Tasmota/tasmota/tasmota_xsns_sensor/xsns_17_senseair.ino

286 lines
8.9 KiB
C++

/*
xsns_17_senseair.ino - SenseAir CO2 sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_SENSEAIR
/*********************************************************************************************\
* SenseAir K30, K70, S8 and S88 - CO2 sensor
*
* Adapted from EspEasy plugin P052 by Mikael Trieb (mikael__AT__triebconsulting.se)
*
* Hardware Serial will be selected if GPIO1 = [SAir Rx] and GPIO3 = [SAir Tx]
\*********************************************************************************************/
/*********************************************************************************************\
* aSENSE tSENSE K30 S8 S88
* IR1 MeterStatus MeterStatus MeterStatus MeterStatus MeterStatus
* IR4 Space CO2 Space CO2 Space CO2 Space CO2 Space CO2
* IR5 Space Temp Space Temp - - Space Temp
* IR6 - RH - - -
* IR25 - - - - ETC Low
* IR27 - - - Type Id Low Type Id Low
*
\*********************************************************************************************/
#define XSNS_17 17
#define SENSEAIR_MODBUS_SPEED 9600
#define SENSEAIR_BROADCAST_ADDRESS 0xFE
#define COMMAND_READ_INPUT_REGISTER 0x04
#define IR_METER_STATUS 0
#define IR_SPACE_CO2 3
#define IR_SPACE_TEMP 4 // Not valid for S8 sensors
#define IR_SPACE_HUMIDITY 5 // Only valid for Kx0 sensors
#define IR_TEMP_ADJUSTMENT 10
#define IR_SENSOR_ETC_LOW 24
#define IR_SENSOR_ETC_HIGH 25
#define IR_SENSOR_TYPE_ID_LOW 26
#define IR_SENSOR_TYPE_ID_HIGH 27
#define IR_RELAY_STATE 28
#define SENSOR_TYPE_INIT 0
#define SENSOR_TYPE_UNKNOWN 1
#define SENSOR_TYPE_NONE 2
#define SENSOR_TYPE_KX0 3
#define SENSOR_TYPE_S8 4
#define SENSOR_TYPE_S88 5
#ifndef CO2_LOW
#define CO2_LOW 800 // Below this CO2 value show green light
#endif
#ifndef CO2_HIGH
#define CO2_HIGH 1200 // Above this CO2 value show red light
#endif
#include <TasmotaModbus.h>
TasmotaModbus *SenseairModbus;
const char kSenseairTypes[] PROGMEM = "Kx0|S8|S88";
uint8_t senseair_type = SENSOR_TYPE_INIT;
char senseair_types[4];
uint16_t senseair_co2 = 0;
float senseair_temperature = 0;
float senseair_humidity = 0;
const uint8_t input_registers[] = {
IR_SENSOR_ETC_LOW,
IR_SENSOR_TYPE_ID_LOW,
IR_METER_STATUS,
IR_SPACE_CO2,
IR_SPACE_TEMP,
IR_SPACE_HUMIDITY,
};
#define INPUT_REGISTERS_LOOP_START 2
#define INPUT_REGISTERS_LOOP_END_KX0 (sizeof input_registers / sizeof *input_registers)
#define INPUT_REGISTERS_LOOP_END_S88 (INPUT_REGISTERS_LOOP_END_KX0 - 1)
#define INPUT_REGISTERS_LOOP_END_S8 (INPUT_REGISTERS_LOOP_END_KX0 - 2)
uint8_t senseair_read_state = 0;
uint8_t senseair_send_retry = 0;
void Senseair250ms(void)
{
if (senseair_type == SENSOR_TYPE_INIT || senseair_type == SENSOR_TYPE_NONE) {
return;
}
bool data_ready = SenseairModbus->ReceiveReady();
if (data_ready) {
uint16_t value = 0;
// Read register.
uint8_t error = SenseairModbus->Receive16BitRegister(&value);
if (senseair_type == SENSOR_TYPE_UNKNOWN) {
// Try to determine sensor model.
switch (input_registers[senseair_read_state]) {
case IR_SENSOR_ETC_LOW:
if (error == 0) {
senseair_type = SENSOR_TYPE_S88;
}
break;
case IR_SENSOR_TYPE_ID_LOW:
switch (error) {
case 0:
senseair_type = SENSOR_TYPE_S8;
break;
case 2: // Illegal Data Address
senseair_type = SENSOR_TYPE_KX0;
break;
}
break;
}
if (senseair_type != SENSOR_TYPE_UNKNOWN) {
GetTextIndexed(senseair_types, sizeof(senseair_types), senseair_type - SENSOR_TYPE_KX0, kSenseairTypes);
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_SENSEAIR "%s detected"), senseair_types);
}
}
if (error) {
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_SENSEAIR "Reg %d error %d"), input_registers[senseair_read_state], error);
} else {
// Process register contents.
