328,224,0,0,0,0,160,161,0,0,0,0,0,0],"FLAG":0,"BASE":1}
*
* With zero-cross detection
* {"NAME":"Sonoff Dual R3 (ZCD)","GPIO":[32,0,0,0,7552,0,0,0,0,576,225,0,0,0,0,0,0,0,0,0,0,7296,7328,224,0,0,0,0,160,161,0,0,0,0,0,0],"FLAG":0,"BASE":1}
*
* Based on datasheet from ChipSea and analysing serial data
* See https://github.com/arendst/Tasmota/discussions/10793
* https://goldenrelay.en.alibaba.com/product/62119012875-811845870/GOLDEN_GI_1A_5LH_SPST_5V_5A_10A_250VAC_NO_18_5_10_5_15_3mm_sealed_type_all_certificate_compliances_class_F_SPDT_Form_available.html
\*********************************************************************************************/
#define XNRG_19 19
//#define CSE7761_SIMULATE // Enable simulation of CSE7761
#define CSE7761_FREQUENCY // Add support for frequency monitoring
#define CSE7761_ZEROCROSS // Add zero cross detection
#define CSE7761_ZEROCROSS_OFFSET 2200 // Zero cross offset due to chip calculation (microseconds)
#define CSE7761_RELAY_SWITCHTIME 3950 // Relay (Golden GI-1A-5LH 15ms max) switch power on time (microseconds)
#define CSE7761_UREF 42563 // RmsUc
#define CSE7761_IREF 52241 // RmsIAC
#define CSE7761_PREF 44513 // PowerPAC
#define CSE7761_FREF 3579545 // System clock (3.579545MHz) as used in frequency calculation
#define CSE7761_REG_SYSCON 0x00 // (2) System Control Register (0x0A04)
#define CSE7761_REG_EMUCON 0x01 // (2) Metering control register (0x0000)
#define CSE7761_REG_EMUCON2 0x13 // (2) Metering control register 2 (0x0001)
#define CSE7761_REG_PULSE1SEL 0x1D // (2) Pin function output select register (0x3210)
#define CSE7761_REG_UFREQ 0x23 // (2) Voltage Frequency (0x0000)
#define CSE7761_REG_RMSIA 0x24 // (3) The effective value of channel A current (0x000000)
#define CSE7761_REG_RMSIB 0x25 // (3) The effective value of channel B current (0x000000)
#define CSE7761_REG_RMSU 0x26 // (3) Voltage RMS (0x000000)
#define CSE7761_REG_POWERFACTOR 0x27 // (3) Power factor register, select by command: channel A Power factor or channel B power factor (0x7FFFFF)
#define CSE7761_REG_POWERPA 0x2C // (4) Channel A active power, update rate 27.2Hz (0x00000000)
#define CSE7761_REG_POWERPB 0x2D // (4) Channel B active power, update rate 27.2Hz (0x00000000)
#define CSE7761_REG_SYSSTATUS 0x43 // (1) System status register
#define CSE7761_REG_COEFFOFFSET 0x6E // (2) Coefficient checksum offset (0xFFFF)
#define CSE7761_REG_COEFFCHKSUM 0x6F // (2) Coefficient checksum
#define CSE7761_REG_RMSIAC 0x70 // (2) Channel A effective current conversion coefficient
#define CSE7761_REG_RMSIBC 0x71 // (2) Channel B effective current conversion coefficient
#define CSE7761_REG_RMSUC 0x72 // (2) Effective voltage conversion coefficient
#define CSE7761_REG_POWERPAC 0x73 // (2) Channel A active power conversion coefficient
#define CSE7761_REG_POWERPBC 0x74 // (2) Channel B active power conversion coefficient
#define CSE7761_REG_POWERSC 0x75 // (2) Apparent power conversion coefficient
#define CSE7761_REG_ENERGYAC 0x76 // (2) Channel A energy conversion coefficient
#define CSE7761_REG_ENERGYBC 0x77 // (2) Channel B energy conversion coefficient
#define CSE7761_SPECIAL_COMMAND 0xEA // Start special command
#define CSE7761_CMD_RESET 0x96 // Reset command, after receiving the command, the chip resets
#define CSE7761_CMD_CHAN_A_SELECT 0x5A // Current channel A setting command, which specifies the current used to calculate apparent power,
