Tasmota/sonoff/xdrv_03_energy.ino

1190 lines
42 KiB
C++

/*
xdrv_03_energy.ino - HLW8012 (Sonoff Pow) and PZEM004T energy sensor support for Sonoff-Tasmota
Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define USE_ENERGY_SENSOR
#ifdef USE_ENERGY_SENSOR
/*********************************************************************************************\
* HLW8012 and PZEM004T - Energy
\*********************************************************************************************/
#define FEATURE_POWER_LIMIT true
enum EnergyHardware { ENERGY_NONE, ENERGY_HLW8012, ENERGY_CSE7766, ENERGY_PZEM004T };
enum EnergyCommands {
CMND_POWERDELTA,
CMND_POWERLOW, CMND_POWERHIGH, CMND_VOLTAGELOW, CMND_VOLTAGEHIGH, CMND_CURRENTLOW, CMND_CURRENTHIGH,
CMND_POWERCAL, CMND_POWERSET, CMND_VOLTAGECAL, CMND_VOLTAGESET, CMND_CURRENTCAL, CMND_CURRENTSET,
CMND_ENERGYRESET, CMND_MAXENERGY, CMND_MAXENERGYSTART,
CMND_MAXPOWER, CMND_MAXPOWERHOLD, CMND_MAXPOWERWINDOW,
CMND_SAFEPOWER, CMND_SAFEPOWERHOLD, CMND_SAFEPOWERWINDOW };
const char kEnergyCommands[] PROGMEM =
D_CMND_POWERDELTA "|"
D_CMND_POWERLOW "|" D_CMND_POWERHIGH "|" D_CMND_VOLTAGELOW "|" D_CMND_VOLTAGEHIGH "|" D_CMND_CURRENTLOW "|" D_CMND_CURRENTHIGH "|"
D_CMND_POWERCAL "|" D_CMND_POWERSET "|" D_CMND_VOLTAGECAL "|" D_CMND_VOLTAGESET "|" D_CMND_CURRENTCAL "|" D_CMND_CURRENTSET "|"
D_CMND_ENERGYRESET "|" D_CMND_MAXENERGY "|" D_CMND_MAXENERGYSTART "|"
D_CMND_MAXPOWER "|" D_CMND_MAXPOWERHOLD "|" D_CMND_MAXPOWERWINDOW "|"
D_CMND_SAFEPOWER "|" D_CMND_SAFEPOWERHOLD "|" D_CMND_SAFEPOWERWINDOW ;
float energy_voltage = 0; // 123.1 V
float energy_current = 0; // 123.123 A
float energy_power = 0; // 123.1 W
float energy_power_factor = 0; // 0.12
float energy_daily = 0; // 123.123 kWh
float energy_total = 0; // 12345.12345 kWh
float energy_start = 0; // 12345.12345 kWh total previous
unsigned long energy_kWhtoday_delta = 0; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to energy_kWhtoday (HLW and CSE only)
unsigned long energy_kWhtoday; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = energy_daily
unsigned long energy_period = 0; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = energy_daily
float energy_power_last[3] = { 0 };
uint8_t energy_power_delta = 0;
bool energy_power_on = true;
byte energy_min_power_flag = 0;
byte energy_max_power_flag = 0;
byte energy_min_voltage_flag = 0;
byte energy_max_voltage_flag = 0;
byte energy_min_current_flag = 0;
byte energy_max_current_flag = 0;
byte energy_power_steady_cntr = 8; // Allow for power on stabilization
byte energy_max_energy_state = 0;
#if FEATURE_POWER_LIMIT
byte energy_mplr_counter = 0;
uint16_t energy_mplh_counter = 0;
uint16_t energy_mplw_counter = 0;
#endif // FEATURE_POWER_LIMIT
byte energy_fifth_second = 0;
Ticker ticker_energy;
/********************************************************************************************/
void EnergyUpdateToday()
{
if (energy_kWhtoday_delta > 1000) {
unsigned long delta = energy_kWhtoday_delta / 1000;
energy_kWhtoday_delta -= (delta * 1000);
energy_kWhtoday += delta;
}
RtcSettings.energy_kWhtoday = energy_kWhtoday;
energy_daily = (float)energy_kWhtoday / 100000;
energy_total = (float)(RtcSettings.energy_kWhtotal + energy_kWhtoday) / 100000;
}
/*********************************************************************************************\
* HLW8012 - Energy (Sonoff Pow)
*
* Based on Source: Shenzhen Heli Technology Co., Ltd
\*********************************************************************************************/
#define HLW_PREF 10000 // 1000.0W
#define HLW_UREF 2200 // 220.0V
#define HLW_IREF 4545 // 4.545A
#define HLW_POWER_PROBE_TIME 10 // Number of seconds to probe for power before deciding none used
byte hlw_select_ui_flag;
byte hlw_load_off;
byte hlw_cf1_timer;
unsigned long hlw_cf_pulse_length;
unsigned long hlw_cf_pulse_last_time;
unsigned long hlw_cf1_pulse_length;
unsigned long hlw_cf1_pulse_last_time;
unsigned long hlw_cf1_summed_pulse_length;
unsigned long hlw_cf1_pulse_counter;
unsigned long hlw_cf1_voltage_pulse_length;
unsigned long hlw_cf1_current_pulse_length;
unsigned long hlw_energy_period_counter;
unsigned long hlw_cf1_voltage_max_pulse_counter;
unsigned long hlw_cf1_current_max_pulse_counter;
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception
void HlwCfInterrupt() ICACHE_RAM_ATTR;
void HlwCf1Interrupt() ICACHE_RAM_ATTR;
#endif // USE_WS2812_DMA
void HlwCfInterrupt() // Service Power
{
unsigned long us = micros();
if (hlw_load_off) { // Restart plen measurement
hlw_cf_pulse_last_time = us;
hlw_load_off = 0;
} else {
hlw_cf_pulse_length = us - hlw_cf_pulse_last_time;
hlw_cf_pulse_last_time = us;
hlw_energy_period_counter++;
}
}
void HlwCf1Interrupt() // Service Voltage and Current
