Tasmota/lib/IRremoteESP8266-2.7.0/src/ir_Coolix.cpp

644 lines
19 KiB
C++

// Copyright bakrus
// Copyright 2017,2019 David Conran
#include "ir_Coolix.h"
#include <algorithm>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
// Coolix A/C / heatpump added by (send) bakrus & (decode) crankyoldgit
//
// Supports:
// Brand: Beko, Model: RG57K7(B)/BGEF Remote
// Brand: Beko, Model: BINR 070/071 split-type A/C
// Brand: Midea, Model: RG52D/BGE Remote
// Brand: Midea, Model: MS12FU-10HRDN1-QRD0GW(B) A/C
// Brand: Midea, Model: MSABAU-07HRFN1-QRD0GW A/C (circa 2016)
// Brand: Tokio, Model: AATOEMF17-12CHR1SW split-type RG51|50/BGE Remote
// Ref:
// https://github.com/crankyoldgit/IRremoteESP8266/issues/484
// Constants
// Pulse parms are *50-100 for the Mark and *50+100 for the space
// First MARK is the one after the long gap
// pulse parameters in usec
const uint16_t kCoolixTick = 560; // Approximately 21 cycles at 38kHz
const uint16_t kCoolixBitMarkTicks = 1;
const uint16_t kCoolixBitMark = kCoolixBitMarkTicks * kCoolixTick;
const uint16_t kCoolixOneSpaceTicks = 3;
const uint16_t kCoolixOneSpace = kCoolixOneSpaceTicks * kCoolixTick;
const uint16_t kCoolixZeroSpaceTicks = 1;
const uint16_t kCoolixZeroSpace = kCoolixZeroSpaceTicks * kCoolixTick;
const uint16_t kCoolixHdrMarkTicks = 8;
const uint16_t kCoolixHdrMark = kCoolixHdrMarkTicks * kCoolixTick;
const uint16_t kCoolixHdrSpaceTicks = 8;
const uint16_t kCoolixHdrSpace = kCoolixHdrSpaceTicks * kCoolixTick;
const uint16_t kCoolixMinGapTicks = kCoolixHdrMarkTicks + kCoolixZeroSpaceTicks;
const uint16_t kCoolixMinGap = kCoolixMinGapTicks * kCoolixTick;
using irutils::addBoolToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addTempToString;
using irutils::setBit;
using irutils::setBits;
#if SEND_COOLIX
// Send a Coolix message
//
// Args:
// data: Contents of the message to be sent.
// nbits: Nr. of bits of data to be sent. Typically kCoolixBits.
// repeat: Nr. of additional times the message is to be sent.
//
// Status: BETA / Probably works.
//
// Ref:
// https://github.com/z3t0/Arduino-IRremote/blob/master/ir_COOLIX.cpp
// TODO(anyone): Verify repeat functionality against a real unit.
void IRsend::sendCOOLIX(uint64_t data, uint16_t nbits, uint16_t repeat) {
if (nbits % 8 != 0) return; // nbits is required to be a multiple of 8.
// Set IR carrier frequency
enableIROut(38);
for (uint16_t r = 0; r <= repeat; r++) {
// Header
mark(kCoolixHdrMark);
space(kCoolixHdrSpace);
// Data
// Break data into byte segments, starting at the Most Significant
// Byte. Each byte then being sent normal, then followed inverted.
for (uint16_t i = 8; i <= nbits; i += 8) {
// Grab a bytes worth of data.
uint8_t segment = (data >> (nbits - i)) & 0xFF;
// Normal
sendData(kCoolixBitMark, kCoolixOneSpace, kCoolixBitMark,
kCoolixZeroSpace, segment, 8, true);
// Inverted.
sendData(kCoolixBitMark, kCoolixOneSpace, kCoolixBitMark,
kCoolixZeroSpace, segment ^ 0xFF, 8, true);
}
// Footer
mark(kCoolixBitMark);
space(kCoolixMinGap); // Pause before repeating
}
space(kDefaultMessageGap);
}
#endif
// IRCoolixAC class
// Supports:
// RG57K7(B)/BGEF remote control for Beko BINR 070/071 split-type aircon.
