Tasmota/tasmota/support_switch.ino

290 lines
11 KiB
C++

/*
support_switch.ino - switch support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define SWITCH_V2
#ifdef SWITCH_V2
/*********************************************************************************************\
* Switch support with input filter
*
* Inspired by (https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/master/olimex/user/user_switch2.c)
\*********************************************************************************************/
const uint8_t SWITCH_PROBE_INTERVAL = 10; // Time in milliseconds between switch input probe
#include <Ticker.h>
Ticker TickerSwitch;
struct SWITCH {
unsigned long debounce = 0; // Switch debounce timer
uint16_t no_pullup_mask = 0; // Switch pull-up bitmask flags
uint8_t state[MAX_SWITCHES] = { 0 };
uint8_t last_state[MAX_SWITCHES]; // Last wall switch states
uint8_t hold_timer[MAX_SWITCHES] = { 0 }; // Timer for wallswitch push button hold
uint8_t virtual_state[MAX_SWITCHES]; // Virtual switch states
uint8_t present = 0;
} Switch;
/********************************************************************************************/
void SwitchPullupFlag(uint16 switch_bit)
{
bitSet(Switch.no_pullup_mask, switch_bit);
}
void SwitchSetVirtual(uint32_t index, uint8_t state)
{
Switch.virtual_state[index] = state;
}
uint8_t SwitchGetVirtual(uint32_t index)
{
return Switch.virtual_state[index];
}
uint8_t SwitchLastState(uint32_t index)
{
return Switch.last_state[index];
}
bool SwitchState(uint32_t index)
{
uint32_t switchmode = Settings.switchmode[index];
return ((FOLLOW_INV == switchmode) ||
(PUSHBUTTON_INV == switchmode) ||
(PUSHBUTTONHOLD_INV == switchmode) ||
(FOLLOWMULTI_INV == switchmode) ||
(PUSHHOLDMULTI_INV == switchmode)
) ^ Switch.last_state[index];
}
/*********************************************************************************************/
void SwitchProbe(void)
{
if (uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
uint8_t state_filter = Settings.switch_debounce / SWITCH_PROBE_INTERVAL; // 5, 10, 15
uint8_t force_high = (Settings.switch_debounce % 50) &1; // 51, 101, 151 etc
uint8_t force_low = (Settings.switch_debounce % 50) &2; // 52, 102, 152 etc
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
if (pin[GPIO_SWT1 +i] < 99) {
// Olimex user_switch2.c code to fix 50Hz induced pulses
if (1 == digitalRead(pin[GPIO_SWT1 +i])) {
if (force_high) { // Enabled with SwitchDebounce x1
if (1 == Switch.virtual_state[i]) {
Switch.state[i] = state_filter; // With noisy input keep current state 1 unless constant 0
}
}
if (Switch.state[i] < state_filter) {
Switch.state[i]++;
if (state_filter == Switch.state[i]) {
Switch.virtual_state[i] = 1;
}
}
} else {
if (force_low) { // Enabled with SwitchDebounce x2
if (0 == Switch.virtual_state[i]) {
Switch.state[i] = 0; // With noisy input keep current state 0 unless constant 1
}
}
if (Switch.state[i] > 0) {
Switch.state[i]--;
if (0 == Switch.state[i]) {
Switch.virtual_state[i] = 0;
}
}
}
}
}
TickerSwitch.attach_ms(SWITCH_PROBE_INTERVAL, SwitchProbe); // Re-arm as core 2.3.0 does only support ONCE mode
}
void SwitchInit(void)
{
Switch.present = 0;
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
Switch.last_state[i] = 1; // Init global to virtual switch state;
if (pin[GPIO_SWT1 +i] < 99) {
Switch.present++;
pinMode(pin[GPIO_SWT1 +i], bitRead(Switch.no_pullup_mask, i) ? INPUT : ((16 == pin[GPIO_SWT1 +i]) ? INPUT_PULLDOWN_16 : INPUT_PULLUP));
Switch.last_state[i] = digitalRead(pin[GPIO_SWT1 +i]); // Set global now so doesn't change the saved power state on first switch check
}
Switch.virtual_state[i] = Switch.last_state[i];
}
if (Switch.present) { TickerSwitch.attach_ms(SWITCH_PROBE_INTERVAL, SwitchProbe); }
}
/*********************************************************************************************\
* Switch handler
\*********************************************************************************************/
void SwitchHandler(uint8_t mode)
{
if (uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
uint16_t loops_per_second = 1000 / Settings.switch_debounce;
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
if ((pin[GPIO_SWT1 +i] < 99) || (mode)) {
uint8_t button = Switch.virtual_state[i];
uint8_t switchflag = POWER_TOGGLE +1;