// Power factor, phase angle, instantaneous active power, instantaneous apparent power and
// The channel indicated by the signal of power overload is channel A
#define CSE7761_CMD_CHAN_B_SELECT 0xA5 // Current channel B setting command, which specifies the current used to calculate apparent power,
// Power factor, phase angle, instantaneous active power, instantaneous apparent power and
// The channel indicated by the signal of power overload is channel B
#define CSE7761_CMD_CLOSE_WRITE 0xDC // Close write operation
#define CSE7761_CMD_ENABLE_WRITE 0xE5 // Enable write operation
enum CSE7761 { RmsIAC, RmsIBC, RmsUC, PowerPAC, PowerPBC, PowerSC, EnergyAC, EnergyBC };
#include <TasmotaSerial.h>
TasmotaSerial *Cse7761Serial = nullptr;
struct {
uint32_t frequency = 0;
uint32_t voltage_rms = 0;
uint32_t current_rms[2] = { 0 };
uint32_t energy[2] = { 0 };
uint32_t active_power[2] = { 0 };
uint16_t coefficient[8] = { 0 };
uint8_t energy_update[2] = { 0 };
uint8_t init = 4;
uint8_t ready = 0;
} CSE7761Data;
/********************************************************************************************/
void Cse7761Write(uint32_t reg, uint32_t data) {
uint8_t buffer[5];
buffer[0] = 0xA5;
buffer[1] = reg;
uint32_t len = 2;
if (data) {
if (data < 0xFF) {
buffer[2] = data & 0xFF;
len = 3;
} else {
buffer[2] = (data >> 8) & 0xFF;
buffer[3] = data & 0xFF;
len = 4;
}
uint8_t crc = 0;
for (uint32_t i = 0; i < len; i++) {
crc += buffer[i];
}
buffer[len] = ~crc;
len++;
}
Cse7761Serial->write(buffer, len);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Tx %*_H"), len, buffer);
}
bool Cse7761ReadOnce(uint32_t log_level, uint32_t reg, uint32_t size, uint32_t* value) {
while (Cse7761Serial->available()) { Cse7761Serial->read(); }
Cse7761Write(reg, 0);
uint8_t buffer[8] = { 0 };
uint32_t rcvd = 0;
uint32_t timeout = millis() + 6;
while (!TimeReached(timeout) && (rcvd <= size)) {
// while (!TimeReached(timeout)) {
int value = Cse7761Serial->read();
if ((value > -1) && (rcvd < sizeof(buffer) -1)) {
buffer[rcvd++] = value;
}
}
if (!rcvd) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx none"));
return false;
}
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx %*_H"), rcvd, buffer);
if (rcvd > 5) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx overflow"));
return false;
}
rcvd--;
uint32_t result = 0;
uint8_t crc = 0xA5 + reg;
for (uint32_t i = 0; i < rcvd; i++) {
result = (result << 8) | buffer[i];
crc += buffer[i];
}
crc = ~crc;
if (crc != buffer[rcvd]) {
AddLog(log_level, PSTR("C61: Rx %*_H, CRC error %02X"), rcvd +1, buffer, crc);
return false;
}
*value = result;
return true;
}
uint32_t Cse7761Read(uint32_t reg, uint32_t size) {
bool result = false; // Start loop
uint32_t retry = 3; // Retry up to three times
uint32_t value = 0; // Default no value
while (!result && retry) {
retry--;
result = Cse7761ReadOnce((retry) ? LOG_LEVEL_DEBUG_MORE : LOG_LEVEL_DEBUG, reg, size, &value);
}
return value;
}
uint32_t Cse7761ReadFallback(uint32_t reg, uint32_t prev, uint32_t size) {
uint32_t value = Cse7761Read(reg, size);
if (!value) { // Error so use previous value read
value = prev;
}
return value;
}
/********************************************************************************************/
uint32_t Cse7761Ref(uint32_t unit) {
switch (unit) {