{
unsigned long us = micros();
hlw_cf1_pulse_length = us - hlw_cf1_pulse_last_time;
hlw_cf1_pulse_last_time = us;
if ((hlw_cf1_timer > 2) && (hlw_cf1_timer < 8)) { // Allow for 300 mSec set-up time and measure for up to 1 second
hlw_cf1_summed_pulse_length += hlw_cf1_pulse_length;
hlw_cf1_pulse_counter++;
if (10 == hlw_cf1_pulse_counter) {
hlw_cf1_timer = 8; // We need up to ten samples within 1 second (low current could take up to 0.3 second)
}
}
}
void HlwEverySecond()
{
unsigned long hlw_len;
if (hlw_energy_period_counter) {
hlw_len = 10000 / hlw_energy_period_counter;
hlw_energy_period_counter = 0;
if (hlw_len) {
energy_kWhtoday_delta += ((HLW_PREF * Settings.energy_power_calibration) / hlw_len) / 36;
EnergyUpdateToday();
}
}
}
void HlwEvery200ms()
{
unsigned long hlw_w = 0;
unsigned long hlw_u = 0;
unsigned long hlw_i = 0;
if (micros() - hlw_cf_pulse_last_time > (HLW_POWER_PROBE_TIME * 1000000)) {
hlw_cf_pulse_length = 0; // No load for some time
hlw_load_off = 1;
}
if (hlw_cf_pulse_length && energy_power_on && !hlw_load_off) {
hlw_w = (HLW_PREF * Settings.energy_power_calibration) / hlw_cf_pulse_length;
energy_power = (float)hlw_w / 10;
} else {
energy_power = 0;
}
hlw_cf1_timer++;
if (hlw_cf1_timer >= 8) {
hlw_cf1_timer = 0;
hlw_select_ui_flag = (hlw_select_ui_flag) ? 0 : 1;
digitalWrite(pin[GPIO_HLW_SEL], hlw_select_ui_flag);
if (hlw_cf1_pulse_counter) {
hlw_cf1_pulse_length = hlw_cf1_summed_pulse_length / hlw_cf1_pulse_counter;
} else {
hlw_cf1_pulse_length = 0;
}
if (hlw_select_ui_flag) {
hlw_cf1_voltage_pulse_length = hlw_cf1_pulse_length;
hlw_cf1_voltage_max_pulse_counter = hlw_cf1_pulse_counter;
if (hlw_cf1_voltage_pulse_length && energy_power_on) { // If powered on always provide voltage
hlw_u = (HLW_UREF * Settings.energy_voltage_calibration) / hlw_cf1_voltage_pulse_length;
energy_voltage = (float)hlw_u / 10;
} else {
energy_voltage = 0;
}
} else {
hlw_cf1_current_pulse_length = hlw_cf1_pulse_length;
hlw_cf1_current_max_pulse_counter = hlw_cf1_pulse_counter;
if (hlw_cf1_current_pulse_length && energy_power) { // No current if no power being consumed
hlw_i = (HLW_IREF * Settings.energy_current_calibration) / hlw_cf1_current_pulse_length;
energy_current = (float)hlw_i / 1000;
} else {
energy_current = 0;
}
}
hlw_cf1_summed_pulse_length = 0;
hlw_cf1_pulse_counter = 0;
}
}
void HlwInit()
{
if (!Settings.energy_power_calibration || (4975 == Settings.energy_power_calibration)) {
Settings.energy_power_calibration = HLW_PREF_PULSE;
Settings.energy_voltage_calibration = HLW_UREF_PULSE;
Settings.energy_current_calibration = HLW_IREF_PULSE;
}
hlw_cf_pulse_length = 0;
hlw_cf_pulse_last_time = 0;
hlw_cf1_pulse_length = 0;
hlw_cf1_pulse_last_time = 0;
hlw_cf1_voltage_pulse_length = 0;
hlw_cf1_current_pulse_length = 0;
hlw_cf1_voltage_max_pulse_counter = 0;
hlw_cf1_current_max_pulse_counter = 0;
hlw_load_off = 1;
hlw_energy_period_counter = 0;
hlw_select_ui_flag = 0; // Voltage;
pinMode(pin[GPIO_HLW_SEL], OUTPUT);
digitalWrite(pin[GPIO_HLW_SEL], hlw_select_ui_flag);
pinMode(pin[GPIO_HLW_CF1], INPUT_PULLUP);
attachInterrupt(pin[GPIO_HLW_CF1], HlwCf1Interrupt, FALLING);
pinMode(pin[GPIO_HLW_CF], INPUT_PULLUP);
attachInterrupt(pin[GPIO_HLW_CF], HlwCfInterrupt, FALLING);
hlw_cf1_timer = 0;
}
/*********************************************************************************************\
* CSE7766 - Energy (Sonoff S31 and Sonoff Pow R2)
*
* Based on datasheet from http://www.chipsea.com/UploadFiles/2017/08/11144342F01B5662.pdf
\*********************************************************************************************/
#define CSE_NOT_CALIBRATED 0xAA
#define CSE_PULSES_NOT_INITIALIZED -1
#define CSE_PREF 1000
#define CSE_UREF 100
uint8_t cse_receive_flag = 0;
long voltage_cycle = 0;
long current_cycle = 0;
long power_cycle = 0;
unsigned long power_cycle_first = 0;
long cf_pulses = 0;
long cf_pulses_last_time = CSE_PULSES_NOT_INITIALIZED;
void CseReceived()
{
AddLogSerial(LOG_LEVEL_DEBUG_MORE);
uint8_t header = serial_in_buffer[0];
if ((header & 0xFC) == 0xFC) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR("CSE: Abnormal hardware"));
return;
}
// Calculate checksum
uint8_t checksum = 0;
for (byte i = 2; i < 23; i++) checksum += serial_in_buffer[i];
if (checksum != serial_in_buffer[23]) {
AddLog_P(LOG_LEVEL_DEBUG, PSTR("CSE: " D_CHECKSUM_FAILURE));
return;
}
// Get chip calibration data (coefficients) and use as initial defaults
if (HLW_UREF_PULSE == Settings.energy_voltage_calibration) {
long voltage_coefficient = 191200; // uSec
if (CSE_NOT_CALIBRATED != header) {
voltage_coefficient = serial_in_buffer[2] << 16 | serial_in_buffer[3] << 8 | serial_in_buffer[4];
}
Settings.energy_voltage_calibration = voltage_coefficient / CSE_UREF;