if (Switch.hold_timer[i]) {
Switch.hold_timer[i]--;
if (0 == Switch.hold_timer[i]) {
switch (Settings.switchmode[i]) {
case TOGGLEMULTI:
switchflag = POWER_TOGGLE; // Toggle after hold
break;
case FOLLOWMULTI:
switchflag = button &1; // Follow wall switch state after hold
break;
case FOLLOWMULTI_INV:
switchflag = ~button &1; // Follow inverted wall switch state after hold
break;
case PUSHHOLDMULTI:
if (NOT_PRESSED == button){
Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 25;
SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
}
else
SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT
break;
case PUSHHOLDMULTI_INV:
if (PRESSED == button){
Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 25;
SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
}
else
SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT
break;
default:
SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT
break;
}
}
}
// enum SwitchModeOptions {TOGGLE, FOLLOW, FOLLOW_INV, PUSHBUTTON, PUSHBUTTON_INV, PUSHBUTTONHOLD, PUSHBUTTONHOLD_INV, PUSHBUTTON_TOGGLE, TOGGLEMULTI, FOLLOWMULTI, FOLLOWMULTI_INV, PUSHHOLDMULTI, PUSHHOLDMULTI_INV, MAX_SWITCH_OPTION};
if (button != Switch.last_state[i]) {
switch (Settings.switchmode[i]) {
case TOGGLE:
case PUSHBUTTON_TOGGLE:
switchflag = POWER_TOGGLE; // Toggle
break;
case FOLLOW:
switchflag = button &1; // Follow wall switch state
break;
case FOLLOW_INV:
switchflag = ~button &1; // Follow inverted wall switch state
break;
case PUSHBUTTON:
if ((PRESSED == button) && (NOT_PRESSED == Switch.last_state[i])) {
switchflag = POWER_TOGGLE; // Toggle with pushbutton to Gnd
}
break;
case PUSHBUTTON_INV:
if ((NOT_PRESSED == button) && (PRESSED == Switch.last_state[i])) {
switchflag = POWER_TOGGLE; // Toggle with releasing pushbutton from Gnd
}
break;
case PUSHBUTTONHOLD:
if ((PRESSED == button) && (NOT_PRESSED == Switch.last_state[i])) {
Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10; // Start timer on button press
}
if ((NOT_PRESSED == button) && (PRESSED == Switch.last_state[i]) && (Switch.hold_timer[i])) {
Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer...
switchflag = POWER_TOGGLE; // ...and Toggle
}
break;
case PUSHBUTTONHOLD_INV:
if ((PRESSED == button) && (NOT_PRESSED == Switch.last_state[i])) {
Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10; // Start timer on button press...
switchflag = POWER_TOGGLE; // ...and Toggle
}
if ((NOT_PRESSED == button) && (PRESSED == Switch.last_state[i])) {
Switch.hold_timer[i] = 0; // Button released : stop timer.
}
break;
case TOGGLEMULTI:
case FOLLOWMULTI:
case FOLLOWMULTI_INV:
if (Switch.hold_timer[i]) {
Switch.hold_timer[i] = 0;
SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT
} else {
Switch.hold_timer[i] = loops_per_second / 2; // 0.5 second multi press window
}
break;
case PUSHHOLDMULTI:
if ((NOT_PRESSED == button) && (PRESSED == Switch.last_state[i])) {
if(Switch.hold_timer[i]!=0)
SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT
Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10;
}
if ((PRESSED == button) && (NOT_PRESSED == Switch.last_state[i])) {
if(Switch.hold_timer[i] > loops_per_second * Settings.param[P_HOLD_TIME] / 25)
switchflag = POWER_TOGGLE; // Toggle with pushbutton
Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10;
}
break;
case PUSHHOLDMULTI_INV:
if ((PRESSED == button) && (NOT_PRESSED == Switch.last_state[i])) {
if(Switch.hold_timer[i]!=0)
SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT
Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10;
}
if ((NOT_PRESSED == button) && (PRESSED == Switch.last_state[i])) {
if(Switch.hold_timer[i] > loops_per_second * Settings.param[P_HOLD_TIME] / 25)
switchflag = POWER_TOGGLE; // Toggle with pushbutton
Switch.hold_timer[i] = loops_per_second * Settings.param[P_HOLD_TIME] / 10;
}
break;
}
Switch.last_state[i] = button;
}
if (switchflag <= POWER_TOGGLE) {
if (!SendKey(KEY_SWITCH, i +1, switchflag)) { // Execute command via MQTT
ExecuteCommandPower(i +1, switchflag, SRC_SWITCH); // Execute command internally (if i < devices_present)
}
}
}
}
}
void SwitchLoop(void)
{
if (Switch.present) {
if (TimeReached(Switch.debounce)) {
SetNextTimeInterval(Switch.debounce, Settings.switch_debounce);
SwitchHandler(0);
}
}
}
#endif // SWITCH_V2