// Ref:
// https://github.com/crankyoldgit/IRremoteESP8266/issues/484
IRCoolixAC::IRCoolixAC(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
void IRCoolixAC::stateReset() {
setRaw(kCoolixDefaultState);
clearSensorTemp();
powerFlag = false;
turboFlag = false;
ledFlag = false;
cleanFlag = false;
sleepFlag = false;
swingFlag = false;
swingHFlag = false;
swingVFlag = false;
}
void IRCoolixAC::begin() { _irsend.begin(); }
#if SEND_COOLIX
void IRCoolixAC::send(const uint16_t repeat) {
_irsend.sendCOOLIX(remote_state, kCoolixBits, repeat);
// make sure to remove special state from remote_state
// after command has being transmitted.
recoverSavedState();
}
#endif // SEND_COOLIX
uint32_t IRCoolixAC::getRaw() { return remote_state; }
void IRCoolixAC::setRaw(const uint32_t new_code) {
if (!handleSpecialState(new_code)) {
// it isn`t special so might afect Temp|mode|Fan
if (new_code == kCoolixCmdFan) {
setMode(kCoolixFan);
} else {
// must be a command changing Temp|Mode|Fan
// it is safe to just copy to remote var
remote_state = new_code;
}
}
}
// Return true if the current state is a special state.
bool IRCoolixAC::isSpecialState(void) {
switch (remote_state) {
case kCoolixClean:
case kCoolixLed:
case kCoolixOff:
case kCoolixSwing:
case kCoolixSleep:
case kCoolixTurbo: return true;
default: return false;
}
}
// Special state means commands that are not
// affecting Temperature/Mode/Fan
bool IRCoolixAC::handleSpecialState(const uint32_t data) {
switch (data) {
case kCoolixClean:
cleanFlag = !cleanFlag;
break;
case kCoolixLed:
ledFlag = !ledFlag;
break;
case kCoolixOff:
powerFlag = false;
break;
case kCoolixSwing:
swingFlag = !swingFlag;
break;
case kCoolixSleep:
sleepFlag = !sleepFlag;
break;
case kCoolixTurbo:
turboFlag = !turboFlag;
break;
default:
return false;
}
return true;
}
// must be called before every special state
// to make sure the remote_state is safe
void IRCoolixAC::updateSavedState(void) {
if (!isSpecialState()) saved_state = remote_state;
}
void IRCoolixAC::recoverSavedState(void) {
// If the current state is a special one, last known normal one.
if (isSpecialState()) remote_state = saved_state;
// If the saved_state was also a special state, reset as we expect a normal
// state out of all this.
if (isSpecialState()) stateReset();
}
void IRCoolixAC::setTempRaw(const uint8_t code) {
setBits(&remote_state, kCoolixTempOffset, kCoolixTempSize, code);
}
uint8_t IRCoolixAC::getTempRaw() {
return GETBITS32(remote_state, kCoolixTempOffset, kCoolixTempSize);
}
void IRCoolixAC::setTemp(const uint8_t desired) {
// Range check.
uint8_t temp = std::min(desired, kCoolixTempMax);
temp = std::max(temp, kCoolixTempMin);
setTempRaw(kCoolixTempMap[temp - kCoolixTempMin]);
}
uint8_t IRCoolixAC::getTemp() {
const uint8_t code = getTempRaw();
for (uint8_t i = 0; i < kCoolixTempRange; i++)
if (kCoolixTempMap[i] == code) return kCoolixTempMin + i;
return kCoolixTempMax; // Not a temp we expected.
}
void IRCoolixAC::setSensorTempRaw(const uint8_t code) {
setBits(&remote_state, kCoolixSensorTempOffset, kCoolixSensorTempSize, code);
}
void IRCoolixAC::setSensorTemp(const uint8_t desired) {
uint8_t temp = desired;
temp = std::min(temp, kCoolixSensorTempMax);
temp = std::max(temp, kCoolixSensorTempMin);
setSensorTempRaw(temp - kCoolixSensorTempMin);
setZoneFollow(true); // Setting a Sensor temp means you want to Zone Follow.