case RmsUC: return 0x400000 * 100 / CSE7761Data.coefficient[RmsUC];
case RmsIAC: return (0x800000 * 100 / CSE7761Data.coefficient[RmsIAC]) * 10; // Stay within 32 bits
case PowerPAC: return 0x80000000 / CSE7761Data.coefficient[PowerPAC];
}
return 0;
}
bool Cse7761ChipInit(void) {
uint16_t calc_chksum = 0xFFFF;
for (uint32_t i = 0; i < 8; i++) {
CSE7761Data.coefficient[i] = Cse7761Read(CSE7761_REG_RMSIAC + i, 2);
calc_chksum += CSE7761Data.coefficient[i];
}
calc_chksum = ~calc_chksum;
// uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET, 2);
uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM, 2);
if ((calc_chksum != coeff_chksum) || (!calc_chksum)) {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Default calibration"));
CSE7761Data.coefficient[RmsIAC] = CSE7761_IREF;
// CSE7761Data.coefficient[RmsIBC] = 0xCC05;
CSE7761Data.coefficient[RmsUC] = CSE7761_UREF;
CSE7761Data.coefficient[PowerPAC] = CSE7761_PREF;
// CSE7761Data.coefficient[PowerPBC] = 0xADD7;
}
if (HLW_PREF_PULSE == Settings->energy_power_calibration) {
Settings->energy_frequency_calibration = CSE7761_FREF;
Settings->energy_voltage_calibration = Cse7761Ref(RmsUC);
Settings->energy_current_calibration = Cse7761Ref(RmsIAC);
Settings->energy_power_calibration = Cse7761Ref(PowerPAC);
Settings->energy_current_calibration2 = Settings->energy_current_calibration;
Settings->energy_power_calibration2 = Settings->energy_power_calibration;
}
// Just to fix intermediate users
if (Settings->energy_frequency_calibration < CSE7761_FREF / 2) {
Settings->energy_frequency_calibration = CSE7761_FREF;
}
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
// delay(8); // Exception on ESP8266
// uint32_t timeout = millis() + 8;
// while (!TimeReached(timeout)) { }
uint8_t sys_status = Cse7761Read(CSE7761_REG_SYSSTATUS, 1);
#ifdef CSE7761_SIMULATE
sys_status = 0x11;
#endif
if (sys_status & 0x10) { // Write enable to protected registers (WREN)
/*
System Control Register (SYSCON) Addr:0x00 Default value: 0x0A04
Bit name Function description
15-11 NC -, the default is 1
10 ADC2ON
=1, means ADC current channel B is on (Sonoff Dual R3 Pow)
=0, means ADC current channel B is closed
9 NC -, the default is 1.
8-6 PGAIB[2:0] Current channel B analog gain selection highest bit
=1XX, PGA of current channel B=16 (Sonoff Dual R3 Pow)
=011, PGA of current channel B=8
=010, PGA of current channel B=4
=001, PGA of current channel B=2
=000, PGA of current channel B=1
5-3 PGAU[2:0] Highest bit of voltage channel analog gain selection
=1XX, PGA of voltage U=16
=011, PGA of voltage U=8
=010, PGA of voltage U=4
=001, PGA of voltage U=2
=000, PGA of voltage U=1 (Sonoff Dual R3 Pow)
2-0 PGAIA[2:0] Current channel A analog gain selection highest bit
=1XX, PGA of current channel A=16 (Sonoff Dual R3 Pow)
=011, PGA of current channel A=8
=010, PGA of current channel A=4
=001, PGA of current channel A=2
=000, PGA of current channel A=1
*/
Cse7761Write(CSE7761_REG_SYSCON | 0x80, 0xFF04);
/*
Energy Measure Control Register (EMUCON) Addr:0x01 Default value: 0x0000
Bit name Function description
15-14 Tsensor_Step[1:0] Measurement steps of temperature sensor:
=2'b00 The first step of temperature sensor measurement, the Offset of OP1 and OP2 is +/+. (Sonoff Dual R3 Pow)
=2'b01 The second step of temperature sensor measurement, the Offset of OP1 and OP2 is +/-.