}
if (HLW_IREF_PULSE == Settings.energy_current_calibration) {
long current_coefficient = 16140; // uSec
if (CSE_NOT_CALIBRATED != header) {
current_coefficient = serial_in_buffer[8] << 16 | serial_in_buffer[9] << 8 | serial_in_buffer[10];
}
Settings.energy_current_calibration = current_coefficient;
}
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
long power_coefficient = 5364000; // uSec
if (CSE_NOT_CALIBRATED != header) {
power_coefficient = serial_in_buffer[14] << 16 | serial_in_buffer[15] << 8 | serial_in_buffer[16];
}
Settings.energy_power_calibration = power_coefficient / CSE_PREF;
}
uint8_t adjustement = serial_in_buffer[20];
voltage_cycle = serial_in_buffer[5] << 16 | serial_in_buffer[6] << 8 | serial_in_buffer[7];
current_cycle = serial_in_buffer[11] << 16 | serial_in_buffer[12] << 8 | serial_in_buffer[13];
power_cycle = serial_in_buffer[17] << 16 | serial_in_buffer[18] << 8 | serial_in_buffer[19];
cf_pulses = serial_in_buffer[21] << 8 | serial_in_buffer[22];
if (energy_power_on) { // Powered on
if (adjustement & 0x40) { // Voltage valid
energy_voltage = (float)(Settings.energy_voltage_calibration * CSE_UREF) / (float)voltage_cycle;
}
if (adjustement & 0x10) { // Power valid
if ((header & 0xF2) == 0xF2) { // Power cycle exceeds range
energy_power = 0;
} else {
if (0 == power_cycle_first) power_cycle_first = power_cycle; // Skip first incomplete power_cycle
if (power_cycle_first != power_cycle) {
power_cycle_first = -1;
energy_power = (float)(Settings.energy_power_calibration * CSE_PREF) / (float)power_cycle;
} else {
energy_power = 0;
}
}
} else {
power_cycle_first = 0;
energy_power = 0; // Powered on but no load
}
if (adjustement & 0x20) { // Current valid
if (0 == energy_power) {
energy_current = 0;
} else {
energy_current = (float)Settings.energy_current_calibration / (float)current_cycle;
}
}
} else { // Powered off
power_cycle_first = 0;
energy_voltage = 0;
energy_power = 0;
energy_current = 0;
}
}
bool CseSerialInput()
{
if (cse_receive_flag) {
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
if (24 == serial_in_byte_counter) {
CseReceived();
cse_receive_flag = 0;
return 1;
}
} else {
if (0x5A == serial_in_byte) { // 0x5A - Packet header 2
cse_receive_flag = 1;
} else {
serial_in_byte_counter = 0;
}
serial_in_buffer[serial_in_byte_counter++] = serial_in_byte;
}
serial_in_byte = 0; // Discard
return 0;
}
void CseEverySecond()
{
long cf_frequency = 0;
if (CSE_PULSES_NOT_INITIALIZED == cf_pulses_last_time) {
cf_pulses_last_time = cf_pulses; // Init after restart
} else {
if (cf_pulses < cf_pulses_last_time) { // Rolled over after 65535 pulses
cf_frequency = (65536 - cf_pulses_last_time) + cf_pulses;
} else {
cf_frequency = cf_pulses - cf_pulses_last_time;
}
if (cf_frequency && energy_power) {
cf_pulses_last_time = cf_pulses;
energy_kWhtoday_delta += (cf_frequency * Settings.energy_power_calibration) / 36;
EnergyUpdateToday();
}
}
}
#ifdef USE_PZEM004T
/*********************************************************************************************\
* PZEM004T - Energy
*
* Source: Victor Ferrer https://github.com/vicfergar/Sonoff-MQTT-OTA-Arduino
* Based on: PZEM004T library https://github.com/olehs/PZEM004T
*
* Hardware Serial will be selected if GPIO1 = [PZEM Rx] and [GPIO3 = PZEM Tx]
\*********************************************************************************************/
#include <TasmotaSerial.h>
TasmotaSerial *PzemSerial;
#define PZEM_VOLTAGE (uint8_t)0xB0
#define RESP_VOLTAGE (uint8_t)0xA0
#define PZEM_CURRENT (uint8_t)0xB1
#define RESP_CURRENT (uint8_t)0xA1
#define PZEM_POWER (uint8_t)0xB2
#define RESP_POWER (uint8_t)0xA2
#define PZEM_ENERGY (uint8_t)0xB3
#define RESP_ENERGY (uint8_t)0xA3
#define PZEM_SET_ADDRESS (uint8_t)0xB4
#define RESP_SET_ADDRESS (uint8_t)0xA4
#define PZEM_POWER_ALARM (uint8_t)0xB5
#define RESP_POWER_ALARM (uint8_t)0xA5
#define PZEM_DEFAULT_READ_TIMEOUT 500
/*********************************************************************************************/
struct PZEMCommand {
uint8_t command;
uint8_t addr[4];
uint8_t data;
uint8_t crc;
};
IPAddress pzem_ip(192, 168, 1, 1);
uint8_t PzemCrc(uint8_t *data)
{
uint16_t crc = 0;
for (uint8_t i = 0; i < sizeof(PZEMCommand) -1; i++) crc += *data++;
return (uint8_t)(crc & 0xFF);
}
void PzemSend(uint8_t cmd)
{
PZEMCommand pzem;
pzem.command = cmd;
for (uint8_t i = 0; i < sizeof(pzem.addr); i++) pzem.addr[i] = pzem_ip[i];
pzem.data = 0;
uint8_t *bytes = (uint8_t*)&pzem;
pzem.crc = PzemCrc(bytes);
PzemSerial->flush();
PzemSerial->write(bytes, sizeof(pzem));
}
bool PzemReceiveReady()
{
return PzemSerial->available() >= (int)sizeof(PZEMCommand);
}
bool PzemRecieve(uint8_t resp, float *data)
{