}
uint8_t IRCoolixAC::getSensorTemp() {
return GETBITS32(remote_state, kCoolixSensorTempOffset,
kCoolixSensorTempSize) + kCoolixSensorTempMin;
}
bool IRCoolixAC::getPower() {
// There is only an off state. Everything else is "on".
return powerFlag;
}
void IRCoolixAC::setPower(const bool on) {
if (powerFlag) {
if (!on) {
updateSavedState();
remote_state = kCoolixOff;
}
} else {
if (on) {
// at this point remote_state must be ready
// to be transmitted
recoverSavedState();
}
}
powerFlag = on;
}
void IRCoolixAC::on(void) { this->setPower(true); }
void IRCoolixAC::off(void) { this->setPower(false); }
bool IRCoolixAC::getSwing() { return swingFlag; }
void IRCoolixAC::setSwing() {
// Assumes that repeated sending "swing" toggles the action on the device.
updateSavedState();
remote_state = kCoolixSwing;
swingFlag = !swingFlag;
}
bool IRCoolixAC::getSleep() { return sleepFlag; }
void IRCoolixAC::setSleep() {
updateSavedState();
remote_state = kCoolixSleep;
sleepFlag = !sleepFlag;
}
bool IRCoolixAC::getTurbo() { return turboFlag; }
void IRCoolixAC::setTurbo() {
// Assumes that repeated sending "turbo" toggles the action on the device.
updateSavedState();
remote_state = kCoolixTurbo;
turboFlag = !turboFlag;
}
bool IRCoolixAC::getLed() { return ledFlag; }
void IRCoolixAC::setLed() {
// Assumes that repeated sending "Led" toggles the action on the device.
updateSavedState();
remote_state = kCoolixLed;
ledFlag = !ledFlag;
}
bool IRCoolixAC::getClean() { return cleanFlag; }
void IRCoolixAC::setClean() {
updateSavedState();
remote_state = kCoolixClean;
cleanFlag = !cleanFlag;
}
bool IRCoolixAC::getZoneFollow() {
return zoneFollowFlag;
}
// Internal use only.
void IRCoolixAC::setZoneFollow(bool on) {
zoneFollowFlag = on;
setBit(&remote_state, kCoolixZoneFollowMaskOffset, on);
}
void IRCoolixAC::clearSensorTemp() {
setZoneFollow(false);
setSensorTempRaw(kCoolixSensorTempIgnoreCode);
}
void IRCoolixAC::setMode(const uint8_t mode) {
uint32_t actualmode = mode;
switch (actualmode) {
case kCoolixAuto:
case kCoolixDry:
setFan(kCoolixFanAuto0, false);
break;
case kCoolixCool:
case kCoolixHeat:
case kCoolixFan:
setFan(kCoolixFanAuto, false);
break;
default: // Anything else, go with Auto mode.
setMode(kCoolixAuto);
setFan(kCoolixFanAuto0, false);
return;
}
setTemp(getTemp());
// Fan mode is a special case of Dry.
if (mode == kCoolixFan) {
actualmode = kCoolixDry;
setTempRaw(kCoolixFanTempCode);
}
setBits(&remote_state, kCoolixModeOffset, kCoolixModeSize, actualmode);
}
uint8_t IRCoolixAC::getMode() {
uint8_t mode = GETBITS32(remote_state, kCoolixModeOffset,
kCoolixModeSize);
if (mode == kCoolixDry)
if (getTempRaw() == kCoolixFanTempCode) return kCoolixFan;
return mode;
}
uint8_t IRCoolixAC::getFan() {
return GETBITS32(remote_state, kCoolixFanOffset, kCoolixFanSize);
}
void IRCoolixAC::setFan(const uint8_t speed, const bool modecheck) {
uint8_t newspeed = speed;
switch (speed) {
case kCoolixFanAuto: // Dry & Auto mode can't have this speed.
if (modecheck) {
switch (this->getMode()) {
case kCoolixAuto:
case kCoolixDry:
newspeed = kCoolixFanAuto0;
break;
}
}
break;
case kCoolixFanAuto0: // Only Dry & Auto mode can have this speed.
if (modecheck) {
switch (this->getMode()) {
case kCoolixAuto:
case kCoolixDry: break;
default: newspeed = kCoolixFanAuto;
}
}
break;
case kCoolixFanMin:
case kCoolixFanMed:
case kCoolixFanMax:
case kCoolixFanZoneFollow:
case kCoolixFanFixed:
break;
default: // Unknown speed requested.