=2'b10 The third step of temperature sensor measurement, the Offset of OP1 and OP2 is -/+.
=2'b11 The fourth step of temperature sensor measurement, the Offset of OP1 and OP2 is -/-.
After measuring these four results and averaging, the AD value of the current measured temperature can be obtained.
13 tensor_en Temperature measurement module control
=0 when the temperature measurement module is closed; (Sonoff Dual R3 Pow)
=1 when the temperature measurement module is turned on;
12 comp_off Comparator module close signal:
=0 when the comparator module is in working state
=1 when the comparator module is off (Sonoff Dual R3 Pow)
11-10 Pmode[1:0] Selection of active energy calculation method:
Pmode =00, both positive and negative active energy participate in the accumulation,
the accumulation method is algebraic sum mode, the reverse REVQ symbol indicates to active power; (Sonoff Dual R3 Pow)
Pmode = 01, only accumulate positive active energy;
Pmode = 10, both positive and negative active energy participate in the accumulation,
and the accumulation method is absolute value method. No reverse active power indication;
Pmode =11, reserved, the mode is the same as Pmode =00
9 NC -
8 ZXD1 The initial value of ZX output is 0, and different waveforms are output according to the configuration of ZXD1 and ZXD0:
=0, it means that the ZX output changes only at the selected zero-crossing point (Sonoff Dual R3 Pow)
=1, indicating that the ZX output changes at both the positive and negative zero crossings
7 ZXD0
=0, indicates that the positive zero-crossing point is selected as the zero-crossing detection signal (Sonoff Dual R3 Pow)
=1, indicating that the negative zero-crossing point is selected as the zero-crossing detection signal
6 HPFIBOFF
=0, enable current channel B digital high-pass filter (Sonoff Dual R3 Pow)
=1, turn off the digital high-pass filter of current channel B
5 HPFIAOFF
=0, enable current channel A digital high-pass filter (Sonoff Dual R3 Pow)
=1, turn off the digital high-pass filter of current channel A
4 HPFUOFF
=0, enable U channel digital high pass filter (Sonoff Dual R3 Pow)
=1, turn off the U channel digital high-pass filter
3-2 NC -
1 PBRUN
=1, enable PFB pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
=0 (default), turn off PFB pulse output and active energy register accumulation.
0 PARUN
=1, enable PFA pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
=0 (default), turn off PFA pulse output and active energy register accumulation.
*/
// Cse7761Write(CSE7761_REG_EMUCON | 0x80, 0x1003);
Cse7761Write(CSE7761_REG_EMUCON | 0x80, 0x1183); // Tasmota enable zero cross detection on both positive and negative signal
/*
Energy Measure Control Register (EMUCON2) Addr: 0x13 Default value: 0x0001
Bit name Function description
15-13 NC -
12 SDOCmos
=1, SDO pin CMOS open-drain output
=0, SDO pin CMOS output (Sonoff Dual R3 Pow)