uint8_t buffer[sizeof(PZEMCommand)];
unsigned long start = millis();
uint8_t len = 0;
while ((len < sizeof(PZEMCommand)) && (millis() - start < PZEM_DEFAULT_READ_TIMEOUT)) {
if (PzemSerial->available() > 0) {
uint8_t c = (uint8_t)PzemSerial->read();
if (!c && !len) {
continue; // skip 0 at startup
}
buffer[len++] = c;
}
}
AddLogSerial(LOG_LEVEL_DEBUG_MORE, buffer, len);
if (len != sizeof(PZEMCommand)) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem comms timeout"));
return false;
}
if (buffer[6] != PzemCrc(buffer)) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem crc error"));
return false;
}
if (buffer[0] != resp) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Pzem bad response"));
return false;
}
switch (resp) {
case RESP_VOLTAGE:
*data = (float)(buffer[1] << 8) + buffer[2] + (buffer[3] / 10.0); // 65535.x V
break;
case RESP_CURRENT:
*data = (float)(buffer[1] << 8) + buffer[2] + (buffer[3] / 100.0); // 65535.xx A
break;
case RESP_POWER:
*data = (float)(buffer[1] << 8) + buffer[2]; // 65535 W
break;
case RESP_ENERGY:
*data = (float)((uint32_t)buffer[1] << 16) + ((uint16_t)buffer[2] << 8) + buffer[3]; // 16777215 Wh
break;
}
return true;
}
/*********************************************************************************************/
const uint8_t pzem_commands[] { PZEM_SET_ADDRESS, PZEM_VOLTAGE, PZEM_CURRENT, PZEM_POWER, PZEM_ENERGY };
const uint8_t pzem_responses[] { RESP_SET_ADDRESS, RESP_VOLTAGE, RESP_CURRENT, RESP_POWER, RESP_ENERGY };
uint8_t pzem_read_state = 0;
uint8_t pzem_sendRetry = 0;
void PzemEvery200ms()
{
bool data_ready = PzemReceiveReady();
if (data_ready) {
float value = 0;
if (PzemRecieve(pzem_responses[pzem_read_state], &value)) {
switch (pzem_read_state) {
case 1: // Voltage as 230.2V
energy_voltage = value;
break;
case 2: // Current as 17.32A
energy_current = value;
break;
case 3: // Power as 20W
energy_power = value;
break;
case 4: // Total energy as 99999Wh
if (!energy_start || (value < energy_start)) energy_start = value; // Init after restart and hanlde roll-over if any
energy_kWhtoday += (value - energy_start) * 100;
energy_start = value;
EnergyUpdateToday();
break;
}
pzem_read_state++;
if (5 == pzem_read_state) pzem_read_state = 1;
}
}
if (0 == pzem_sendRetry || data_ready) {
pzem_sendRetry = 5;
PzemSend(pzem_commands[pzem_read_state]);
}
else {
pzem_sendRetry--;
}
}
/********************************************************************************************/
#endif // USE_PZEM004T
void Energy200ms()
{
energy_fifth_second++;
if (5 == energy_fifth_second) {
energy_fifth_second = 0;
if (ENERGY_HLW8012 == energy_flg) HlwEverySecond();
if (ENERGY_CSE7766 == energy_flg) CseEverySecond();
if (RtcTime.valid) {
if (LocalTime() == Midnight()) {
Settings.energy_kWhyesterday = energy_kWhtoday;
Settings.energy_kWhtotal += energy_kWhtoday;
RtcSettings.energy_kWhtotal = Settings.energy_kWhtotal;
energy_kWhtoday = 0;
energy_kWhtoday_delta = 0;
energy_period = energy_kWhtoday;
EnergyUpdateToday();
energy_max_energy_state = 3;
}
if ((RtcTime.hour == Settings.energy_max_energy_start) && (3 == energy_max_energy_state)) {
energy_max_energy_state = 0;
}
}
}
energy_power_on = (power &1) | Settings.flag.no_power_on_check;
if (ENERGY_HLW8012 == energy_flg) HlwEvery200ms();
#ifdef USE_PZEM004T
if (ENERGY_PZEM004T == energy_flg) PzemEvery200ms();
#endif // USE_PZEM004T
float power_factor = 0;
if (energy_voltage && energy_current && energy_power) {
power_factor = energy_power / (energy_voltage * energy_current);
if (power_factor > 1) power_factor = 1;
}
energy_power_factor = power_factor;
}
void EnergySaveState()
{
Settings.energy_kWhdoy = (RtcTime.valid) ? RtcTime.day_of_year : 0;
Settings.energy_kWhtoday = energy_kWhtoday;
RtcSettings.energy_kWhtoday = energy_kWhtoday;
Settings.energy_kWhtotal = RtcSettings.energy_kWhtotal;
}
boolean EnergyMargin(byte type, uint16_t margin, uint16_t value, byte &flag, byte &save_flag)
{
byte change;
if (!margin) return false;
change = save_flag;
if (type) {
flag = (value > margin);
} else {
flag = (value < margin);
}
save_flag = flag;
return (change != save_flag);
}
void EnergySetPowerSteadyCounter()
{
energy_power_steady_cntr = 2;
}
void EnergyMarginCheck()
{
uint16_t energy_daily_u = 0;
uint16_t energy_power_u = 0;
uint16_t energy_voltage_u = 0;
uint16_t energy_current_u = 0;
boolean flag;
boolean jsonflg;
if (energy_power_steady_cntr) {
energy_power_steady_cntr--;
return;
}
if (Settings.energy_power_delta) {
float delta = abs(energy_power_last[0] - energy_power);
// Any delta compared to minimal delta
float min_power = (energy_power_last[0] > energy_power) ? energy_power : energy_power_last[0];
if (((delta / min_power) * 100) > Settings.energy_power_delta) {
energy_power_delta = 1;