newspeed = kCoolixFanAuto;
break;
}
setBits(&remote_state, kCoolixFanOffset, kCoolixFanSize, newspeed);
}
// Convert a standard A/C mode into its native mode.
uint8_t IRCoolixAC::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kCoolixCool;
case stdAc::opmode_t::kHeat: return kCoolixHeat;
case stdAc::opmode_t::kDry: return kCoolixDry;
case stdAc::opmode_t::kFan: return kCoolixFan;
default: return kCoolixAuto;
}
}
// Convert a standard A/C Fan speed into its native fan speed.
uint8_t IRCoolixAC::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow: return kCoolixFanMin;
case stdAc::fanspeed_t::kMedium: return kCoolixFanMed;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kCoolixFanMax;
default: return kCoolixFanAuto;
}
}
// Convert a native mode to it's common equivalent.
stdAc::opmode_t IRCoolixAC::toCommonMode(const uint8_t mode) {
switch (mode) {
case kCoolixCool: return stdAc::opmode_t::kCool;
case kCoolixHeat: return stdAc::opmode_t::kHeat;
case kCoolixDry: return stdAc::opmode_t::kDry;
case kCoolixFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
// Convert a native fan speed to it's common equivalent.
stdAc::fanspeed_t IRCoolixAC::toCommonFanSpeed(const uint8_t speed) {
switch (speed) {
case kCoolixFanMax: return stdAc::fanspeed_t::kMax;
case kCoolixFanMed: return stdAc::fanspeed_t::kMedium;
case kCoolixFanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
// Convert the A/C state to it's common equivalent. Utilise the previous
// state if supplied.
stdAc::state_t IRCoolixAC::toCommon(const stdAc::state_t *prev) {
stdAc::state_t result;
// Start with the previous state if given it.
if (prev != NULL) {
result = *prev;
} else {
// Set defaults for non-zero values that are not implicitly set for when
// there is no previous state.
result.swingv = stdAc::swingv_t::kOff;
result.sleep = -1;
}
// Not supported.
result.model = -1; // No models used.
result.swingh = stdAc::swingh_t::kOff;
result.quiet = false;
result.econo = false;
result.filter = false;
result.beep = false;
result.clock = -1;
// Supported.
result.protocol = decode_type_t::COOLIX;
result.celsius = true;
result.power = this->getPower();
// Power off state no other state info. Use the previous state if we have it.
if (!result.power) return result;
// Handle the special single command (Swing/Turbo/Light/Clean/Sleep) toggle
// messages. These have no other state info so use the rest of the previous
// state if we have it for them.
if (this->getSwing()) {
result.swingv = result.swingv != stdAc::swingv_t::kOff ?
stdAc::swingv_t::kOff : stdAc::swingv_t::kAuto; // Invert swing.
return result;
} else if (this->getTurbo()) {
result.turbo = !result.turbo;
return result;
} else if (this->getLed()) {
result.light = !result.light;
return result;
} else if (this->getClean()) {
result.clean = !result.clean;
return result;
} else if (this->getSleep()) {
result.sleep = result.sleep >= 0 ? -1 : 0; // Invert sleep.
return result;
}
// Back to "normal" stateful messages.
result.mode = this->toCommonMode(this->getMode());
result.degrees = this->getTemp();
result.fanspeed = this->toCommonFanSpeed(this->getFan());
return result;
}
// Convert the internal state into a human readable string.
String IRCoolixAC::toString(void) {
String result = "";
result.reserve(100); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(getPower(), kPowerStr, false);
if (!getPower()) return result; // If it's off, there is no other info.