11 EPB_CB Energy_PB clear signal control, the default is 0, and it needs to be configured to 1 in UART mode.
Clear after reading is not supported in UART mode
=1, Energy_PB will not be cleared after reading; (Sonoff Dual R3 Pow)
=0, Energy_PB is cleared after reading;
10 EPA_CB Energy_PA clear signal control, the default is 0, it needs to be configured to 1 in UART mode,
Clear after reading is not supported in UART mode
=1, Energy_PA will not be cleared after reading; (Sonoff Dual R3 Pow)
=0, Energy_PA is cleared after reading;
9-8 DUPSEL[1:0] Average register update frequency control
=00, Update frequency 3.4Hz
=01, Update frequency 6.8Hz
=10, Update frequency 13.65Hz
=11, Update frequency 27.3Hz (Sonoff Dual R3 Pow)
7 CHS_IB Current channel B measurement selection signal
=1, measure the current of channel B (Sonoff Dual R3 Pow)
=0, measure the internal temperature of the chip
6 PfactorEN Power factor function enable
=1, turn on the power factor output function (Sonoff Dual R3 Pow)
=0, turn off the power factor output function
5 WaveEN Waveform data, instantaneous data output enable signal
=1, turn on the waveform data output function (Tasmota add frequency)
=0, turn off the waveform data output function (Sonoff Dual R3 Pow)
4 SAGEN Voltage drop detection enable signal, WaveEN=1 must be configured first
=1, turn on the voltage drop detection function
=0, turn off the voltage drop detection function (Sonoff Dual R3 Pow)
3 OverEN Overvoltage, overcurrent, and overload detection enable signal, WaveEN=1 must be configured first
=1, turn on the overvoltage, overcurrent, and overload detection functions
=0, turn off the overvoltage, overcurrent, and overload detection functions (Sonoff Dual R3 Pow)
2 ZxEN Zero-crossing detection, phase angle, voltage frequency measurement enable signal
=1, turn on the zero-crossing detection, phase angle, and voltage frequency measurement functions (Tasmota add frequency)
=0, disable zero-crossing detection, phase angle, voltage frequency measurement functions (Sonoff Dual R3 Pow)
1 PeakEN Peak detect enable signal
=1, turn on the peak detection function
=0, turn off the peak detection function (Sonoff Dual R3 Pow)
0 NC Default is 1
*/
#ifndef CSE7761_FREQUENCY
Cse7761Write(CSE7761_REG_EMUCON2 | 0x80, 0x0FC1); // Sonoff Dual R3 Pow
#else
Cse7761Write(CSE7761_REG_EMUCON2 | 0x80, 0x0FE5); // Tasmota add Frequency
#ifdef CSE7761_ZEROCROSS
/*
Pin function output selection register (PULSE1SEL) Addr: 0x1D Default value: 0x3210
Bit name Function description
15-13 NC -
12 SDOCmos
=1, SDO pin CMOS open-drain output
15-12 NC NC, the default value is 4'b0011
11-8 NC NC, the default value is 4'b0010
7-4 P2Sel Pulse2 Pin output function selection, see the table below
3-0 P1Sel Pulse1 Pin output function selection, see the table below
Table Pulsex function output selection list
Pxsel Select description
0000 Output of energy metering calibration pulse PFA
0001 The output of the energy metering calibration pulse PFB
0010 Comparator indication signal comp_sign
0011 Interrupt signal IRQ output (the default is high level, if it is an interrupt, set to 0)
0100 Signal indication of power overload: only PA or PB can be selected
0101 Channel A negative power indicator signal
0110 Channel B negative power indicator signal
0111 Instantaneous value update interrupt output
1000 Average update interrupt output
1001 Voltage channel zero-crossing signal output (Tasmota add zero-cross detection)
1010 Current channel A zero-crossing signal output
1011 Current channel B zero crossing signal output
1100 Voltage channel overvoltage indication signal output
1101 Voltage channel undervoltage indication signal output
1110 Current channel A overcurrent signal indication output
1111 Current channel B overcurrent signal indication output
*/
Cse7761Write(CSE7761_REG_PULSE1SEL | 0x80, 0x3290);
#endif // CSE7761_ZEROCROSS
#endif // CSE7761_FREQUENCY
} else {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Write failed"));
return false;
}
return true;
}
void Cse7761GetData(void) {
// The effective value of current and voltage Rms is a 24-bit signed number, the highest bit is 0 for valid data,
// and when the highest bit is 1, the reading will be processed as zero
// The active power parameter PowerA/B is in twos complement format, 32-bit data, the highest bit is Sign bit.