energy_power_last[1] = energy_power; // We only want one report so reset history
energy_power_last[2] = energy_power;
}
}
energy_power_last[0] = energy_power_last[1]; // Shift in history every second allowing power changes to settle for up to three seconds
energy_power_last[1] = energy_power_last[2];
energy_power_last[2] = energy_power;
if (energy_power_on && (Settings.energy_min_power || Settings.energy_max_power || Settings.energy_min_voltage || Settings.energy_max_voltage || Settings.energy_min_current || Settings.energy_max_current)) {
energy_power_u = (uint16_t)(energy_power);
energy_voltage_u = (uint16_t)(energy_voltage);
energy_current_u = (uint16_t)(energy_current * 1000);
// snprintf_P(log_data, sizeof(log_data), PSTR("HLW: W %d, U %d, I %d"), energy_power_u, energy_voltage_u, energy_current_u);
// AddLog(LOG_LEVEL_DEBUG);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{"));
jsonflg = 0;
if (EnergyMargin(0, Settings.energy_min_power, energy_power_u, flag, energy_min_power_flag)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s%s\"" D_CMND_POWERLOW "\":\"%s\""), mqtt_data, (jsonflg)?",":"", GetStateText(flag));
jsonflg = 1;
}
if (EnergyMargin(1, Settings.energy_max_power, energy_power_u, flag, energy_max_power_flag)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s%s\"" D_CMND_POWERHIGH "\":\"%s\""), mqtt_data, (jsonflg)?",":"", GetStateText(flag));
jsonflg = 1;
}
if (EnergyMargin(0, Settings.energy_min_voltage, energy_voltage_u, flag, energy_min_voltage_flag)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s%s\"" D_CMND_VOLTAGELOW "\":\"%s\""), mqtt_data, (jsonflg)?",":"", GetStateText(flag));
jsonflg = 1;
}
if (EnergyMargin(1, Settings.energy_max_voltage, energy_voltage_u, flag, energy_max_voltage_flag)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s%s\"" D_CMND_VOLTAGEHIGH "\":\"%s\""), mqtt_data, (jsonflg)?",":"", GetStateText(flag));
jsonflg = 1;
}
if (EnergyMargin(0, Settings.energy_min_current, energy_current_u, flag, energy_min_current_flag)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s%s\"" D_CMND_CURRENTLOW "\":\"%s\""), mqtt_data, (jsonflg)?",":"", GetStateText(flag));
jsonflg = 1;
}
if (EnergyMargin(1, Settings.energy_max_current, energy_current_u, flag, energy_max_current_flag)) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s%s\"" D_CMND_CURRENTHIGH "\":\"%s\""), mqtt_data, (jsonflg)?",":"", GetStateText(flag));
jsonflg = 1;
}
if (jsonflg) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data);
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_MARGINS));
EnergyMqttShow();
}
}
#if FEATURE_POWER_LIMIT
// Max Power
if (Settings.energy_max_power_limit) {
if (energy_power > Settings.energy_max_power_limit) {
if (!energy_mplh_counter) {
energy_mplh_counter = Settings.energy_max_power_limit_hold;
} else {
energy_mplh_counter--;
if (!energy_mplh_counter) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_JSON_MAXPOWERREACHED "\":\"%d%s\"}"), energy_power_u, (Settings.flag.value_units) ? " " D_UNIT_WATT : "");
MqttPublishPrefixTopic_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
ExecuteCommandPower(1, POWER_OFF);
if (!energy_mplr_counter) {
energy_mplr_counter = Settings.param[P_MAX_POWER_RETRY] +1;
}
energy_mplw_counter = Settings.energy_max_power_limit_window;
}
}
}
else if (power && (energy_power_u <= Settings.energy_max_power_limit)) {
energy_mplh_counter = 0;
energy_mplr_counter = 0;
energy_mplw_counter = 0;
}
if (!power) {
if (energy_mplw_counter) {
energy_mplw_counter--;
} else {
if (energy_mplr_counter) {
energy_mplr_counter--;
if (energy_mplr_counter) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_JSON_POWERMONITOR "\":\"%s\"}"), GetStateText(1));
MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_JSON_POWERMONITOR));
ExecuteCommandPower(1, POWER_ON);
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_JSON_MAXPOWERREACHEDRETRY "\":\"%s\"}"), GetStateText(0));
MqttPublishPrefixTopic_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
}
}
}
}
}
// Max Energy
if (Settings.energy_max_energy) {
energy_daily_u = (uint16_t)(energy_daily * 1000);
if (!energy_max_energy_state && (RtcTime.hour == Settings.energy_max_energy_start)) {
energy_max_energy_state = 1;
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_JSON_ENERGYMONITOR "\":\"%s\"}"), GetStateText(1));
MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_JSON_ENERGYMONITOR));
ExecuteCommandPower(1, POWER_ON);
}
else if ((1 == energy_max_energy_state) && (energy_daily_u >= Settings.energy_max_energy)) {
energy_max_energy_state = 2;
dtostrfd(energy_daily, 3, mqtt_data);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_JSON_MAXENERGYREACHED "\":\"%s%s\"}"), mqtt_data, (Settings.flag.value_units) ? " " D_UNIT_KILOWATTHOUR : "");