switch(input_registers[senseair_read_state]) {
case IR_METER_STATUS:
switch (senseair_type) {
case SENSOR_TYPE_S8: value &= 0x7f; break;
case SENSOR_TYPE_S88: value &= 0xff; break;
}
if (value) {
// Out of range or Warm Up is expected after power on
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_SENSEAIR "Meter status 0x%04X"), value);
}
break;
case IR_SPACE_CO2:
senseair_co2 = value;
#ifdef USE_LIGHT
LightSetSignal(CO2_LOW, CO2_HIGH, senseair_co2);
#endif // USE_LIGHT
break;
case IR_SPACE_TEMP:
senseair_temperature = ConvertTemp((float)value / 100);
break;
case IR_SPACE_HUMIDITY:
senseair_humidity = ConvertHumidity((float)value / 100);
break;
}
}
// Find the next register to be read.
senseair_read_state++;
uint8_t input_registers_loop_end;
switch (senseair_type) {
case SENSOR_TYPE_KX0:
input_registers_loop_end = INPUT_REGISTERS_LOOP_END_KX0;
break;
case SENSOR_TYPE_S8:
input_registers_loop_end = INPUT_REGISTERS_LOOP_END_S8;
break;
case SENSOR_TYPE_S88:
input_registers_loop_end = INPUT_REGISTERS_LOOP_END_S88;
break;
}
if (senseair_read_state == input_registers_loop_end) {
if (senseair_type == SENSOR_TYPE_UNKNOWN) {
senseair_read_state = 0;
} else {
senseair_read_state = INPUT_REGISTERS_LOOP_START;
}
}
}
if (0 == senseair_send_retry || data_ready) {
// Send the command (again).
senseair_send_retry = 5;
SenseairModbus->Send(SENSEAIR_BROADCAST_ADDRESS, COMMAND_READ_INPUT_REGISTER, input_registers[senseair_read_state], 1);
} else {
senseair_send_retry--;
}
}
/*********************************************************************************************/
void SenseairInit(void)
{
if (senseair_type != SENSOR_TYPE_INIT) {
return;
}
senseair_type = SENSOR_TYPE_NONE;
if (PinUsed(GPIO_SAIR_RX) && PinUsed(GPIO_SAIR_TX)) {
SenseairModbus = new TasmotaModbus(Pin(GPIO_SAIR_RX), Pin(GPIO_SAIR_TX));
uint8_t result = SenseairModbus->Begin(SENSEAIR_MODBUS_SPEED);
if (result) {
if (result == 2) {
// We have hardware serial, so claim it
ClaimSerial();
}
senseair_type = SENSOR_TYPE_UNKNOWN;
}
}
}
void SenseairShow(uint32_t function)
{
if (senseair_type < SENSOR_TYPE_KX0) {
return;
}
if (function == FUNC_JSON_APPEND) {
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_CO2 "\":%d"), senseair_types, senseair_co2);
switch (senseair_type) {
case SENSOR_TYPE_S88:
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE "\":%1_f"), &senseair_temperature);
break;
case SENSOR_TYPE_KX0:
ResponseAppend_P(PSTR(","));
ResponseAppendTHD(senseair_temperature, senseair_humidity);
break;
}
ResponseJsonEnd();
#ifdef USE_DOMOTICZ
if (0 == TasmotaGlobal.tele_period) {
DomoticzSensor(DZ_AIRQUALITY, senseair_co2);
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_CO2, senseair_types, senseair_co2);
switch (senseair_type) {
case SENSOR_TYPE_S88:
WSContentSend_Temp(senseair_types, senseair_temperature);
break;
case SENSOR_TYPE_KX0:
WSContentSend_THD(senseair_types, senseair_temperature, senseair_humidity);
break;
}
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns17(uint32_t function)
{
switch (function) {
case FUNC_INIT:
SenseairInit();
break;
case FUNC_EVERY_250_MSECOND:
Senseair250ms();
break;
case FUNC_JSON_APPEND:
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
#endif // USE_WEBSERVER
SenseairShow(function);
break;
}
return false;
}
#endif // USE_SENSEAIR