uint32_t value = Cse7761ReadFallback(CSE7761_REG_RMSU, CSE7761Data.voltage_rms, 3);
#ifdef CSE7761_SIMULATE
value = 2342160; // 237.7V
#endif
CSE7761Data.voltage_rms = (value >= 0x800000) ? 0 : value;
#ifdef CSE7761_FREQUENCY
value = Cse7761ReadFallback(CSE7761_REG_UFREQ, CSE7761Data.frequency, 2);
#ifdef CSE7761_SIMULATE
value = 8948; // 49.99Hz
#endif
CSE7761Data.frequency = (value >= 0x8000) ? 0 : value;
#endif // CSE7761_FREQUENCY
value = Cse7761ReadFallback(CSE7761_REG_RMSIA, CSE7761Data.current_rms[0], 3);
#ifdef CSE7761_SIMULATE
value = 455;
#endif
CSE7761Data.current_rms[0] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = Cse7761ReadFallback(CSE7761_REG_POWERPA, CSE7761Data.active_power[0], 4);
#ifdef CSE7761_SIMULATE
value = 217;
#endif
CSE7761Data.active_power[0] = (0 == CSE7761Data.current_rms[0]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
value = Cse7761ReadFallback(CSE7761_REG_RMSIB, CSE7761Data.current_rms[1], 3);
#ifdef CSE7761_SIMULATE
value = 29760; // 0.185A
#endif
CSE7761Data.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
value = Cse7761ReadFallback(CSE7761_REG_POWERPB, CSE7761Data.active_power[1], 4);
#ifdef CSE7761_SIMULATE
value = 2126641; // 44.05W
#endif
CSE7761Data.active_power[1] = (0 == CSE7761Data.current_rms[1]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: F%d, U%d, I%d/%d, P%d/%d"),
CSE7761Data.frequency, CSE7761Data.voltage_rms,
CSE7761Data.current_rms[0], CSE7761Data.current_rms[1],
CSE7761Data.active_power[0], CSE7761Data.active_power[1]);
if (Energy.power_on) { // Powered on
// Voltage = RmsU * RmsUC * 10 / 0x400000
// Energy.voltage[0] = (float)(((uint64_t)CSE7761Data.voltage_rms * CSE7761Data.coefficient[RmsUC] * 10) >> 22) / 1000; // V
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings->energy_voltage_calibration); // V
#ifdef CSE7761_FREQUENCY
Energy.frequency[0] = (CSE7761Data.frequency) ? ((float)Settings->energy_frequency_calibration / 8 / CSE7761Data.frequency) : 0; // Hz
#endif
for (uint32_t channel = 0; channel < 2; channel++) {
Energy.data_valid[channel] = 0;
uint32_t power_calibration = EnergyGetCalibration(channel, ENERGY_POWER_CALIBRATION);
// Active power = PowerPA * PowerPAC * 1000 / 0x80000000
// Energy.active_power[channel] = (float)(((uint64_t)CSE7761Data.active_power[channel] * CSE7761Data.coefficient[PowerPAC + channel] * 1000) >> 31) / 1000; // W
Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] / power_calibration; // W
if (0 == Energy.active_power[channel]) {
Energy.current[channel] = 0;
} else {
uint32_t current_calibration = EnergyGetCalibration(channel, ENERGY_CURRENT_CALIBRATION);
// Current = RmsIA * RmsIAC / 0x800000
// Energy.current[channel] = (float)(((uint64_t)CSE7761Data.current_rms[channel] * CSE7761Data.coefficient[RmsIAC + channel]) >> 23) / 1000; // A
Energy.current[channel] = (float)CSE7761Data.current_rms[channel] / current_calibration; // A
CSE7761Data.energy[channel] += Energy.active_power[channel];
CSE7761Data.energy_update[channel]++;
}
}
}
}
/********************************************************************************************/