// Special modes.
if (getSwing()) {
result += kCommaSpaceStr + kSwingStr + kColonSpaceStr + kToggleStr;
return result;
}
if (getSleep()) {
result += kCommaSpaceStr + kSleepStr + kColonSpaceStr + kToggleStr;
return result;
}
if (getTurbo()) {
result += kCommaSpaceStr + kTurboStr + kColonSpaceStr + kToggleStr;
return result;
}
if (getLed()) {
result += kCommaSpaceStr + kLightStr + kColonSpaceStr + kToggleStr;
return result;
}
if (getClean()) {
result += kCommaSpaceStr + kCleanStr + kColonSpaceStr + kToggleStr;
return result;
}
result += addModeToString(getMode(), kCoolixAuto, kCoolixCool, kCoolixHeat,
kCoolixDry, kCoolixFan);
result += addIntToString(getFan(), kFanStr);
result += kSpaceLBraceStr;
switch (getFan()) {
case kCoolixFanAuto:
result += kAutoStr;
break;
case kCoolixFanAuto0:
result += kAutoStr + '0';
break;
case kCoolixFanMax:
result += kMaxStr;
break;
case kCoolixFanMin:
result += kMinStr;
break;
case kCoolixFanMed:
result += kMedStr;
break;
case kCoolixFanZoneFollow:
result += kZoneFollowStr;
break;
case kCoolixFanFixed:
result += kFixedStr;
break;
default:
result += kUnknownStr;
}
result += ')';
// Fan mode doesn't have a temperature.
if (getMode() != kCoolixFan) result += addTempToString(getTemp());
result += addBoolToString(getZoneFollow(), kZoneFollowStr);
result += addLabeledString(
(getSensorTemp() > kCoolixSensorTempMax)
? kOffStr : uint64ToString(getSensorTemp()) + F("C"),
kSensorStr + ' ' + kTempStr);
return result;
}
#if DECODE_COOLIX
// Decode the supplied Coolix message.
//
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// nbits: The number of data bits to expect. Typically kCoolixBits.
// strict: Flag indicating if we should perform strict matching.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: BETA / Probably working.
bool IRrecv::decodeCOOLIX(decode_results *results, uint16_t nbits,
bool strict) {
// The protocol sends the data normal + inverted, alternating on
// each byte. Hence twice the number of expected data bits.
if (results->rawlen < 2 * 2 * nbits + kHeader + kFooter - 1)
return false; // Can't possibly be a valid COOLIX message.
if (strict && nbits != kCoolixBits)
return false; // Not strictly a COOLIX message.
if (nbits % 8 != 0) // nbits has to be a multiple of nr. of bits in a byte.
return false;
uint64_t data = 0;
uint64_t inverted = 0;
uint16_t offset = kStartOffset;
if (nbits > sizeof(data) * 8)
return false; // We can't possibly capture a Coolix packet that big.
// Header
if (!matchMark(results->rawbuf[offset], kCoolixHdrMark)) return false;
// Calculate how long the common tick time is based on the header mark.
uint32_t m_tick = results->rawbuf[offset++] * kRawTick / kCoolixHdrMarkTicks;
if (!matchSpace(results->rawbuf[offset], kCoolixHdrSpace)) return false;
// Calculate how long the common tick time is based on the header space.
uint32_t s_tick = results->rawbuf[offset++] * kRawTick / kCoolixHdrSpaceTicks;
// Data
// Twice as many bits as there are normal plus inverted bits.
for (uint16_t i = 0; i < nbits * 2; i++, offset++) {
bool flip = (i / 8) % 2;
if (!matchMark(results->rawbuf[offset++], kCoolixBitMarkTicks * m_tick))
return false;
if (matchSpace(results->rawbuf[offset], kCoolixOneSpaceTicks * s_tick)) {
if (flip)
inverted = (inverted << 1) | 1;
else
data = (data << 1) | 1;
} else if (matchSpace(results->rawbuf[offset],
kCoolixZeroSpaceTicks * s_tick)) {
if (flip)
inverted <<= 1;
else
data <<= 1;
} else {
return false;
}
}
// Footer
if (!matchMark(results->rawbuf[offset++], kCoolixBitMarkTicks * m_tick))
return false;
if (offset < results->rawlen &&
!matchAtLeast(results->rawbuf[offset], kCoolixMinGapTicks * s_tick))
return false;
// Compliance
uint64_t orig = data; // Save a copy of the data.
if (strict) {
for (uint16_t i = 0; i < nbits; i += 8, data >>= 8, inverted >>= 8)
if ((data & 0xFF) != ((inverted & 0xFF) ^ 0xFF)) return false;
}
// Success
results->decode_type = COOLIX;
results->bits = nbits;
results->value = orig;
results->address = 0;
results->command = 0;
return true;
}
#endif