MqttPublishPrefixTopic_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
ExecuteCommandPower(1, POWER_OFF);
}
}
#endif // FEATURE_POWER_LIMIT
if (energy_power_delta) EnergyMqttShow();
}
void EnergyMqttShow()
{
// {"Time":"2017-12-16T11:48:55","ENERGY":{"Total":0.212,"Yesterday":0.000,"Today":0.014,"Period":2.0,"Power":22.0,"Factor":1.00,"Voltage":213.6,"Current":0.100}}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_JSON_TIME "\":\"%s\""), GetDateAndTime(DT_LOCAL).c_str());
EnergyShow(1);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data);
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
energy_power_delta = 0;
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
boolean EnergyCommand()
{
char command [CMDSZ];
char sunit[CMDSZ];
boolean serviced = true;
uint8_t status_flag = 0;
uint8_t unit = 0;
unsigned long nvalue = 0;
int command_code = GetCommandCode(command, sizeof(command), XdrvMailbox.topic, kEnergyCommands);
if (-1 == command_code) {
serviced = false; // Unknown command
}
else if (CMND_POWERDELTA == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 101)) {
Settings.energy_power_delta = (1 == XdrvMailbox.payload) ? DEFAULT_POWER_DELTA : XdrvMailbox.payload;
}
nvalue = Settings.energy_power_delta;
unit = UNIT_PERCENTAGE;
}
else if (CMND_POWERLOW == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_min_power = XdrvMailbox.payload;
}
nvalue = Settings.energy_min_power;
unit = UNIT_WATT;
}
else if (CMND_POWERHIGH == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power = XdrvMailbox.payload;
}
nvalue = Settings.energy_max_power;
unit = UNIT_WATT;
}
else if (CMND_VOLTAGELOW == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) {
Settings.energy_min_voltage = XdrvMailbox.payload;
}
nvalue = Settings.energy_min_voltage;
unit = UNIT_VOLT;
}
else if (CMND_VOLTAGEHIGH == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) {
Settings.energy_max_voltage = XdrvMailbox.payload;
}
nvalue = Settings.energy_max_voltage;
unit = UNIT_VOLT;
}
else if (CMND_CURRENTLOW == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) {
Settings.energy_min_current = XdrvMailbox.payload;
}
nvalue = Settings.energy_min_current;
unit = UNIT_MILLIAMPERE;
}
else if (CMND_CURRENTHIGH == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) {
Settings.energy_max_current = XdrvMailbox.payload;
}
nvalue = Settings.energy_max_current;
unit = UNIT_MILLIAMPERE;
}
else if ((CMND_ENERGYRESET == command_code) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= 3)) {
char *p;
unsigned long lnum = strtoul(XdrvMailbox.data, &p, 10);
if (p != XdrvMailbox.data) {
switch (XdrvMailbox.index) {
case 1:
energy_kWhtoday = lnum *100;
energy_kWhtoday_delta = 0;
energy_period = energy_kWhtoday;
Settings.energy_kWhtoday = energy_kWhtoday;
RtcSettings.energy_kWhtoday = energy_kWhtoday;
energy_daily = (float)energy_kWhtoday / 100000;
break;
case 2:
Settings.energy_kWhyesterday = lnum *100;
break;
case 3:
RtcSettings.energy_kWhtotal = lnum *100;
Settings.energy_kWhtotal = RtcSettings.energy_kWhtotal;
break;
}
}
char energy_yesterday_chr[10];
char stoday_energy[10];
char energy_total_chr[10];
dtostrfd((float)Settings.energy_kWhyesterday / 100000, Settings.flag2.energy_resolution, energy_yesterday_chr);
dtostrfd((float)RtcSettings.energy_kWhtoday / 100000, Settings.flag2.energy_resolution, stoday_energy);
dtostrfd((float)(RtcSettings.energy_kWhtotal + energy_kWhtoday) / 100000, Settings.flag2.energy_resolution, energy_total_chr);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s}}"),
command, energy_total_chr, energy_yesterday_chr, stoday_energy);
status_flag = 1;
}
else if (((ENERGY_HLW8012 == energy_flg) || (ENERGY_CSE7766 == energy_flg)) && (CMND_POWERCAL == command_code)) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 32001)) {
Settings.energy_power_calibration = (XdrvMailbox.payload > 4000) ? XdrvMailbox.payload : HLW_PREF_PULSE; // HLW = 12530, CSE = 5364
}
nvalue = Settings.energy_power_calibration;
unit = UNIT_MICROSECOND;
}
else if (((ENERGY_HLW8012 == energy_flg) || (ENERGY_CSE7766 == energy_flg)) && (CMND_POWERSET == command_code)) { // Watt
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 3601)) {
if ((ENERGY_HLW8012 == energy_flg) && hlw_cf_pulse_length) {
Settings.energy_power_calibration = (XdrvMailbox.payload * 10 * hlw_cf_pulse_length) / HLW_PREF;
}
else if ((ENERGY_CSE7766 == energy_flg) && power_cycle) {
Settings.energy_power_calibration = (XdrvMailbox.payload * power_cycle) / CSE_PREF;
}
}
snprintf_P(command, sizeof(command), PSTR(D_CMND_POWERCAL));
nvalue = Settings.energy_power_calibration;
unit = UNIT_MICROSECOND;
}