/*
void Cse7761DumpRegs(void) {
uint32_t registers[23] = { 0 };
uint32_t reg_num[23] = { 0 };
reg_num[0] = 0x00; registers[0] = Cse7761Read(0x00, 2);
reg_num[1] = 0x01; registers[1] = Cse7761Read(0x01, 2);
reg_num[2] = 0x02; registers[2] = Cse7761Read(0x02, 2);
reg_num[3] = 0x13; registers[3] = Cse7761Read(0x13, 2);
reg_num[4] = 0x1D; registers[4] = Cse7761Read(0x1D, 2);
reg_num[5] = 0x2F; registers[5] = Cse7761Read(0x2F, 3);
reg_num[6] = 0x40; registers[6] = Cse7761Read(0x40, 2);
reg_num[7] = 0x41; registers[7] = Cse7761Read(0x41, 2);
reg_num[8] = 0x42; registers[8] = Cse7761Read(0x42, 2);
reg_num[9] = 0x43; registers[9] = Cse7761Read(0x43, 1);
reg_num[10] = 0x44; registers[10] = Cse7761Read(0x44, 4);
reg_num[11] = 0x45; registers[11] = Cse7761Read(0x45, 2);
reg_num[12] = 0x6E; registers[12] = Cse7761Read(0x6E, 2);
reg_num[13] = 0x6F; registers[13] = Cse7761Read(0x6F, 2);
reg_num[14] = 0x70; registers[14] = Cse7761Read(0x70, 2);
reg_num[15] = 0x71; registers[15] = Cse7761Read(0x71, 2);
reg_num[16] = 0x72; registers[16] = Cse7761Read(0x72, 2);
reg_num[17] = 0x73; registers[17] = Cse7761Read(0x73, 2);
reg_num[18] = 0x74; registers[18] = Cse7761Read(0x74, 2);
reg_num[19] = 0x75; registers[19] = Cse7761Read(0x75, 2);
reg_num[20] = 0x76; registers[20] = Cse7761Read(0x76, 2);
reg_num[21] = 0x77; registers[21] = Cse7761Read(0x77, 2);
reg_num[22] = 0x7F; registers[22] = Cse7761Read(0x7F, 3);
char reg_data[320];
reg_data[0] = '\0';
for (uint32_t i = 0; i < 23; i++) {
snprintf_P(reg_data, sizeof(reg_data), PSTR("%s%s%8X"), reg_data, (i) ? "," : "", reg_num[i]);
}
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: RegDump %s"), reg_data);
reg_data[0] = '\0';
for (uint32_t i = 0; i < 23; i++) {
snprintf_P(reg_data, sizeof(reg_data), PSTR("%s%s%08X"), reg_data, (i) ? "," : "", registers[i]);
}
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: RegDump %s"), reg_data);
}
*/
void Cse7761Every200ms(void) {
if (2 == CSE7761Data.ready) {
Cse7761GetData();
}
}
void Cse7761EverySecond(void) {
if (CSE7761Data.init) {
if (3 == CSE7761Data.init) {
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET);
}
else if (2 == CSE7761Data.init) {
uint16_t syscon = Cse7761Read(0x00, 2); // Default 0x0A04
#ifdef CSE7761_SIMULATE
syscon = 0x0A04;
#endif
if ((0x0A04 == syscon) && Cse7761ChipInit()) {
CSE7761Data.ready = 1;
}
}
else if (1 == CSE7761Data.init) {
if (1 == CSE7761Data.ready) {
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_CLOSE_WRITE);
AddLog(LOG_LEVEL_INFO, PSTR("C61: CSE7761 found"));
CSE7761Data.ready = 2;
}
}
CSE7761Data.init--;
}
else {
if (2 == CSE7761Data.ready) {
for (uint32_t channel = 0; channel < 2; channel++) {
if (CSE7761Data.energy_update[channel]) {
Energy.kWhtoday_delta[channel] += ((CSE7761Data.energy[channel] * 1000) / CSE7761Data.energy_update[channel]) / 36;
CSE7761Data.energy[channel] = 0;
CSE7761Data.energy_update[channel] = 0;
}
EnergyUpdateToday();
}
}
}
}
void Cse7761SnsInit(void) {
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