else if (((ENERGY_HLW8012 == energy_flg) || (ENERGY_CSE7766 == energy_flg)) && (CMND_VOLTAGECAL == command_code)) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 32001)) {
Settings.energy_voltage_calibration = (XdrvMailbox.payload > 999) ? XdrvMailbox.payload : HLW_UREF_PULSE; // HLW = 1950, CSE = 1912
}
nvalue = Settings.energy_voltage_calibration;
unit = UNIT_MICROSECOND;
}
else if (((ENERGY_HLW8012 == energy_flg) || (ENERGY_CSE7766 == energy_flg)) && (CMND_VOLTAGESET == command_code)) { // Volt
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 501)) {
if ((ENERGY_HLW8012 == energy_flg) && hlw_cf1_voltage_pulse_length) {
Settings.energy_voltage_calibration = (XdrvMailbox.payload * 10 * hlw_cf1_voltage_pulse_length) / HLW_UREF;
}
else if ((ENERGY_CSE7766 == energy_flg) && voltage_cycle) {
Settings.energy_voltage_calibration = (XdrvMailbox.payload * voltage_cycle) / CSE_UREF;
}
}
snprintf_P(command, sizeof(command), PSTR(D_CMND_VOLTAGECAL));
nvalue = Settings.energy_voltage_calibration;
unit = UNIT_MICROSECOND;
}
else if (((ENERGY_HLW8012 == energy_flg) || (ENERGY_CSE7766 == energy_flg)) && (CMND_CURRENTCAL == command_code)) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 32001)) {
Settings.energy_current_calibration = (XdrvMailbox.payload > 1100) ? XdrvMailbox.payload : HLW_IREF_PULSE; // HLW = 3500, CSE = 16140
}
nvalue = Settings.energy_current_calibration;
unit = UNIT_MICROSECOND;
}
else if (((ENERGY_HLW8012 == energy_flg) || (ENERGY_CSE7766 == energy_flg)) && (CMND_CURRENTSET == command_code)) { // milliAmpere
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 16001)) {
if ((ENERGY_HLW8012 == energy_flg) && hlw_cf1_current_pulse_length) {
Settings.energy_current_calibration = (XdrvMailbox.payload * hlw_cf1_current_pulse_length) / HLW_IREF;
}
else if ((ENERGY_CSE7766 == energy_flg) && current_cycle) {
Settings.energy_current_calibration = (XdrvMailbox.payload * current_cycle) / 1000;
}
}
snprintf_P(command, sizeof(command), PSTR(D_CMND_CURRENTCAL));
nvalue = Settings.energy_current_calibration;
unit = UNIT_MICROSECOND;
}
#if FEATURE_POWER_LIMIT
else if (CMND_MAXPOWER == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power_limit = XdrvMailbox.payload;
}
nvalue = Settings.energy_max_power_limit;
unit = UNIT_WATT;
}
else if (CMND_MAXPOWERHOLD == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power_limit_hold = (1 == XdrvMailbox.payload) ? MAX_POWER_HOLD : XdrvMailbox.payload;
}
nvalue = Settings.energy_max_power_limit_hold;
unit = UNIT_SECOND;
}
else if (CMND_MAXPOWERWINDOW == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power_limit_window = (1 == XdrvMailbox.payload) ? MAX_POWER_WINDOW : XdrvMailbox.payload;
}
nvalue = Settings.energy_max_power_limit_window;
unit = UNIT_SECOND;
}
else if (CMND_SAFEPOWER == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power_safe_limit = XdrvMailbox.payload;
}
nvalue = Settings.energy_max_power_safe_limit;
unit = UNIT_WATT;
}
else if (CMND_SAFEPOWERHOLD == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power_safe_limit_hold = (1 == XdrvMailbox.payload) ? SAFE_POWER_HOLD : XdrvMailbox.payload;
}
nvalue = Settings.energy_max_power_safe_limit_hold;
unit = UNIT_SECOND;
}
else if (CMND_SAFEPOWERWINDOW == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 1440)) {
Settings.energy_max_power_safe_limit_window = (1 == XdrvMailbox.payload) ? SAFE_POWER_WINDOW : XdrvMailbox.payload;
}
nvalue = Settings.energy_max_power_safe_limit_window;
unit = UNIT_MINUTE;
}
else if (CMND_MAXENERGY == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_energy = XdrvMailbox.payload;
energy_max_energy_state = 3;
}
nvalue = Settings.energy_max_energy;
unit = UNIT_WATTHOUR;
}
else if (CMND_MAXENERGYSTART == command_code) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 24)) {
Settings.energy_max_energy_start = XdrvMailbox.payload;
}
nvalue = Settings.energy_max_energy_start;
unit = UNIT_HOUR;
}
#endif // FEATURE_POWER_LIMIT
else serviced = false; // Unknown command
if (serviced && !status_flag) {
if (Settings.flag.value_units) {
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_LVALUE_SPACE_UNIT, command, nvalue, GetTextIndexed(sunit, sizeof(sunit), unit, kUnitNames));
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_COMMAND_LVALUE, command, nvalue);
}
}
return serviced;
}
/********************************************************************************************/
void EnergyDrvInit()
{
energy_flg = ENERGY_NONE;
if ((pin[GPIO_HLW_SEL] < 99) && (pin[GPIO_HLW_CF1] < 99) && (pin[GPIO_HLW_CF] < 99)) { // Sonoff Pow or any HLW8012 based device
energy_flg = ENERGY_HLW8012;
} else if ((SONOFF_S31 == Settings.module) || (SONOFF_POW_R2 == Settings.module)) { // Sonoff S31 or Sonoff Pow R2