Cse7761Serial = new TasmotaSerial(Pin(GPIO_CSE7761_RX), Pin(GPIO_CSE7761_TX), 1);
if (Cse7761Serial->begin(38400, SERIAL_8E1)) {
if (Cse7761Serial->hardwareSerial()) {
SetSerial(38400, TS_SERIAL_8E1);
ClaimSerial();
}
#ifdef CSE7761_FREQUENCY
#ifdef CSE7761_ZEROCROSS
ZeroCrossInit(CSE7761_ZEROCROSS_OFFSET + CSE7761_RELAY_SWITCHTIME);
#endif // CSE7761_ZEROCROSS
#endif // CSE7761_FREQUENCY
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void Cse7761DrvInit(void) {
if (PinUsed(GPIO_CSE7761_RX) && PinUsed(GPIO_CSE7761_TX)) {
CSE7761Data.ready = 0;
CSE7761Data.init = 4; // Init setup steps
Energy.phase_count = 2; // Handle two channels as two phases
Energy.voltage_common = true; // Use common voltage
#ifdef CSE7761_FREQUENCY
Energy.frequency_common = true; // Use common frequency
#endif
Energy.use_overtemp = true; // Use global temperature for overtemp detection
TasmotaGlobal.energy_driver = XNRG_19;
}
}
bool Cse7761Command(void) {
bool serviced = true;
uint32_t channel = (2 == XdrvMailbox.index) ? 1 : 0;
uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123
if (CMND_POWERCAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(PowerPAC); }
// Service in xdrv_03_energy.ino
}
else if (CMND_POWERSET == Energy.command_code) {
if (XdrvMailbox.data_len && CSE7761Data.active_power[channel]) {
if ((value > 100) && (value < 200000)) { // Between 1W and 2000W
XdrvMailbox.payload = ((CSE7761Data.active_power[channel]) / value) * 100;
}
}
}
else if (CMND_VOLTAGECAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsUC); }
// Service in xdrv_03_energy.ino
}
else if (CMND_VOLTAGESET == Energy.command_code) {
if (XdrvMailbox.data_len && CSE7761Data.voltage_rms) {
if ((value > 10000) && (value < 26000)) { // Between 100V and 260V
XdrvMailbox.payload = (CSE7761Data.voltage_rms * 100) / value;
}
}
}
else if (CMND_CURRENTCAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsIAC); }
// Service in xdrv_03_energy.ino
}
else if (CMND_CURRENTSET == Energy.command_code) {
if (XdrvMailbox.data_len && CSE7761Data.current_rms[channel]) {
if ((value > 1000) && (value < 1000000)) { // Between 10mA and 10A
XdrvMailbox.payload = ((CSE7761Data.current_rms[channel] * 100) / value) * 1000;
}
}
}
#ifdef CSE7761_FREQUENCY
else if (CMND_FREQUENCYCAL == Energy.command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_FREF; }
// Service in xdrv_03_energy.ino
}
else if (CMND_FREQUENCYSET == Energy.command_code) {
if (XdrvMailbox.data_len && CSE7761Data.frequency) {
if ((value > 4500) && (value < 6500)) { // Between 45.00Hz and 65.00Hz
XdrvMailbox.payload = (CSE7761Data.frequency * 8 * value) / 100;
}
}
}
#endif
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg19(uint32_t function) {
bool result = false;
switch (function) {
case FUNC_EVERY_200_MSECOND:
Cse7761Every200ms();
break;
case FUNC_ENERGY_EVERY_SECOND:
Cse7761EverySecond();
break;
case FUNC_COMMAND:
result = Cse7761Command();
break;
case FUNC_INIT:
Cse7761SnsInit();
break;
case FUNC_PRE_INIT:
Cse7761DrvInit();
break;
}
return result;
}
#endif // USE_CSE7761
#endif // USE_ENERGY_SENSOR