baudrate = 4800;
serial_config = SERIAL_8E1;
energy_flg = ENERGY_CSE7766;
#ifdef USE_PZEM004T
} else if ((pin[GPIO_PZEM_RX] < 99) && (pin[GPIO_PZEM_TX] < 99)) { // Any device with a Pzem004T
energy_flg = ENERGY_PZEM004T;
#endif // USE_PZEM004T
}
}
void EnergySnsInit()
{
if (ENERGY_HLW8012 == energy_flg) HlwInit();
#ifdef USE_PZEM004T
if (ENERGY_PZEM004T == energy_flg) { // Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
PzemSerial = new TasmotaSerial(pin[GPIO_PZEM_RX], pin[GPIO_PZEM_TX], 1);
if (PzemSerial->begin(9600)) {
if (PzemSerial->hardwareSerial()) { ClaimSerial(); }
} else {
energy_flg = ENERGY_NONE;
}
}
#endif // USE_PZEM004T
if (energy_flg) {
energy_kWhtoday = (RtcSettingsValid()) ? RtcSettings.energy_kWhtoday : (RtcTime.day_of_year == Settings.energy_kWhdoy) ? Settings.energy_kWhtoday : 0;
energy_kWhtoday_delta = 0;
energy_period = energy_kWhtoday;
EnergyUpdateToday();
ticker_energy.attach_ms(200, Energy200ms);
}
}
#ifdef USE_WEBSERVER
const char HTTP_ENERGY_SNS[] PROGMEM = "%s"
"{s}" D_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"
"{s}" D_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"
"{s}" D_POWERUSAGE "{m}%s " D_UNIT_WATT "{e}"
"{s}" D_POWER_FACTOR "{m}%s{e}"
"{s}" D_ENERGY_TODAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}" D_ENERGY_YESTERDAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}" D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
#endif // USE_WEBSERVER
void EnergyShow(boolean json)
{
char energy_total_chr[10];
char energy_daily_chr[10];
char energy_period_chr[10];
char energy_power_chr[10];
char energy_voltage_chr[10];
char energy_current_chr[10];
char energy_power_factor_chr[10];
char energy_yesterday_chr[10];
char speriod[20];
bool show_energy_period = (0 == tele_period);
float energy = 0;
if (show_energy_period) {
if (energy_period) energy = (float)(energy_kWhtoday - energy_period) / 100;
energy_period = energy_kWhtoday;
}
dtostrfd(energy_total, Settings.flag2.energy_resolution, energy_total_chr);
dtostrfd(energy_daily, Settings.flag2.energy_resolution, energy_daily_chr);
dtostrfd(energy, Settings.flag2.wattage_resolution, energy_period_chr);
dtostrfd(energy_power, Settings.flag2.wattage_resolution, energy_power_chr);
dtostrfd(energy_voltage, Settings.flag2.voltage_resolution, energy_voltage_chr);
dtostrfd(energy_current, Settings.flag2.current_resolution, energy_current_chr);
dtostrfd(energy_power_factor, 2, energy_power_factor_chr);
dtostrfd((float)Settings.energy_kWhyesterday / 100000, Settings.flag2.energy_resolution, energy_yesterday_chr);
if (json) {
snprintf_P(speriod, sizeof(speriod), PSTR(",\"" D_JSON_PERIOD "\":%s"), energy_period_chr);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_POWERFACTOR "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"),
mqtt_data, energy_total_chr, energy_yesterday_chr, energy_daily_chr, (show_energy_period) ? speriod : "", energy_power_chr, energy_power_factor_chr, energy_voltage_chr, energy_current_chr);
#ifdef USE_DOMOTICZ
if (show_energy_period) { // Only send if telemetry
dtostrfd(energy_total * 1000, 1, energy_total_chr);
DomoticzSensorPowerEnergy((uint16_t)energy_power, energy_total_chr); // PowerUsage, EnergyToday
DomoticzSensor(DZ_VOLTAGE, energy_voltage_chr); // Voltage
DomoticzSensor(DZ_CURRENT, energy_current_chr); // Current
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if (show_energy_period) {
KnxSensor(KNX_ENERGY_VOLTAGE, energy_voltage);
KnxSensor(KNX_ENERGY_CURRENT, energy_current);
KnxSensor(KNX_ENERGY_POWER, energy_power);
KnxSensor(KNX_ENERGY_POWERFACTOR, energy_power_factor);
KnxSensor(KNX_ENERGY_DAILY, energy_daily);
KnxSensor(KNX_ENERGY_TOTAL, energy_total);
KnxSensor(KNX_ENERGY_START, energy_start);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_ENERGY_SNS, mqtt_data, energy_voltage_chr, energy_current_chr, energy_power_chr, energy_power_factor_chr, energy_daily_chr, energy_yesterday_chr, energy_total_chr);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XDRV_03
boolean Xdrv03(byte function)
{
boolean result = false;
if (energy_flg) {
switch (function) {
case FUNC_INIT:
EnergyDrvInit();
break;
case FUNC_COMMAND:
result = EnergyCommand();
break;
case FUNC_SET_POWER:
EnergySetPowerSteadyCounter();
break;
}
}
return result;
}
#define XSNS_03
boolean Xsns03(byte function)
{
boolean result = false;
if (energy_flg) {
switch (function) {
case FUNC_INIT:
EnergySnsInit();
break;
case FUNC_EVERY_SECOND:
EnergyMarginCheck();
break;
case FUNC_JSON_APPEND:
EnergyShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_APPEND:
EnergyShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_SAVE_BEFORE_RESTART:
EnergySaveState();
break;
}
}
return result;
}
#endif // USE_ENERGY_SENSOR